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Abstract: This paper presents the results of a computer simulation of coaxial magnetocu-

mulative current generators (MCGs). The simulation tests were carried out for different 

values of the internal diameter, length and speed of the deformation of the MGP element. 
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1. Introduction 
 

In order to study some very fast processes in scientific and technological applications, it is 

necessary to create a pulsed magnetic field or current pulses of very high magnitudes [3]. Such 

pulses are frequently created by means of magnetocumulative current generators (MCGs) 

[1, 2, 4]. The MCG multistage systems allow to create very short impulses of a magnetic field 

of several hundred teslas and currents of several hundred mega-amperes [1, 2, 4]. The magne-

tocumulation results from the magnetic field compression created in a system of electric 

conductors. The compression is caused by the change in the geometry of the conductor system 

obtained by means of explosive materials. The chemical energy in the MCG is transformed 

into electric energy. Since the magnetic flux ψ related to the conductor system remains con-

stant and the geometry changes, compression of the magnetic field occurs. This will happen 

provided that the replacement inductance of the system decreases. Then the current magnitude 

increases according to the following equation [4]: 
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where: i0, i are the currents in the system before and during the compression, respectively, and 

L0, L(t) are the system inductance, similarly before and during compression. 
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A cascade connection of several synchronised MCGs makes it possible to multiply the 

pulses generated by a single MCG. In practice, many various design solutions for MCGs are 

used [1, 2]. The major ones include: coaxial, spiral, plate, band and loop current generator 

design [1]. The simplest MCG coaxial design is based on two concentric tubes with current 

(Fig. 1). 

 

 

Fig. 1. The simplest coaxial MCG: 1 – internal tube, 2 – external tube, 3 – explosive material 

 

The explosive material is placed inside the internal tube. As a result of the explosion the 

internal tube expands until there is no space between both tubes. The explosion in the coaxial 

generator can be triggered simultaneously along its whole length – in which case the radial 

compression occurs, or otherwise at the beginning of the system – in which case axial 

compression occurs (Fig. 2). 

A comparative study of the effectiveness of two types of compression in a coaxial MCG 

was simulated. It was proved that in the MCG the impact of the skin effect on the generator’s 

parameters could be ignored. Therefore, the effectiveness of a coaxial MCG can be studied 

with the use of a replacement circuit design taking into account only the change of inductance 

resulting from the geometry change of the generator. Based on the achieved simplified model 

of a coaxial MCG, it is possible to determine the most favourable parameters to ensure its 

highest efficiency. 

 

 

Fig. 2. Sketch of a coaxial MCG: a) the radial compression; b) the axial compression. D4 is the diameter 

of the external tube,   D2 is the diameter of the internal tube:  1 – detonator,  2 – explosive material,  

3 – internal tube, 4 – external tube 

 

 

2. Skin effect analysis 
 

The analysis of the coaxial MCG operation (Fig. 1) while taking into account the skin 

effect considerably complicates the calculations. The analysis based on a circuit model is 
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much simpler and often makes it possible to find analytical solutions, which allow to deter-

mine the optimum parameters of the generator. 

The calculations of the influence of the skin effect and temperature on the circuit para-

meters (resistance and inductance) in the circuit model (Fig. 3) were conducted, taking into 

account the spatial distribution of the magnetic field. The calculations of the skin effect were 

performed for the period of time to from the connection of the capacitor to the time tm when 

the explosion was initiated. 

 

 
 

Fig. 3. The circuit model of the MCG. C, Lc, Rc are the capacity, inductance and resistance of the 

primary source, respectively, and Lg, Rg are the inductance and resistance of the MCG, respectively, and  

L0, R0 are the inductance and resistance of the load, respectively 

 

In order to calculate the influence of the skin effect on the resistance and inductance of the 

generator, the 1D model was used to determine the distribution of the magnetic induction in 

the coaxial MCG: 
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where: Bk is the angular component of the magnetic induction in the internal tube k = 1 and in 

the external tube k = 2, k is the conductivity in the internal tube k = 1 and in the external tube 

k = 2, µ0 = 4π10–7 H/m is the magnetic permeability of the vacuum, r is the radial coordinate 

of the cylindrical coordinates system r, φ, z. 

The solution of Equation (2) must fulfil the following boundary conditions: 
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where: D1, D2 are the internal and external diameters of the internal tube, D3, D4 are the 

internal and external diameters of the external tube, i is the current in the MCG circuit. 

