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1. INTRODUCTION

Much research on markets with indivisible goods have their sources in the classical 
models of Gale (model of buying n houses by n buyers, 1960, Ch. V, § 6), Gale, Shapley 
(college admissions model, 1962) and Shapley, Shubik (“assignment game” with quasi-
linear utility, 1971/72). Different variants of these models have many applications in 
the theory of recruitment systems, auctions markets, labor markets and so on (see, e.g., 
Roth, Sotomayor, 1992; Crawford, Knoer, 1981; Andersson, Erlanson, 2013; Biro, 
Kiselgof, 2013, many interesting applications are presented in the survey of Sönmez, 
Ünver, 2011, the role of such models in modern economics is explained in Roth, 2002).  

One of the main topics, considered in the literature related to such models and 
their generalizations, is the problem of relationships between the concept of stability 
(or the core outcome) and the concept of competitive equilibrium. Stable outcomes are 
often defined as allocations of goods among agents such that no coalition of agents can 
reallocate the goods in such a way that the situation of all members of the coalition 
will be improved. Competitive equilibrium is in most cases defined as an allocation of 
goods and a price vector such that each agent obtains the most preferred goods from 
the set of all feasible goods (for this agent). The two notions are defined differently, 
but for many models, for which prices of the goods can be defined, it can be proved 
that equilibria allocations are stable and stable outcomes are equilibria allocations, 
associated with some price vectors (see, e.g., Shapley, Shubik, 1971/72; Camina, 2006; 
Sotomayor, 2007; Hatfield et al., 2013; Herings, 2015).

Studying relationships between stability and competitive equilibria is very impor-
tant. First, we can find in this way some new characterization of stable outcomes and 
this may have much importance for stability theory, and second, we can characterize 
competitive equilibria allocations as stable outcomes, which gives possibility of prov-
ing results on existence of equilibria (because existence of stable outcomes can be, in 
many cases, proved with relatively small effort).
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Most of the research in the theory of “matching markets” concerning relationships 
between stability and competitive equilibria are based on the Shapley-Shubik type 
models and relatively few are devoted to such relationships for the Gale-Shapley 
model (see Świtalski, 2008, 2010, 2015, 2016; Azevedo, Leshno, 2011).

In the paper of Świtalski (2016) a variant of many-to-many Gale-Shapley 
market model was presented, for which exact relationships between stable matchings 
and a kind of generalized equilibria (called there order equilibria) were proved 
(see theorems 1 and 2 below). Stability in the paper of Świtalski (2016) is understood 
as pairwise stability in the sense of Echenique, Oviedo (2006) and is equivalent to the 
concept of stability used by Alkan, Gale (2003). Order equilibria generalize classical 
price equilibria, and so the results of the paper of Świtalski (2016) can be used to 
study relationships between stability and price equilibria for the GS-models. 

The presented paper may be treated as a continuation of the paper of Świtalski 
(2016). Using the results of our previous paper, we study in detail relationships between 
(pairwise) stability and price equilibria for a generalized many-to-many Gale-Shapley 
market model with choice functions representing preferences of the buyers, reservation 
prices of the buyers and weak orders representing preferences of the sellers. In our 
model we assume that preferences of the sellers are determined by (or at least are 
closely related to) reservation prices of the buyers (see definition 13). The model is 
a generalization of the standard one-to-one GS-model,  but can also be treated as 
a many-to-many generalization of the Chen, Deng and Ghosh’s model (Chen et al., 
2014) of matching markets with budgets (we use the term “reservation price” instead 
of “budget”, see the comments at the beginning of section 3). 

The main result of our paper is theorem 5 which shows that, under the assumption 
of path independence of choice functions of the buyers, strongly stable matchings 
for the generalized GS-model are identical with price equilibria allocations for this 
model. Using this result and some results of Alkan, Gale (2003) we prove theorems 
on existence of price equilibria for many-to-many GS-model or for many-to-many 
version of Chen, Deng and Ghosh’s model (Chen et al., 2014) (theorems 7 and 8).

