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Abstract: Land use/land cover (LULC) maps are important datasets in various environ-
mental projects. Our aim was to demonstrate how GEOBIA framework can be used for in-
tegrating different data sources and classification methods in context of LULC mapping. We
presented multi-stage semi-automated GEOBIA classification workflow created for LULC
mapping of Tuszyma Forestry Management area based on multi-source, multi-temporal and
multi-resolution input data, such as 4 bands- aerial orthophoto, LiDAR-derived nDSM,
Sentinel-2 multispectral satellite images and ancillary vector data. Various classification
methods were applied, i.e. rule-based and Random Forest supervised classification. This
approach allowed us to focus on classification of each class ‘individually’ by taking ad-
vantage from all useful information from various input data, expert knowledge, and ad-
vanced machine-learning tools. In the first step, twelve classes were assigned in two-steps
rule-based classification approach either vector-based, ortho- and vector-based or ortho-
and Lidar-based. Then, supervised classification was performed with use of Random Forest
algorithm. Three agriculture-related LULC classes with vegetation alternating conditions
were assigned based on aerial orthophoto and Sentinel-2 information. For classification of
15 LULC classes we obtained 81.3% overall accuracy and kappa coefficient of 0.78. The
visual evaluation and class coverage comparison showed that the generated LULC layer
differs from the existing land cover maps especially in relative cover of agriculture-related
classes. Generally, the created map can be considered as superior to the existing data in
terms of the level of details and correspondence to actual environmental and vegetation
conditions that can be observed in RS images.
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1. Introduction

Since ecosystems include interrelated biotic and abiotic elements (Begon et al., 2006),
investigation and description of these elements and interactions between them needs
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broad integrative approach. Thus, recent ecological research have become more inter-
disciplinary. Associations with other science fields like probability theory, geoscience
(geodesy, cartography, geology), physics, hydrology, climatology etc. (Guisan and Zim-
mermann, 2000; van Dam et al., 2013; de Vienne, 2016; Oktavia and Prativi, 2017; Gar-
cia, 2014; Stephens et al., 2016) are often considered and modern methods, technologies,
approaches or solutions are used. The ones of increasing importance are geographic in-
formation system (GIS) and remote sensing (RS) technologies. RS and GIS can provide
comprehensive and objective information related to land cover and topography used as
the input data for such research as species distribution models. These technologies can
be also considered as a source of methods and solutions for data analysis and integration.

Landscape and conservation research or biodiversity monitoring based on spatial
analyses and modelling process requires the high quality input data. The one with par-
ticular application in environmental monitoring, biodiversity research, nature conser-
vation or natural-resources management is land use/land cover (LULC) map. Robust
ecological studies in fine scale like species-habitat relationship investigation requires
high quality and high resolution LULC data (Zanariah et al., 2012). Unfortunately, in
Polish conditions, the updated fine-scale LULC maps for the land use-diversified areas
with great share of agriculture landscape (i.e. Tuszyma Forestry Management area) are
not available. Thus, the performance of any profound ecological research requires new
high quality and high resolution LULC map to be produced. However, this could be
challenging, since the geodata from various sources like remote sensing (high-resolution
true color and false color composite aerial orthophotos, multispectral satellite images,
LiDAR point clouds), ground truth campaign or existing databases could not be singly
enough to perform reliable image classification, with high level of details. Thus, the data
fusion approach could be markedly helpful.

One of the image classification method which allows data fusion is Geographic Ob-
ject Based Image Analysis (GEOBIA). GEOBIA or OBIA is a method that partition
remote sensing imagery into meaningful image-objects and assess their characteristics
through spatial, spectral and temporal scale (Hay and Castilla, 2006). In this image
classification method, instead of analyzing and classifying single pixels, image objects
are generated through different segmentation methods (Hoffmann et al., 2011). Image-
objects (or segments) exhibit many useful features like diversified spectral information
and spatial features of objects (shape, distances, neighbourhood, topologies) (Hay and
Castilla, 2006; Blaschke, 2010). GEOBIA simulates the human way of visual landscape
or image interpretation. First, the spectral information of the pixels are aggregating into
objects and then the objects are classified based on the predefined expert knowledge
(Hoffmann et al., 2011).

