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Abstract 
 

In the paper, we present a coordinated production planning and scheduling problem for three major shops in a typical alloy casting 

foundry, i.e. a melting shop, molding shop with automatic line and a core shop. The castings, prepared from different metal, have different 

weight and different number of cores. Although core preparation does not required as strict coordination with molding plan as metal 

preparation in furnaces, some cores may have limited shelf life, depending on the material used, or at least it is usually not the best 

organizational practice to prepare them long in advance. Core shop have limited capacity, so the cores for castings that require multiple 

cores should be prepared earlier. We present a mixed integer programming model for the coordinated production planning and scheduling 

problem of the shops. Then we propose a simple Lagrangian relaxation heuristic and evolutionary based heuristic to solve the coordinated 

problem. The applicability of the proposed solution in industrial practice is verified on large instances of the problem with the data 

simulating actual production parameters in one of the medium size foundry. 

 

Keywords: Heuristics, Application of information technology to the foundry industry, Mixed integer programming, Production planning, 

Scheduling 

 

 

 

1. Introduction 
 

Increasing competition and globalization causes that 

companies increase the range of produced castings, shorten the 

time needed to prepare and implement their technology into 

production. Therefore, in modern foundries flexible systems 

consisting of mechanized and automated equipment are used, 

ensuring fast, efficient and good quality production of castings, 

usually on a small scale. 

In this paper we studied an integrated two-level lot-sizing and 

scheduling problem with assembly stage in a mid-size foundry 

that produce alloy castings in a make-to-order system, which 

allows consumers to purchase products that are fully customized 

to their specifications. In such case, we are dealing with the 

instance of a problem belonging to Capacitated Two-Level Lot 

Sizing and Scheduling Problem (CTLSP) [3][5]. At the first level 

the raw materials are prepared and the decisions about quantity of 

produced cores and schedule for melting alloys must be made. At 

the same time, the lot size of ordered items and its corresponding 

production schedule for the molding line must be determined in 

the second level. We assume that the finite planning horizon is 

subdivided into smaller sub-periods (determined by furnace 

loads), and melting furnace and cores shop have limited capacity.  

The aim of presented paper is to develop the model and 

appropriate way of its solution able to achieve optimized 

production plans for core shop, melting furnace and molding line 

within few minutes, which is usually enough for the planners in 

real production conditions (plans are prepared usually at the 

beginning of each working day, but sometimes need to be 

rearranged, if some unexpected even occurs like order cancelation 

or machine breakdown). More complete review of the papers 
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dealing with production planning in foundries can be found e.g. in 

[6]. 

The coordination problem of the furnace and molding line 

schedules with the schedules for the other shops in a foundry has 

so far not been investigated extensively in the literature. Hans and 

de Velde [4] in their mixed integer programing model checked 

cores availability and the cooling space capacity. Since CPLEX 

solver was not able to solve such a complex model, they proposed 

a hierarchical approach in which they combined mixed integer 

linear programming, shortest path algorithms, and iterative local 

improvement. According to the authors their solution was much 

better than manual approach used in the analyzed foundry, 

however, only relatively small case with 17 items and 20 periods 

was analyzed in details. 

Our goal is to provide the solution for the industrial size 

combined lot-sizing and scheduling problem of molding line and 

the core shop producing cores that must be assembled before the 

melted alloy is poured into the molds. 

The paper is organized as follows: Definitions of the problem 

and notation are described in Section 2. Section 3 presents the 

details on proposed heuristic approaches. The computational 

experiments are summarized in Section 4, and the conclusions are 

drawn in Section 5.  

 

 

2. Lot-sizing and scheduling model 

 

In this section we formulate the mixed integer programming 

model to the problem of alloy casting production with cores 

assembly. In its castings production planning part it is similar to 

the model presented by Araujo et al. proposed for an automated 

foundry [1]. It contains two decision variables and four 

constraints. The second part of the model reflecting the 

production of cores that should be assembled before alloy castings 

production contains additional decision variable and two 

constraints. We use the following notation: 

Indices 

i = 1,…, I produced items (alloy castings); 

k = 1,…, K produced alloys (metal grades); 

t = 1,…, T working days; 

n = 1,…, N sub-periods in day t; 

 = -2,…, T; days in which cores are be produced (at most two 

day before the assembly); 

 = 1,…, N; sub-periods in day . 
 