Boundary conditions (3) are true until the beginning of the explosion, when the internal 

tube changes its diameter and both D1 and D2 are changed. It was assumed that the increase in 
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the radiuses depends on the constant velocity of the explosion and increases until both tubes 

are joined, that is when D2 = D3 (the movement is not analysed here). The system of Equa-

tion (2) with boundary conditions (3) with constant radiuses has a solution determined by  

a series of Bessel functions of the first and the second kind. The main difficulty is to deter-

mine eigen- values of the characteristic equation. It is mainly for this reason that a numerical 

solution using the finite difference method was chosen. The PSpice software was used to solve 

the system of equations describing the distribution of magnetic induction. Space discretisation 

was used and a system of ordinary differential equations in the number corresponding to the 

number of the mesh nodes was obtained (Fig. 4): 

  knknk nDr  ,, 5.0 , (4) 

where: Δ1 = 0.5m1
–1(D2 – D1) and Δ2 = 0.5m2

–1(D4 – D3) are the discretisation steps, m1, m2 are 

the numbers of divisions of the internal and external tubes, Dk,n is the internal diameter of k-

tube, n is the node number. As a result of approximation of Equation (2) by the finite dif-

ference method, it was received: 
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After transformations, Equation (5) becomes: 
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where: γk = μ 0 σ k ∆ k
2 is the coefficient represented by capacity in an analogue circuit. 

 

 

Fig. 4. Discretisation of the internal and external tube in 1D model: 1 – internal tube,  

2 – external tube 

 

The first two components of Equation (6) were replaced in the PSpice program with cur-

rent generators. The coefficient k represented by capacity in an analogue circuit is the third 
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component, and the current of the resistor of the value (r k,n /Δ k)2 is the fourth one. The last two 

components of Equation (6) are the currents in substitute resistors at a value of 1 . 

 

 

Fig. 5. Equivalent circuit of Equation (6) in node n 

 

For this reason it was relatively easy to obtain equivalent circuits in the mesh nodes 

(Fig. 5) corresponding to the system of Equations (6) with boundary conditions (3), and to join 

them to the discharging circuit of the capacitor supplying the MCG. It allows to determine the 

current value i in the equivalent RLC circuit of the MCG powered from the capacitor. The 

equivalent RLC circuit is presented in Fig. 3 and has the parameters: C = 100 µF, self-resis-

tance of the capacitor and of the connecting wires is Rc = 0.5 mΩ, self-inductance of the 

capacitor is Lc = 10 nH, and the coil of the resistance of R0 = 1 mΩ and inductance of 

L0 = 100 nH is a load. A coaxial MCG was assumed, having the form of two concentric tubes 

of a length of a = 200 mm and an internal diameter of D1 = 20 mm, D3 = 40 mm for the 

internal and the external tube respectively. Copper tubes of conductivity σ1 = σ 2 = 5.7107 S/m 

were used for the purpose of the test. The thickness of the walls is identical for both tubes and 

is 1 mm. The assumed initial voltage of the capacitor is 1 kV. The discharge of the capacitor is 

oscillatory, however, the calculations were performed only for the first half-wave, because it is 

the current value of the first crucial peak, after which the capacitor is switched off by the 

connector S2 (Fig. 3). The current profile in the MCG, in the conditions of constant resistance 

and inductance of the cumulative generator, is presented in Fig. 6. 

 

 

Fig. 6. Current profile in the MCG at constant resistance and inductance 

Changes in resistance and inductance taking into account the spatial distribution of the 

electromagnetic field are presented in Fig. 7 and Fig. 8, respectively. 
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Fig. 7. Changes in coaxial MCG tubes’ resistance taking into account the skin effect: 

1 – resistance of both tubes, 2 – resistance of the internal tube, 3 – resistance of the external tube 

 

The resistance of both tubes was calculated using the formula: 
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Fig. 8. Changes of inductance in the coaxial MCG taking into account the skin effect 

 

The inductance was calculated using the formula: 
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The inductance changes are practically of no significance, as can be seen in Fig. 8. The 

value of the MCG inductance depends on the magnetic energy cumulated in the space between 

the tubes and it is described by the first component of Equation (8). This fact was taken into 

consideration when calculating the current i in the MCG, taking into account the changes in 

the tubes’ resistance resulting from the skin effect. In this case the calculated current 

waveform is practically identical as in Fig. 6. 
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As it was mentioned above, it is the value of the first current peak discharge and the time 

to reach the peak that is the most important for the operation of the MCG. The comparison of 

the current i at a constant resistance (Fig. 6) and at a variable resistance shows that the current 

peak values of 26.42 kA and 26.36 kA, respectively, are practically identical and occur at the 

same moment that is 5.63 µs. The analysis performed shows that the replacement coaxial MCG 

circuit can be assumed in the form of constant resistance calculated according to the formula: 
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and the inductance is given by the first component in Equation (8). 

Calculations of the MCG tubes temperature distribution resulting from the current i were 

performed, taking into account the changes of the conductivity resulting from the temperature 

increase described by the dependence: 

  
nkk

k
k

,

0

α1 


 , (10) 

where: σ 0 k is the initial electric conductivity in the internal tube (k = 1, σ 0 k = 5.7∙107 Sm–1), 

and (k = 2) in the external tube, αk is the temperature conductivity coefficient (α k = 0.004 K–1), 

θ k,n is the temperature increase at mesh node n. 

The temperature distribution was calculated assuming adiabatic heating of the generator’s 

tubes, taking into account Formula (10) described by the equation: 
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where:   k is the material density of the internal tube (k = 1) and of the external tube (k = 2, 

ρ k = 8930 kg∙m-3), c k is the specific heat capacity of the tube material (c k = 380 J∙kg-1K-1), θ k,n 

is the temperature increase at mesh node n for the internal tube k = 1, n = 0,1,...,20 and for the 

external tube k = 2, n = 100,101,...,120, and j k,n is the current density at n node. 