One of the main advantage of GEOBIA is the opportunity to integrate data and
knowledge from vast array of disciplines. It allows the geospatial data beyond images,
or data of different quality, spatio-temporal scales or resolutions to be used (Blaschke et
al., 2014). It can be easily integrated with commonly used GIS environment. The data
integration approach has been proved to increase classification accuracy (Nordkvist et
al., 2012, Huang and Zhu, 2013). The image classification schemes are often based on
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the dataset including ALS (airborne laser scanning) data combined with multispectral
airborne-imagery (Syed et al., 2005, Hermosilla et al., 2010, Szostak et al., 2014; Pi-
iroinen et al., 2015), or with hyperspectral satellite imagery (Augilar et al., 2012; Huang
and Zhu, 2013). Additionally, the vector data can be incorporated in image classification
framework (Frontoni et al., 2010, Tiede et al., 2010; Wężyk et al., 2016). Smith & Mor-
ton (2010) proposed to use the best existing real world feature datasets as the starting
point for segmentation. GEOBIA approach allows not only the data fusion but also in-
tegration of different classification methods, such as combined object- and pixel- based
supervised image classification framework (Bernadini et al., 2010; Salehi et al., 2013).

The aim of this paper was to demonstrate how GEOBIA framework can be used for
integrating different data sources and classification methods in context of land use/land
cover mapping. For this reason, we presented multi-stage semi-automated GEOBIA clas-
sification workflow created for LULC mapping of Tuszyma Forestry Management area.
Data integration approach allowed utilization of multi-source, multi-temporal and multi-
resolution input data such as orthophoto imagery, nDSM (normalized Digital Surface
Model), satellite imagery and vector layers. Using diversified input data types allowed
incorporation of different information related to multispectral reflectance, terrain surface
or exact location and shape of some land use objects into segmentation and classifica-
tion processes. It was also demonstrated that in GEOBIA approach one classification
workflow can involve rule-based classification for some land use classes assignment and
supervised classification for other, in this case agriculture-related classes. The second
purpose of presented research was to obtain a high quality and resolution LULC map for
the study area that can provide a significant input for various ecological and landscape
analysis, which can be useful for vast array of biodiversity, conservation, wildlife and
land management purposes.

2. Methods

2.1. Study area

We have created the GEOBIA classification workflow for Tuszyma Forestry Manage-
ment area located in South-Eastern Poland in Podkarpackie Province (Fig. 1) that covers
approx. 53,000 ha. It is slightly ridged plain elevated 150 to 230 m a.s.l. The area is
located within Wisła basin, in two rivers – Wisłoka and Breń watersheds and the river
system is of dendritic pattern. Highly diversified soil conditions within the study area
impact on highly diversified habitat and land-use conditions with extensive and small
woodlands, more agriculture-dominated landscape in the North and with more shrub-
lands and wastelands in the South. The farmland fragmentation is high with the average
area of a single farm below 4.5 ha. There is only one big city within the study area –
Mielec (approx. 47 km2, 60.6 thousand inhabitants). Other settlements are small towns
or villages. The southern part of study area is crossed by the A4 motorway with east-
west direction. There are three nature reserves located within Tuszyma Forest District
with overall area of approx. 70 ha that preserve the most precious parts of forest, water
or grassland-cropland ecosystems.
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Fig. 1. Location of the study area in south-eastern Poland (a). The Tuszyma Forestry Management borders
on Sentinel-2 RGB composite background (b)