Parameters 

dit  demand for item i in day t; 

wi weight of item i; 

ci number of cores that should be assembled for item i; 

ai
k  1, if item i is produced from alloy k, otherwise 0; 

st  setup cost for alloy change in furnace; 

C loading capacity of the furnace; 

CCtn cores production capacity in day t and period n; 

dci penalty for delaying production of item i; 

hci  holding costs of item i; 

Ii0
– initial number of items i delayed at the end of day t; 

Ii0
+  initial inventory of items i at the end of day t; 

 

 

Variables 

Iit
– number of items i delayed at the end of day t; 

Iit
+  inventory of items i at the end of day t; 

ztn
k  1, if there is a setup (change) of alloy k in sub-period n of 

day t, otherwise 0; 

ytn
k 1, if alloy k is produced in n in sub-period of day t, 

otherwise 0; 

xitn  number of items i produced in sub-period n of day t; 

xcitn number of cores produced in sub-period  of day  for 

item i in sub-period t of day n. 

 

Production planning problem with cores assembly is then defined 

as follows: 
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The goal (1) of the coordinated planning is to find the plan 

that minimizes the total sum of the costs of delayed production, 

storage costs of finished goods and the setup cost resulting from 

alloy change during furnace load. 
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Constraint (2) balances inventories, delays and the volume of 

production of each item in a particular day. The production of 

alloys in a sub-period is summarized for that day and compared 

with daily demand. Constraint (3) ensures that the furnace 

capacity is not exceeded in a single load by summarizing all items 

made out of the same alloy grade. Constraint (4) sets variable zn
k 

to 1, if there is a change in an alloy grade in the subsequent sub-

periods. Constraint (5) ensures that only one alloy is produced in 

each sub-period. Constraint (6) ensures that the capacity of the 

core shop is not exceeded in a given sub-period.  Constraint (7) 

checks if there is enough cores to be assembled in the mold in 

order to produce the desired number of items. We assume that 

cores can be prepared not earlier than two days before using in the 

mold. In order to control the time two groups of indices are used – 

one for the production time of a core ( and ) and second 

indicating for which particular day and sub-period it will be used 

(t and n). Finally all the variables should be integers greater than 

0, except for variables ztn
k and ytn

k - indicating the changes of 

alloy that are binary 

 

 

3. Solution methods 
 

Initial experiments indicated that the presented MIP 

formulation of the problem was very hard to solve for CPLEX 

solver, even for the smallest instances considered (with 50 items 

and 10 alloys), so we proposed some heuristics that significantly 

improved the initial results. First approach is based on the 

Lagrangian relaxation of the proposed model, the second one uses 

relax and fix strategy, while the last one is based on the 

evolutionary approach.  

 

 

3.1. Simple relaxation of the problem 
 

Introducing a new decision variable responsible for cores 

production planning significantly complicated the problem (for 50 

items, 5 days and 10 periods we have 175,000 integer variables, 

and twice as much for 100 items). We then decided to provide 

simple Lagrangian relaxation for constraint (7). 

Additional variables are used and constraint (7) it is calculated as 

follows: 
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A relaxed objective function (1) has the following form: 
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Such relaxation brings significant improvement of the final 

results, what will be shown later in the experiments. 

 

 

3.2. Rolling horizon relaxation 
 

In order to further improve the results we adapted a relax and 

fix heuristic proposed by Araujo et al. [1] for the lot-sizing 

problem in a foundry. They relaxed variables xin and yn
k for not 

fixed sub-periods. Variable x’in representing the number of items i 

produced in sub-period n was turned into float type instead of 

integer, while y’tk was replaced by integer value reflecting for how 

many sub-periods given alloy grade will be produced.  