Our results can be treated as a far-reaching generalization of “supply and demand 
lemma” of Azevedo, Leshno (2011, p. 18; see also introduction in Świtalski, 2016). 
First, we consider many-to-many model with choice functions at one side of the 
market and weak orders at the second side (Azevedo and Leshno study many-to-one 
model with strict linear orders at both sides of the market). Secondly, we consider 
different conditions of compatibility of reservation prices (= scores in Azevedo, 
Leshno) with preferences of the buyers (colleges) and two different conditions of 
stability (see definition 7). We also study in detail how implications relating stable 
matchings and equilibria allocations (i.e. stable matchings ⇒ equilibria allocations and 
equilibria allocations ⇒ stable matchings) depend on particular properties of choice 
functions (outcast and heritage properties, see theorem 3 and 4). We consequently 
use the terminology of equilibrium theory (e.g. prices and equilibria allocations) and 
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reformulate Azevedo and Leshno’s result (which can be treated as a special case of 
our results) using this terminology.

It is worth noting that the many-to-many model we use cannot be treated as a special 
case of typical many-to-many models (e.g. presented by Echenique, Oviedo, 2006 or 
used in the contract theory, see e.g. Klaus, Walz, 2009; Kominers, 2012; Hatfield, 
Kominers, 2016). The reason is that we use choice functions which are not necessarily 
generated by strict linear orders on the families of subsets of feasible contracts (such 
assumption is commonly used in “many-to-many” papers). A similar approach with 
general choice functions for many-to-many models was used by Alkan, Gale (2003).

Alkan, Gale (2003, pp. 290, 291) argue that the model with choice functions 
may be more suitable for markets in which sellers (or buyers), e.g. colleges, want to 
satisfy requirements concerned with diversity (e.g. racial or ethnical) of chosen groups 
(e.g. groups of students). What’s more, assumption about linear ordering of subsets 
of agents, in many cases, is not necessary because all relevant information about 
preferences of the agent is included in the choice function alone. In our paper we 
follow the Alkan and Gale’s approach and show that there can be proved interesting 
results about relationships between stability and equilibria without the assumption 
about linear ordering of subsets of agents (or contracts).

In our model we use standard pairwise stability condition which can also be 
defined without the assumption about preference ordering of subsets of contracts (our 
definition agree with the definition of Echenique, Oviedo, 2006 and the one used by 
Alkan, Gale, 2003) and do not refer to other stability concepts (for example setwise 
stability or other stabilities defined by Echenique, Oviedo, 2006). Pairwise stability 
gives possibility of using the result of Alkan, Gale (2003) for proving existence of 
price equilibria in our model (see theorem 7).

The paper is organized as follows. In section 2 we present the model of market 
which is taken from Świtalski (2016) and define generalized (order) equilibria for such 
a model. In section 3 we study the problem of relationships between price equilibria 
and order equilibria. In section 4 we formulate and prove results on relationships 
between price equilibria and stable matchings and on existence of price equilibria. 

2. THE MODEL

We present here a generalized many-to-many Gale-Shapley market model described 
in the paper of Świtalski (2016), where the reader can also find the motivation for 
studying such a model. The model is based on a many-to-many version of the Gale-
Shapley (1962) college admissions model (many-to-many models of the GS type are 
studied, e.g., in the paper of Alkan, Gale, 2003 or Echenique, Oviedo, 2006, in both 
papers preferences of agents are represented by choice functions, but in the last paper 
with the additional assumption that the choice functions are generated by strict linear 
orders on the families of subsets of contracts). 
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In some cases (for preferences satisfying additional requirements) many-to-many 
model can be easily reduced to many-to-one or one-to-many model by assuming that, 
say, buyers, matched to multiple sellers, are represented by sets of buyers with identical 
preferences and matched to only one seller. We do not follow this way of reasoning. 
We think that studying many-to-many model in full generality is more elegant and 
with obvious real-life interpretations. Moreover, for the presented below many-to-
many model we can directly use the results of our previous paper (Świtalski, 2016).