2.2. Datasets and pre-processing

To achieve the research goals the variety of data types were used and integrated in one
classification workflow (Table 1). All input layers covered whole study area. High reso-
lution aerial orthophoto acquired in June 2015 included four spectral bands (NIR, Red,
Green, Blue) with 0.25 m spatial resolution. In order to decrease the input layers size
and required computing power, the aerial orthophotos were resampled to 1 m spatial res-
olution using bilinear interpolation technique. Resampling allowed to obtain orthoim-
ages with the same spatial resolution as nDSM layer and still representing high level
of detail. It has not big influence to the process of classification, since land use objects
with area smaller than 1 m was not considered. nDSM layer with 1 m spatial resolu-
tion was generated from Airborne Laser Scanning point clouds acquired in September
2014. Both, orthoimages and ALS (LiDAR) data were collected from Polish National
Geodesy Office database. Supervised classification was performed with use of multi-
spectral satellite imageries from Sentinel-2 Earth observation mission obtained in two
points of time: March 2016 and August 2016. These two dates correspond to signifi-
cant periods in vegetation season and can be useful in distinguishing various agricultural
classes. Ten spectral bands of Sentinel-2 images were used (bands: 2, 3, 4, 5, 6, 7, 8,
8A, 11, 12) with 10 m or 20 m spatial resolution, all sourced from European Space
Agency (ESA) database. Spatial information from remotely sensed images were sup-
ported by GIS vector data including six layers: buildings, roads, cadastral parcels, land
use classes, ditches and flowing water collected from National and Regional Geodesy
Offices from BDOT database. Since the confrontation of roads and buildings vector data
with orthophoto images showed that these layers needed updating, the corresponding
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layers from OpenStreetMap database were obtained (updated to March 2017). Datasets
from both sources were merged. Based on the information about different road sub-
classes included in obtained datasets, the final roads layer subclasses were grouped into
three classes: Motorway, Paved roads and Ground roads. Each input layer was clipped
to the study area extent and if needed reprojected to one coordination system (PL-1992;
EPSG:2180). All of the pre-processing was carried out in QGIS and ArcGIS (Esri) en-
vironment.

Table 1. Multi-source, multi-temporal and multi-resolution input data used in presented semi-automated
LULC classification workflow

Data Type Spatial
resolution Source Date of

acquisition Pre-processing

Aerial
orthophoto

4 bands
(NIR, Red,
Green, Blue)

0.25 m
resampled
to 1 m

National
Geodesy
Office

June 2015 Resampling;
clipping to study
area extent

Lidar data nDSM 1 m National
Geodesy
Office

September
2014

Clipping

Satellite
imagery –
Sentinel 2

Bands:
2, 3, 4, 5,
6, 7, 8

Bands:
2, 3, 4, 8: 10 m;
5, 6, 7, 8A,
11, 12: 20 m

ESA March 2016,
August 2016

Reprojecting;
clipping

Vector data 6 layers:
buildings,
roads,
parcels,
land use LU,
ditches,
flowing water

National
and Regional
Geodesy
Offices, OSM

Reprojecting;
databases unification;
clipping; buildings
and roads layer:
two-sources
layers merging;
roads:
subclasses grouping

2.3. Workflow

The multi-stage GEOBIA classification workflow was applied as presented in Figure 2.
First two steps of semi-automated LULC classification involved data collection and pre-
processing performed in QGIS and ArcGIS software. For multistep image object clas-
sification the eCognition Developer (TRIMBLE GeoSpatial) software was used. The
GEOBIA classification procedure includes two main stages: the segmentation and classi-
fication of resulting segments. Generally, classification stage is either expert knowledge-
based set of rules or supervised classification method based on training samples. Clas-
sification workflow applied in our study integrates both approaches and is comprised of
two steps: rule-based classification and then supervised classification with Radom Forest
method. Spectral information from aerial orthophoto bands was expanded by appending
temporary layers of two vegetation indices (VIs): Normalized Difference Vegetation In-
dex (NDVI) and Green Chlorophyll Index (CIGreen). These VIs proved to be accurate
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and linear estimator of canopy chlorophyll and N content (Clevers and Gitelson, 2013),
thus can be helpful in vegetation classification. Additionally, the Normalized Difference
Water Index was used (Kaplan and Avdan, 2017).

Fig. 2. Multi-stage GEOBIA classification workflow for Tuszyma Forestry Management area

The primary step of image-object analysis is segmentation, the process of grouping
neighboring pixels into homogenous segments. During this process, the user can select
the size and homogeneity criteria of the objects. In this research, we used multiresolution
segmentation algorithm from eCogniton Developer software, which is proven to be one
of the most successful image segmentation algorithms (Witharana and Civco, 2014). It
is an optimization procedure which, for a given number of image objects, minimizes the
average heterogeneity and maximizes their respective homogeneity (Baatz and Schape,
2000). The scale parameter is considered to be one of the most important variables be-
cause it controls the relative size of the image objects, thus has a direct impact on the
subsequent classification steps (Ma et al., 2015). For spectral information it is possible
to define weights for each spectral band. The shape parameter defines the value of com-
pactness and smoothness. Optimal segmentation parameters were determined based on
a trail-and-error approach and previous experience of operators. In the presented work-
flow, the following parameters of multiresolution segmentation were used:

– scale parameter: 20
– shape parameter: 0.2
– spectral bands weights: Red, Green, Blue, NDWI-1; NIR, NDVI, CIGreen,

nDSM-2
– compactness/smoothness: 0.5.
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First step of rule-based classification included only vector-based class labelling for
some LU classes (Motorway, Paved roads, Ground roads, Buildings, Ditches), ortho and
vector-based for others (Water) or ortho and LiDAR-based (Trees, Bushes). The roads
layer was used to create new segments with exact location of roads and then assign three
roads classes (Motorway, Paved roads, Ground roads) based on the attributes of vector
layer. According to them, the segments were extended with use of pixel-based object
resizing algorithm. Similarly, the Buildings segments extraction and class labelling was
only vector-based. Water was assigned based on spectral information from orthoimages,
specifically on a mean value of NDWI index and standard deviation of Blue band. The
flowing water vector layer was used for completing Water class. The unclassified objects
with mean nDSM value above 1.5 m and NDVI >0.05 were assigned to Trees class.
Similar process was performed for Bushes class (mean nDSM above 1 m). The Ditches
class segmentation and assignment was carried out only vector-based.

The first step of rule-based classification described above, produced a certain mask
comprised of eight classes. In the next step, for remaining unclassified objects the fol-
lowing classes were assigned based on LU vector layer: Built-up area, Recreational area,
Railway, Fields, Pastures, Hayfields. The three latter classes representing agricultural
land use were submitted to supervised classification in the subsequent step and reclas-
sified to: Croplands, Grasslands and Wastelands. Built-up area class was expanded by
classifying the selected segments neighboring to Buildings class. LU layer was also used
for expanding and complementing Water and Trees classes. Once all Trees were classi-
fied and segments were merged, two classes were distinguished by area: objects above
0.05 ha were assigned as Woodlands while below 0.05 ha as Trees.

The aim of next step of the workflow was to distinguish three classes – Crop-
lands, Grasslands and Wastelands – using the supervised classification approach. Firstly,
new temporary layers only Sentinel-based were created: NDVI and CIGreen indices for
each date. Then, the multiresolution segmentation was performed for only three classes:
Fields, Pastures, Hayfields. The parameters of the multiresolution segmentation were
as follows: scale: 25; shape: 0.2; compactness: 0.5; spectral bands weights: CIGreen,
NDVI: 2, Blue, Green, NIR, Red: 1. Parcels vector layer was used in segmentation.
The created segments with associated attributes were then exported to a vector layer
and analysed in the R software environment. The segments’ attributes were both ortho-
and Sentinel-2-based and consisted of: mean values of all spectral bands of aerial or-
thophoto and two Sentinel-2 images; mean and standard deviation values of calculated
VIs; selected Haralic texture metrics calculated from aerial orthophoto (GLCM Ang.
2nd moment, GLCM Contrast, GLCM Correlation, GLCM Dissimilarity, GLCM En-
tropy, GLCM Homogeneity, GLCM Mean, GLCM Standard Deviation). The values of
these variables were calculated for each segment which allowed to integrate information
from datasets with different spatial resolution. As training samples 450 segments were
selected (150 segments for each class). Samples were labelled based on ground truth
data from field visits and visual interpretation of high resolution 0.25 m orthophoto CIR
composite and Sentinel-2 satellite images performed by trained operator.

Segments’ attributes exported from eCognition software were used as predictor vari-
ables in supervised classification. Prior to classification execution the highly correlated
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predictors were removed. First, the correlation matrix based on Pearson correlation co-
efficient was created for all used predictor variables. Then, if two variables had a high
correlation (>0.9) the variable with the higher mean absolute correlation to all other
variables was removed.