Thus the constraint (2) balancing inventory and demand looks as 

follows: 
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Similarly the constraint (3) is valid only for the fixed days (tf) 

and for other days it looks as follows: 

f

I

i

k

t

k

iini

N

n

ttTtKk

yCaxw




 

,,...,1,,...,1

,'
1 1

 

(12) 

 

Analogously the constraint (5) for the days other than the 

fixed one is extended to the following formula: 
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For the assembly problem we have to deal not only with items 

(alloy castings), but also with cores for them. We propose an 

analogous relaxation as for the items. For the fixed day amounts 

of cores planned for this day must be also fixed, as we have to 

provide enough cores to be assembled in the molds for this 

particular day. For the remaining days variables can be relaxed 

using floating point variables xc’itn. As a result constraint (6) is 

replaced by the following constraint: 
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And the constraint (7) is replaced by the two constraints: 
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and 
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However, those two constraints were relaxed using 

Lagrangian relaxation proposed in the previous point. The part of 

the objective function (10) responsible for penalizing not fulfilled 

constraints (15-16) looks as follows: 
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(17) 

For the fixed day production of all cores necessary to be put 

in the mold must be strictly planned, while for the items in the 

remaining days we compare strict and relaxed production plans 

for cores with the relaxed production of items. 

The model for rolling-horizon was computed T times. Each 

time values of fixed variables computed for the previous days 

were included as the constants for the current fixed day. 

In order to automate the computing process we wrote a C# 

application that executes CPLEX to solve the rolling horizon 

models iteratively day after day, taking the values of the fixed 

variables from the previous solution. We set the time limit for 

each model to 2 minutes for problems with 50 items and 3 

minutes for the problems with 100 items. 

 

 

3.3. Evolutionary based heuristic (EBH) 
 

We propose simple evolutionary based heuristic which was 

successfully applied to grouping problems [7], adapted to the 

CTLSP. It is variant of (1,)-Evolution Strategy (ES) where  

number of children is generated from one parent by means of the 

simple mutations; the crossover is not employed. The best of the 

descendants becomes the new parent solution (deterministic 

selection). We don’t use a destabilization procedure which role is 

to shift the search to a new area in the solution space, as during 

algorithm runs we have observed continuous improvement of the 

results.  

The representation of solution consists of two chromosomes: 

vector A of integers representing alloys’ ID that are prepared in 

the coming sub-periods, and table X of integers representing the 

quantity of items that are produced. The vector A consists of T*N 

elements, and the table X has the dimension of I rows by T*N 

columns.  

As the fitness function (FF) we use goal function for relaxed 

problem which is expressed in (10). After some preliminary 

experiments, the population size  was decided to keep at the 

constant level equal to 40 descendants. The stopping criterion is 

maximum number of generations: the algorithm is terminated 

after 3,000,000 children have been generated and evaluated (i.e. 

after 75,000 generations). 

 

 

Initial solution 

 

The starting solution is generated at random but taking into 

account the data characterizing the problem. First, a demand for 

the various alloys is calculated and vector A is filled according to 

obtained probability distribution. Then, quantities xitn of produced 

items are generated from a discrete uniform distribution within [0, 

dit]. If sumtn of castings’ weights in any subperiod exceeds the 

furnace capacity C, the quantities are decreased proportionally to 

factor C/sumtn during the evaluation of starting solution. 

Generating data and filling vector A together with table X are 

repeated 1000 times and the best from resulting individuals 

becomes the starting solution. The overall procedure creates 

feasible individual of reasonable quality. 

 

The mutations 

 

Two essential assumptions make the proposed algorithm 

powerful: 

1. variety of problem-specific mutations working with time, 

quantities and alloys, 

2. decreasing of mutation intensity during algorithm run. 

We employed six mutation operators: 

Mut1. choose at random one of the sub-periods and change its 

alloy to another drawn from K available. 

Mut2. choose at random two different sub-periods and swap 

between them the quantities of manufactured products.  