 

 

Fig. 9. Temperature rise distribution of the internal tube in node rn = 0.5D1 + n Δ1,  

where Δ1 = 0.5(D2 – D1)/20 
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The distribution of the temperature rise in the internal tube wall is presented in Fig. 9 and 

in the external one in Fig. 10, respectively. 

 

 

Fig. 10. Temperature rise distribution of the external tube in node rn = 0.5D3 + (n – 100)Δ2,  

where Δ2 = 0.5(D4 – D3)/20 

 

The results obtained show that, for the period of time until the current peak of the capa-

citor’s discharge, there was virtually no temperature increase, and therefore a constant resi-

stance value can be assumed, which is described by Formula (9). 

 

3. MCG circuit model 
 

An MCG circuit model which takes into account the deformation of the internal tube and 

absence of the skin effect is shown in Fig. 3. At the time to the connector S1 is closed. At the 

time tm, when the current in the circuit voltage reaches the highest value, the explosive 

material is detonated and the connector S2 is closed. Since that moment, the adopted coaxial 

MCG circuit model fulfils the equation [5]: 
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where: L0, R0 are the load inductance and resistance, respectively, Rg is the resistance of MCG, 

ψ is the magnetic flux. 

The magnetic flux ψ in the MCG with radial compression (Fig. 2a) is calculated according 

to the following formula: 
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and with axial compression (Fig. 2b): 
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where: v is the detonation velocity. 
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The solution of Equation (12) for radial compression is: 
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and for axial compression: 
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where: 
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where: Rg = 0.5 m, R0 = 0.5 m, L0 = 10 nH, Io = 10 kA. 

 For t > tm, where tm is the moment when both tubes are fully joined, the solution is 

described by the following formula: 
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where: Tc = L0/R0. 

While performing the calculations for an MCG with axial compression, it was assumed 

that concatenation of the two tubes occurs along the axis, from the beginning to the end of the 

model, during the time tm = a/v (Fig. 2). 
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4. Results of computer simulations 
 

For the purpose of performing calculations, two different constant detonation velocities  

v of the internal tube deformation were considered. Fig. 11 shows current i for both generators 

for a = 0.2 m, D3 = 4 cm, D2 = 2 cm. The peak voltages occur when both tubes are con-

catenating. Afterwards, the current disappears as a result of a transitional state in the circuit 

L0R0. Definitely, the highest voltages are obtained for the MCG with the radial compression. 

In the case of the axial compression with a deformation velocity of v = 2 km/s, a current 

increase does not occur. Fig. 12 shows a similar current i for both generators, but for the 

tubes’ length a = 0.1 m. As Fig. 11 and Fig. 12 show, doubling the generator’s length results 

in an increase of current peaks (they are from 1.5 to 2 times lower). If the generator is longer, 

the current is stronger. However, due to the difficulty in ensuring simultaneous concatenation 

of both MCG tubes, too long generators cannot be used. Fig. 13 and Fig. 14 show a similar 

current i for MCG generators as in Fig. 11 and Fig. 12, but for a twice lower dimensions D3 

and D2. As Fig. 13 and Fig. 14 show, lowering the MCG diameters is not favourable due to 

lower peak current values. 

 

 

Fig. 11. Current i for an MCG with axial and radial compression for a = 0.2 m, D3 = 4 cm, D2 = 2 cm 

 

 

Fig. 12. Current i for an MCG with axial and radial compression for a = 0.1 m, D3 = 4 cm, D2 = 2 cm 

 



Vol.  66 (2017)              Comparative analysis of coaxial magnetocumulative generators 691 

 

Fig. 13. Current i for an MCG with axial and radial compression for a = 0.2 m, D3 = 2 cm, D2 = 1 cm 

 

 

Fig. 14. Current i for an MCG with axial and radial compression for a = 0.1 m, D3 = 2 cm, D2 = 1 cm 

 

 

5. Conclusions 
 

The current amplification factor during magnetocumulation can be adopted as the 

efficiency of the MGC operation [1, 4]. Computer analysis of the two types of coaxial MCGs 

with the structure and parameters most frequently used in practice [1, 4] allows to draw the 

following conclusions: 

 1) A circuit model, which does not take into account the skin effect, can be used as a model 

for the analysis of the current amplification factor of the MCG. 

 2) A generator with radial compression is a more favourable solution because it allows to 

obtain a high current amplification factor at the level 3.5 (Fig. 11). The current amplifica-

tion factor of the generator with axial compression is lower by about 50%. 

 3) There is a minimum velocity of the internal tube deformation, below which current in-

crease cannot be obtained. 

 4) The current amplification factor of MCGs of greater length and with a greater both tubes’ 

diameters is higher. However, both the length and the diameters’ ratio are limited due to 

the technical conditions of the generator’s operation. 
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