In our model we have a finite set of buyers – B, a finite set of sellers – S, 
preferences of buyers over sellers and preferences of sellers over buyers. As an example 
(see Echenique, Oviedo, 2006), let B be a set of firms and S – a set of consultants. 
Each firm wants to hire a set of consultants and each consultant wants to work for 
a set of firms. Firms rank consultants according to their competences and consultants 
rank firms according to their subjective preferences.

There are many other examples of many-to-many markets, mainly related to labor 
markets. For example, Echenique, Oviedo (2006) mention markets for medical interns 
in the U.K. or teacher (university professor) markets in some countries where teachers 
(or professors) can work in more than one school (university). Another example from 
Echenique, Oviedo (2006) is a model of contracting between down-stream firms and 
up-stream providers.

In what follows we use basic notation and definitions from the paper of Świtalski 
(2016).

We consider Cartesian product B × S of the sets B and S. For any relation u ⊂ B × S 
and for any b ∈ B, s ∈ S, we define the sets:

 u(b) = {s ∈ S:  (b, s) ∈ u}, (1)

 u(s) = {b ∈ B:  (b, s) ∈ u}. (2)

We assume that a non-empty set of acceptable (feasible) pairs F ⊂ B × S is defined. We 
interpret an acceptable pair (b, s) ∈ F as a possible transaction which can be realized 
in the market or (from the point of view of contract theory of Hatfield et al., 2013), as 
a possible contract which can be signed by b and s (for example in the “consultants” 
market, (b, s) ∈ F means that it is possible for a firm b to hire a consultant s and 
it is possible for s to work for b). According to (1) and (2), the sets F(b) and F(s) 
for any b ∈ B and s ∈ S can be defined. The set F(b) can be interpreted as the set of 
sellers which can sign a contract with b, and F(s) – as the set of buyers which can 
sign a contract with s.

We assume that b can sign many contracts with different sellers, but only one 
contract with a given seller s, and s can sign many contracts with different buyers, 
but only one contract with a given buyer b (hence we assume that the “unitarity” 
assumption is satisfied (see, e.g., Kominers, 2012).
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In our model we introduce quotas for buyers and sellers. Let q(b) ≥ 1 be the quota 
for b, which is interpreted as maximal number of contracts which b can sign with 
different sellers and q(s) ≥ 1 – the quota for s, which is interpreted as maximal number 
of contracts which s can sign with different buyers. We assume that # F(b) ≥ q(b) 
and # F(s) ≥ q(s) (# A denotes cardinality of A).

Preferences of sellers are represented by weak orders. Namely, we assume that on 
every set F(s), a weak order (transitive and complete relation) ≥s is defined (i.e. some 
buyers may be indifferent for the seller s). The symbols >s and ≈s denote the respective 
strict order and indifference relation. Hence the notation b >s c means that the buyer b 
is better than the buyer c for the seller s, and b ≈s c means that b and c are indifferent 
for s.

Preferences of buyers are represented by choice functions (standard theory of 
choice functions is described, e.g., by Aizerman, Aleskerov, 1995 or by Aleskerov, 
Monjardet, 2002, applications for matching markets can be found, e.g., in Echenique, 
2007; Klaus, Walzl, 2009; Hatfield et al., 2013). 

We assume that a choice function is defined for every feasible set F(b) (for a given 
buyer b). This means that for every buyer b and every set of feasible sellers X ⊂ F(b), 
a set C(b, X) ⊂ X is defined. The set C(b, X) is interpreted in the following way. Assume 
that b considers some set of feasible sellers X. Then his decision will be to choose the 
set C(b, X) as the set of sellers, with which he will sign a contract. We consider only 
the so-called quota-filling choice functions (Alkan, Gale, 2003), i.e. we assume that:

 (i) C(b, X)  =  X, if    # X  <  q(b),

 (ii)   # C(b, X)  =  q(b),  if    # X  ≥  q(b). 