Mut3. like Mut2 but also sub-periods’ alloys are swapped. 

Mut4. choose at random tn sub-period and i product, and draw 

its quantity from normal distribution N(xitn, ), where xitn 

is quantity of item i taken from previous generation 

(iteration),  is parameter (standard deviation) responsible 

for the mutation intensity.  

Mut5. choose at random tn sub-period and change the 

manufactured quantities for all I items using approach 

described in Mut4, regardless of produced in tn alloy. 

Mut6. choose at random one of I items and change its 

manufactured quantities in all TN sub-periods using 

approach described in Mut4, regardless of produced 

alloys. 

We can observe that the best mutation is Mut4 so we decided 

to set its probability to 0.25, while the other mutations have the 

same application probabilities equal to 0.15. 

In canonical version of the ES individual consists of two 

chromosomes: each main element in solution has corresponding 

standard deviation parameter, and the mutation intensity (i.e. 

standard deviation) is subject to a self-adaptation process [2]. We 

could not use this approach due to a large dimension of X table 

which significantly would extend the time of calculations. We 

decided to set the same value  for mutations Mut4-Mut6 and all 

individuals in the current generation. Moreover, it is assuming 

that the mutations intensity should decrease with the number of 

the current iteration, thus maintaining the exploration of search 

space in the initial phase of the algorithm and proper 

neighborhood exploitation of good solution in the final phase of 

the algorithm. After some preliminary experiments, we have 

chosen linear decreasing of mutations intensity from  = 10.0 in 

first generation to =0.5 in the last generation. It turned out that 

this approach works very well. 
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4. Computational experiments 
 

 

4.1. Test problems 
 
Computational experiments were conducted on the basis of the 

test problems prepared by the authors, but the parameters for castings 

were drawn according to the procedure described by Araujo et al. [A]. 
Two sizes of planning problems were considered: 50 items made 

from 10 different alloys and 100 items made from 20 alloys. The 
characteristic of these problems is presented in Table 1. The values 

for demand, weight and delaying cost were determined using uniform 

distribution within a given range. 

Table 1. 
Test problems characteristics 

Parameter Value 

number of items (I), number of alloys (K) (50,10); (100,20) 
number of days (T) 5 

number of subperiods (N) 10 
demand (dit) [10, 60] 

weight of item (wi) 
number of cores (ci) 

[2, 50] 
[0, 7] 

setup penalty (st) [15, 50] 
delaying cost (hi

–) 

holding cost (hi
+) 

[3.00, 9.00] 

wi * 0.02 + 0.05 

 

Ten instances of the problem for each size were generated. The 

basis furnace capacity C was obtained using the following formula 
corresponding to the total sum of the weights of ordered items:  
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The basis capacity CC of the core shop was determined in a 

similar way: 
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4.2. Results  
 
We tested the proposed heuristic methods and compared them 

with the solution provided by the sate-of-the-art mixed integer 
programming (MIP) CPLEX solver (included in IBM OPL Studio 

12.7). For the CPLEX solver time limit was set to 10 minutes for the 
instances with 50 items and10 alloys, and 15 minutes for the instances 

with 100 items and 20 alloys. 
The results achieved for all 10 instances with 50 items are 

presented in Table 2, while the results for 100 items are shown in 
Table 3. Solution in MIP column provides the results for CPLEX 

solver using the model without any relaxation. Column LR shows the 

results for the Lagrangian relaxation. Column RH provides the results 
for the rolling horizon relax and fix approach, and EBH represents the 

results of evolutionary based heuristic in the following order: the best 

result out of ten runs, average result and the standard deviation of the 

solutions. 
The proposed evolutionary heuristic performed on average 

significantly better than CPLEX without any relaxation of the 
model. CPLEX with relaxed versions of the model were better 

than EBH only by 4-7% when the best results are compared, and 
by 7-10% comparing the average results. The relaxed versions of 

the model differ by only 3%, among which the rolling horizon 
approach provide the best results. 

 

 
Table 2. 