Supervised classification was performed using Random Forest (RF) classification
method. Many key advantages of RF algorithm which include their non-parametric
nature, high classification accuracy and capability to determine variable importance
(Rodriguez-Galiano et al., 2012) cause that it is of increasing interest and use in LULC
classification projects. RF is an ensemble method using defined number of simple deci-
sion trees. Each tree is independently determined using a bootstrap sample of the data.
The most popular class from the trees’ votes is considered as final prediction. To reduce
the correlation among trees the algorithm randomly selects defined number of predictors
at each split (Breiman, 2001). The number of trees for the forest in the study was set to
1000 while the optimal number of randomly selected predictors for splits was tuned from
the following values: 2, 6, 10, 14, 18 using 10-fold cross-validation method. The predic-
tive model was created using the randomForest package for R (Liaw and Wiener, 2002).
The variable importance was calculated as mean decrease in classification accuracy af-
ter permutation of a certain variable. For each tree, the error rate for classification was
computed on the out-of-bag portion of the data. Then the error rate was calculated after
permuting each predictor variable. The difference between the obtained error rates were
then averaged over all trees, and normalized by the standard deviation of the differences
(Liaw and Wiener, 2002).

Rule-based and supervised classification were followed by post-processing step. It
included manual editing process involved visual checking of the results and corrections
in case of explicit errors in class assignment, final smoothing and reshaping in order to
obtain more compacted image objects, merging segments within one class, or removing
objects smaller than user-defined minimum area. Most corrections of explicit errors was
performed among classes related to secondary succession i.e. Wastelands, Bushes and
Trees, as well as Trees vs. Woodlands classes. After verification of entire LULC layer,
the improved results underwent accuracy assessment.

Accuracy assessment was performed on 995 randomly selected points. Although
point-based accuracy assessment can be considered as unstable and inferior to area-
based method (Ma et al., 2017), point-based approach was chosen for this evaluation
because land cover could be unambiguously determined for each reference point using
a combination of aerial orthophoto and nDSM. The number of required test points to
generate an error matrix was calculated using the equation for a multinomial distribution
provided by Congalton and Green (2009). Number of test points for each class was
then calculated based on the proportion of the area covered by this class however, the
minimum number of points for each class was set to 20. Calculated numbers of points
for each class was then randomly placed within the study area. Reference data for each
test point was collected through on-screen visual interpretation of 0.25 m resolution CIR
aerial orthophoto and 1 m resolution nDSM. An error matrix with producer (PA; the
ratio between the number of samples correctly classified in that category and the total
number of samples observed as belonging to that category (Congalton, 1991)) and user
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accuracies (UA; the ratio between the number of samples correctly classified in that
category and the total number of samples classified to respective category (Congalton,
1991)) was generated along with the overall accuracy (OA) and Kappa coefficient.

3. Results

We performed multi-stage semi-automated GEOBIA classification workflow integrat-
ing rule-based and supervised classification methods and based on multi-source, multi-
temporal and multi-resolution input data. As the result, the LULC vector layer for
Tuszyma Forestry Management area was generated. The results of classification along
with overall accuracy and Kappa coefficient was shown in Table 2. The overall layer
covers 642.26 km2 and objects are classified into 15 different LULC classes. There are
three LULC classes predominating in the study area: Woodlands which covers 31.89%,
Croplands (26.47%) and Wastelands (18.9%). However, the agricultural land defined as
the area used for farming (in this case the Croplands and Grasslands classes) covers over
33% of the entire study area and it slightly exceeds the Woodland class. Three classes
which represents the land out of the agricultural use as well as secondary forest succes-

Table 2. The results of multi-stage GEOBIA classification workflow:
the LULC classes surface coverage along with overall accuracy and

Kappa coefficient

Overall accuracy = 81.3%
Kappa coefficient = 0.78

LULC class Area [km2] Area [%]
Buildings 5.42 0.85

Built-up 31.56 4.97

Bushes 3.20 0.50

Croplands 168.08 26.47

Ditches 5.02 0.79

Grasslands 43.92 6.91

Ground roads 1.56 0.25

Motorway 0.54 0.09

Paved roads 12.94 2.04

Railway 0.29 0.05

Recreational 0.86 0.14

Trees 31.70 4.99

Wastelands 120.01 18.90

Water 7.47 1.18

Woodlands 202.51 31.89

Overall 635.08 100.00
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sion which are Wastelands, Bushes and Trees together cover over 24% of the study area.
The Built-up and Buildings classes cover less than six percent, indicating the fact the
built-up area within Tuszyma Forestry Management area is relatively small and sparse
relating to occurrence of only one big city and more small towns and villages within the
area. All roads represent 2.37% of the study area.