We do not assume that the choice function of a buyer b is generated by a linear order 
over the subsets of the set F(b) (hence we follow the model of Alkan and Gale and 
do not follow standard approaches on many-to-many markets or contract theory as in, 
e.g., Echenique, Oviedo, 2006; Klaus,Walz, 2009; Kominers, 2012).

It is worth noting that any linear order >s on F(s) (when there are no indifferences 
between different buyers) generates, in an obvious way, a quota-filling choice function 
on F(s) (we take, for any X ⊂ F(s), the set of q(s) best buyers in X, or the set X, if 
# X < q(s)).

We need the following properties of the function C (interpretation and comments 
on these properties can be found in the paper of Świtalski, 2016):

Definition 1. A choice function C satisfies the outcast property if for every b ∈ B 
and X, Y ⊂ F(b) we have

 Y  ⊂  X \ C(b, X)    ⇒    C(b, X \ Y)  = C(b, X).  (3)
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Definition 2. A choice function C satisfies the heritage property if for every b ∈ B 
and X, Y ⊂ F(b) we have

 Y  ⊂  X    ⇒    Y ∩ C(b, X)   ⊂  C(b, Y). (4)

We use here the classical terms (outcast and heritage) taken from the literature on 
choice theory (Aizerman, Aleskerov, 1995; Aleskerov, Monjardet, 2002). In the match-
ing literature outcast property is known also under the name independence (see, e.g., 
Echenique, 2007) or consistency (Alkan, Gale, 2003) and heritage property under the 
name substitutability (Echenique, Oviedo, 2006) or persistency (Alkan, Gale, 2003). 

Choice functions satisfying the outcast and heritage properties are called path 
independent (or Plott) choice functions (see Danilov, Koshevoy, 2005). Example of 
Plott choice function is the choice determined by some linear order (then C(b, X) is 
the set of q(b) best sellers in X, if # X ≥ q(b), and C(b, X) = X otherwise).

The next examples show that there exist quota-filling Plott choice functions with 
real-life interpretations which are not generated by any linear order.

Example 1. We fix a buyer b ∈ B. Let q(b) = 2q be a fixed even number 
(q ≥ 1). Assume that the set of sellers S is divided into two disjoint subsets Y and Z 
(i.e. S = Y ∪ Z and Y ∩ Z = ∅). For example Y may be a set of men and Y a set 
of women, or Y – a set of statisticians and Z – a set of computer scientists (in the 
set of consultants S). Assume that there is a (strict) linear order M on S and for any 
X ⊂ F(b) and any n ≥ 1 define

M(X, n)  =
the set of n best elements in X with respect to M,  if   #X ≥ n,

X,   if   #X < n.

We want to take into account, when choosing the agents from X, the gender quotas 
(or quotas for consultants of specific professions). To this end we can define the 
following choice function:

C(b, X)  =

M(X ∩ Y, q) ∪ M(X ∩ Z, q), if  # X ∩ Y ≥ q, # X ∩ Z ≥ q,

(X ∩ Y) ∪ M(X ∩ Z, 2q – m),  if  # X ∩ Y = m < q, # X ∩ Z ≥ q,

M(X ∩ Y, 2q – m) ∪ (X ∩ Z), if  # X ∩ Y ≥ q, # X ∩ Z = m < q,

and  C(b, X) = X  otherwise. 
Hence we choose the q best consultants from the set X ∩ Y and the q best consultants 

from the set X ∩ Z, or m consultants from one of the sets and 2q – m (or less) best 
consultants from the second set (if m < q and the first set contains only m consultants) 
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or the whole set of consultants if both sets (X ∩ Y and X ∩ Z) contain less than q 
consultants.

It is not difficult to prove that the defined above choice function satisfies both the 
outcast and heritage properties and hence is a Plott choice function.

Example 2. We assume now that there are two different linear orders K and L 
defined on the set X (e.g. we order the set of consultants according to two criteria: 
creativity (K) and experience (L)). We want to have, when choosing the specialists 
from the set X, a balance between the number of creative members of the group and 
the number of experienced members. We define the following choice function (the 
symbols K(X, q) and L(X, q) are defined similarly as M(X, n) in the previous example):

C(b, X)  =
X,   if   #X < 2q,

K(X, q) ∪ L(X  \ K(X, q), q),   if   #X ≥ 2q.