Results of the experiments – problem (50, 10) 

# MIP LR RH EBHbest EBHavg EBHsd 

1 5816.54 5363.72 5239.04 5487.57 5851.86 299.72 

2 5316.33 5002.64 5001.98 5154.77 5232.22 63.07 

3 4091.32 3972.85 3956.99 4450.52 4560.00 79.33 

4 6422.74 4192.42 4166.82 4740.62 4993.36 172.05 

5 5859.56 5217.60 5149.94 5545.17 5742.71 104.13 

6 4904.97 4670.89 4663.27 4906.99 5056.29 93.59 

7 7032.92 5843.36 5771.59 6191.83 6247.44 60.53 

8 5260.88 4892.18 4891.96 5018.58 5070.82 31.62 

9 6989.56 6319.71 6315.04 6635.91 6767.64 95.80 

10 4211.17 3719.66 3709.30 3913.29 4104.90 194.16 

Avg. 5905.99 4919.50 4886.59 5204.53 5362.72  

St.d. 982.75 776.80 764.77 802.52 770.67  

 
Table 3. 

Results of the experiments – problem (100, 20) 

# MIP LR RH EBHbest EBHavg EBHsd 

1 42013.4 25974.8 23631.8 26578.2 27110.4 349.8 

2 47214.7 27312.6 26625.6 27676.8 28049.0 219.2 

3 46775.6 23907.2 23225.9 23700.0 24193.4 405.5 

4 48446.6 26223.0 25710.0 26525.0 26975.9 469.1 

5 44713.7 29995.7 28346.5 29244.3 29684.7 258.7 

6 47767.9 24557.8 23925.6 24543.0 24970.7 331.5 

7 51706.1 27823.9 26664.6 27457.0 27833.1 246.4 

8 49396.9 27432.0 25392.6 27049.5 27508.7 321.3 

9 38514.0 26252.8 24783.2 25456.8 25961.0 369.3 

10 36558.2 23957.7 22860.3 23739.2 23970.1 263.5 

Avg. 45310.7 26343.8 25116.6 26197.0 26625.7  

St.d. 4618.1 1806.4 1671.3 1813.6 1772.9  

 

For the instances with 100 items and 20 alloys the difference 
between the solution provided by the proposed heuristics and 

CPLEX solver is huge and reached up to 80%. EBH is slightly 
better than CPLEX solving the model with the simplest 
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Lagrangian relaxation of the combined lot-sizing model. Again 

the rolling horizon approach performed the best, but only by 4% 
than EBH method. 

 
 

5. Conclusions 
 

In this paper we analyzed a practical problem of the 

production planning in a foundry, when both the capacity of the 

furnace in which alloy is produced and the capacity of core shop 
in which cores are prepared for further assembly in molds are 

limited. 
Mixed integer programming model is developed based on the 

Capacitated Two-Level Lot Sizing and Scheduling Problem. 
Since CPLEX solver (12.7) was not able to provide good results 

with the industrial-size instances of the problem we provide 
different heuristic that were able to improve the initial solutions 

by up to 80%. Two of them are based on Lagrangian relaxation of 
the constraints related to the production planning of cores, one is 

based on the relax and fix approach for rolling horizon, and 
finally evolutionary based heuristic is proposed which does not 

require any commercial solver. 
The tests, conducted on the instances with two different sizes 

of the problem (with 50 and 100 items, and 50 sub-periods) that 
are equivalent to the real industrial planning problems, show that 

the proposed solutions are comparable and differ at most by 10%. 
The relax and fix approach provides slightly better results than 

other heuristics, but if we are not willing to use any commercial 
MIP solver, proposed evolutionary based heuristic is a reasonable 

choice. 

In the future work, we may extend our research to the 
Capacitated Two-Level Lot Sizing and Scheduling Problem with 

two melting furnaces and two automatic molding lines, which is 
often encountered in modern foundries. Moreover, consideration 

of the problem “make or buy” in a case of core shop limited 

capacity can be useful for economic practice and a challenge for 

theoretical work. 
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