The obtained overall accuracy of the classification process defined as the ratio be-
tween the number of correctly classified samples and the total number of samples equals
81.3% and the Kappa coefficient value equals 0.78. The accuracy assessment results are
presented in confusion matrix (Tab. 3) with given Producer’s Accuracy (PA) and User’s
Accuracy (UA) for each class. The values of PA ranged from 0.4 for Trees class to 1
for Motorway class and the average Producer’s Accuracy reached value 0.8. The UA
ranged from 0.57 for Ground roads class up to 1 for Motorway class. The average User’s
Accuracy value equals 0.79. Particular attention should be paid to the results of accu-
racy assessment for three classes assigned by Random Forest supervised classification
which are Croplands, Grasslands and Wastelands. Best results were obtained for Crop-
lands class with PA = 0.94 and UA = 0.88, for Grasslands class it equals 0.72 and 0.8,
respectively and for Wastelands class both PA and UA values equal 0.73. Both average
Producer’s and User’s accuracy for these three classes equal 0.8 and it was equal to val-
ues obtained for all classes. Overall, most confusion was observed within Bushes and

Table 3. Confusion matrix
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PA
Buildings 19 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0.66

Built-up 1 28 1 2 1 1 2 0 1 2 3 0 2 0 0 0.64

Bushes 0 0 15 0 0 0 0 0 0 0 0 4 5 1 2 0.56

Croplands 0 1 0 180 1 2 1 0 0 0 0 1 6 0 0 0.94

Ditches 0 0 0 1 14 0 0 0 0 0 0 0 0 0 0 0.93

Grasslands 0 0 0 13 1 43 1 0 0 0 0 0 2 0 0 0.72

Ground roads 0 0 0 0 0 0 34 0 5 0 0 0 1 0 0 0.85

Motorway 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 1

Paved roads 0 0 0 0 0 0 14 0 43 0 0 0 0 0 0 0.75

Railway 0 0 0 0 1 0 0 0 0 15 0 0 0 0 0 0.94

Recreational 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 1

Trees 0 1 1 0 1 0 1 0 4 1 0 27 21 2 8 0.4

Wastelands 0 0 3 8 1 7 1 0 2 2 0 5 107 1 9 0.73

Water 0 0 0 0 0 0 0 0 0 0 1 0 0 16 0 0.94

Woodlands 0 0 0 0 0 1 6 0 5 0 0 2 3 0 232 0.93

UA 0.95 0.72 0.75 0.88 0.7 0.8 0.57 1 0.72 0.75 0.8 0.69 0.73 0.8 0.92
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Tree classes. First class was often confused with Trees and Wastelands and the latter
with Wastelands and Woodlands.

The results of variable importance analysis presented in Fig. 3 showed that the con-
tribution of mean ortho-based NDVI was the highest with the value of mean decrease
of accuracy equal 46.6. High values were also reached by other vegetation indices vari-
ables: Sentinel-based CIGreen Standard Deviation for August (37.5) and ortho-based
CIGreen Standard Deviation (35.3). Two Sentinel Vegetation Red-Edge bands (5 and 6),
along with SWIR band (11) showed relatively high importance with values of mean de-
crease of accuracy ranged from 33.3 to 28.9. Interestingly, the variables that contributed
the least were Sentinel-based VI’s Standard Deviations with the lowest value equal 9 for
NDVI Standard Deviation for August.

Fig. 3. Importance of predictor variables used for supervised Random
Forest classification in terms of mean decrease in accuracy

The visual “on-screen” interpretation (Figure 4) as well as the tabulation of surface
coverage of specified land use classes (Table 4) of the generated LULC layer and the
existing land cover maps were performed. Selected region of the study area presented in
Figure 4 shows that the CORINE Land Cover (CLC) layer from year 2012, apart from
being not-updated is very generalized and only indicates wide general classes with large
objects and low level of details. There is no roads class or any class related to ditches,
bushes or small trees patches included in this layer. The land use vector layer available
from BDOT database is much more detailed in terms of number of distinguished classes
and patch size compared to CLC map, however it often reflects rather the legal status of
the area under consideration than the actual present land cover conditions not including
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Fig. 4. LULC map of Tuszyma Forestry Management area (a); zoom to OBIA LULC map of selected
region (b); orthophoto CIR composite (c); Sentinel-2 RGB composite (d); CORINE Land Cover 2012 (e);

land use layer from BDOT database (f)

the changes resulting for example from farmland abandonment or secondary forest suc-
cession. Thus, this layer may also be considered as out-of-date. Additionally, the class
borders often correspond to cadastral parcels borders and do not reflect the environmen-
tal conditions. The LULC map generated in this study, although based on datasets from
different points of time, generally can be considered as up-to-date, since input data used
for classification of fast alternating LU classes like buildings, roads, or agriculturally re-
lated classes were most updated. General visual evaluation shows that objects properly
correspond to the shape of land use patches and the assigned classes correctly reflects
the land cover conditions.

The comparison of surface coverage of specified LU classes from the three LULC
maps mentioned above was presented in Table 3. The greatest differences were observed
within Wastelands, Grasslands and Croplands classes. According to BDOT LULC map,
Croplands class covers 43.45% of the study area, Grasslands covers 12.69% and Waste-
lands relative surface area is only 0.22%. In the CLC layer the relative surface area of
Croplands is the highest (47.86%) from all three layers, Wastelands (6.71%) is higher
than from BDOT but lower than from OBIA classification, and Grasslands for CLC is the
lowest (4.71%). The coverage of other classes in OBIA classification and BDOT LULC
maps are comparable. The mentioned three agriculture-related LULC classes with the
greatest differences between-LULC layers were those which we paid particular attention
to in classification process. They were classified with use of supervised RF classification
method and with Sentinel-2 data from two time periods. The reason was that we wanted
to capture as most updated vegetation conditions as possible, since agricultural land-
scape within the study area has been changing due to i.a. farmland abandonment, which
is shown by high percentage of Wastelands class coverage in our LULC map.
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Table 4. The surface coverage of specified land use classes from LULC layers derived from OBIA
classification workflow, BDOT database and CLC 2012 database

OBIA classification BDOT CLC12
Area [km2] Area [%] Area [km2] Area [%] Area [km2] Area [%]

Built-up 36.98 5.82 30.70 4.49 48.26 7.61

Bushes 3.20 0.50 3.52 0.52

Croplands 168.08 26.47 296.85 43.45 303.49 47.86

Ditches 5.02 0.79 5.34 0.78

Grasslands 43.92 6.91 86.70 12.69 29.85 4.71

Roads 15.04 2.37 19.25 2.82

Railway 0.29 0.05 0.54 0.08

Recreational 0.86 0.14 1.19 0.17 0.63 0.10

Trees 31.70 4.99 32.62 4.77

Wastelands 120.01 18.90 1.52 0.22 42.57 6.71

Water 7.47 1.18 7.19 1.05 2.92 0.46

Woodlands 202.51 31.89 197.82 28.95 206.39 32.55

Overall 635.08 100.00 683.25 100.00 634.12 100.00

4. Discussion

Data and methods fusion approach in presented GEOBIA classification framework al-
lowed us to accomplish overall accuracy of 81.3% and kappa coefficient of 0.78. The
obtained results are satisfactory and comparable to those achieved by other authors who
also used ancillary vector data in classification workflow (Castillejo-González et al.,
2009; Tiede et al., 2010; Wężyk et al., 2016). Average Producer’s accuracy was 0.8,
however for only one class (Trees) it was below 0.5 and for six classes PA value was
over 0.9. User’s accuracy values were less spread and there was no value below 0.5 and
for three classes UA exceeded 0.9. The most confusion comes from misidentification
of Trees class often confused with Wasteland and Woodlands classes which can be ex-
plained by the fact that Trees and Woodlands classes were divided only according to
area condition and by secondary forest succession process within Wastelands class. This
process can also be related to confusion between Bushes and Wastelands classes.

Object-based classification approach has been proved to outperform pixel-based
classification yielding higher accuracy results by many authors (Syed et al., 2005;
Castillejo-González et al., 2009; Varga et al, 2014; Belgiu and Csillik, 2018). Addition-
ally, fast development of GIS and RS technologies and continuously increasing avail-
ability of RS and vector datasets give the possibilities of using multisource datasets in
image classification framework. Data integration approach which allows to increase the
classification accuracy by incorporating more useful information, has been proved to be
advantageous in LULC mapping by many authors (Nordkvist et al., 2012, Huang and
Zhu, 2013; Szostak et al., 2014; Jia, 2015).
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GEOBIA classification framework, besides of data fusion, allows also to integrate
different classification methods. Some authors took advantage from this opportunity and
developed combined object- and pixel- based image classification framework (Bernadini
et al., 2010; Salehi et al., 2013) or integrated a rule-based expert system classifier and
a neural network classifier (Liu et al., 2002). In our study besides of integrating vari-
ous datasets also two different classification methods were incorporated: rule-based and
Random Forest supervised classification algorithm. This approach allowed us to focus
on classification of each LU class ‘individually’ by taking advantage from all useful in-
formation from various input data, expert knowledge, and available machine-learning
methods.

Li et al. (2016) showed that Random Forest algorithm, is highly suitable for GEO-
BIA classification in agricultural areas. In this study, Random Forest supervised classi-
fication was perform in order to assign three agriculture-related classes with vegetation
alternating conditions: Croplands, Grasslands and Wastelands. Obtained PA accuracy
values from 0.72 to 0.94 and UA accuracy from 0.73 to 0.88 for these classes can be
considered as satisfactory. Immitzer et al. (2016) performed object-based crop types
classification with Sentinel-based Random Forest algorithm and obtained overall accu-
racy of 76.8% and PA varied from 0.281 to 0.963, UA from 0.624 to 0.881 for various
crop types. Inglada et al. (2015) investigated the opportunities of supervised classifica-
tion methods for crop type mapping at global scale. For twelve test sites all over the
world they obtained OA values for RF classifier above 0.8 for seven sites, and only three
of them were under 0.7.

Random Forest algorithm allows for the variables importance assessment. It is ex-
tremely useful for variable selection in the classification of complex areas where large
multisource data sets with a large number of variables are used. In our study, the highest
importance was shown by vegetation indices, followed by Red-Edge and shortwave in-
frared (SWIR) Sentinel-2 bands. Our results are similar to outcomes of Ramoelo et al.,
(2015) or Immitzer et al. (2016) who performed Sentinel-based classification of forest
and agriculture sites and confirmed the high value of the red-edge and SWIR bands for
vegetation mapping. Schuster et al. (2012) proved that incorporation of red-edge infor-
mation can increase classification accuracy.

According to accuracy assessment results, the multi-stage semi-automatic GEOBIA
classification workflow presented in this study can be considered as a suitable LULC
mapping tool for the study area. However, there are some shortcomings of its applica-
tion. Firstly, although the incorporation of multi-source input data improves the classifi-
cation accuracy and allows for class-focused classification approach, data collection and
pre-processing including i.a. unification of all databases and input layers can be very
effort- and time-consuming. Secondly, the input data used in this workflow are multi-
temporal i.e. they were acquired or updated to different time points, which could impact
on classification accuracy. The classification framework integrated rule-based and super-
vised methods. The first one involves creating expert knowledge-based set of rules which
is labour and time-consuming (Liu et al., 2002; Stephenson, 2010) and unfortunately it
cannot be easily transferable to other region. Taking into account its proven classification
robustness (Li et al., 2016; Kulkarni and Lowe, 2016; Ma et al., 2017) Random Forest
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algorithm was chosen for supervised classification step but no comparison of different
machine-learning methods like Support Vector Machines, Neural Networks or Decision
Trees was presented in this study.

5. Conclusions

In face of fast developing GIS and RS technologies, rapidly increasing amount of remote
sensing images and GIS vector data available from databases of various agencies as well
as open source and the fact that modern image classification methods and techniques are
still under investigation with very promising results, there is a vast array of LULC map-
ping opportunities. On the other hand, there is an increasing demand for improvement of
existing LULC maps. To address this demand, different available datasets and tools can
be used separately or taking advantage from data and methods fusion approach which
is currently of increasing importance. The presented GEOBIA classification workflow
can be a good example of such LULC mapping tool. We have shown that one multi-
stage GEOBIA classification framework can integrate multi-source, multi-temporal and
multi-resolution input data, rule-based and supervised RF classification methods in order
to take advantage from all useful available information, as well as expert knowledge and
advanced machine-learning tools for LU class-focused classification. Since the LULC
maps are used for the protection of the habitats, agriculture and forest policy, hydrol-
ogy modelling, sustainable management of the environment, monitoring of the influence
of climate change, etc., the quality of land use data are extremely important Therefore,
we recommend to use the variability of available spatial data and classification tools for
LULC mapping, which can be integrated in GEOBIA framework, as we have presented
in this paper.
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