Hence, if we have at our disposal at least 2q consultants, we choose first the q most 
creative ones and then the q most experienced from the rest of the group. It is also easy 
to show that such choice function satisfies the Plott conditions (outcast and heritage).

We define a generalized GS-model as a 6-tuple (B, S, F, C, P, q), where F is the 
set of acceptable pairs, C is the family of choice functions (defined for all b ∈ B), 
P is the family of weak orders (defined for all s ∈ S), and q is the vector of quotas 
(defined for all b ∈ B and all s ∈ S).

In the next definitions we define matchings and (strongly) stable matchings for 
a generalized GS-model (B, S, F, C, P, q) (see Świtalski, 2016). Our definition of 
stability is equivalent to the definition of Alkan, Gale (2003) and is often called 
pairwise stability in the matching literature (see, e.g., Echenique, Oviedo, 2006).

Definition 3. A relation u ⊂ B × S is a matching if
 (i) u  ⊂  F,
 (ii) # u(b)  ≤  q(b), ∀b ∈ B,
 (iii) # u(s)  ≤  q(s), ∀s ∈ S.
A matching u can be interpreted as a set of actual transactions realized in the market 
(contrary to F which can be treated as the set of potential (possible) transactions in 
the market).

Definition 4. Let u ⊂ B × S be a matching. We say that a seller s ∈ F(b) improves 
the situation of a buyer b ∈ F(s) (we write s >b u(b)) if s ∈ C (b, u(b) ∪{s}).
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Definition 5. Let u ⊂ B × S be a matching. We say that a buyer b ∈ F(s) improves 
the situation (weakly improves the situation) of a seller s ∈ F(b) (we write b >s u(s) 
or b ≥s u(s) respectively) if at least one of the following conditions hold:
 (i)  # u(s)  <  q(s),
 (ii)  ∃ c ∈ u(s),  b >s c (b ≥ s c).

Definition 6. A pair (b, s) ∈ B × S is a blocking pair (weakly blocking pair) for 
a matching u ⊂ B × S  if

 (i) (b, s) ∈ F \ u,
 (ii) s >b u(b),
 (iii) b >s u(s) (b ≥s u(s)).

Definition 7. A matching u ⊂ B × S is stable (strongly stable) if there are no 
blocking pairs (weakly blocking pairs) for u.

Now we start describing the notion of generalized equilibrium in our model. 
Generalized equilibria for the model (B, S, F, C, P, q) are defined with the help of 
families of sets W(s) ⊂ F(s) where the sets W(s) are such that being in the set W(s) is 
for b ∈ F(s) a necessary condition to sign a contract with s (for example a consultant s 
determine some minimal conditions under which she can work for a firm b, the set of 
all firms satisfying such conditions will be denoted by W(s)). The feasible sets F(s) are 
fixed, but the sets W(s) can vary for the given model (B, S, F, C, P, q). Special case of 
conditions W(s) are the price conditions of the form W(s) = {b ∈ F(s): r(b, s) ≥ p(s)}, 
where p(s) is a price of a good offered by s and r(b, s) – maximal price at which b 
can buy the good offered by s (see Świtalski, 2016).

A family W = {W(s)} (s ∈ S) will be called a system of conditions. The set of 
feasible sellers for a buyer b under the system W = {W(s)} is defined as:

 F(W, b) = {s ∈ S:  b ∈ W(s)}.

F(W, b) is the set of sellers s, such that b can sign a contract with s (b satisfies the 
conditions W(s) stated by s). Obviously, F(W, b) ⊂ F(b), i.e., each seller feasible for 
b under W is acceptable for b.

We define also the set of “best” sellers (contracts) for b under the system W as

 M(W, b)  =  C(b, F(W, b)),

and the demand set for the seller s (under the conditions W) as

 D(W, s) = {b ∈ F(s):  s ∈ M(W, b)}.

Demand set D(W, s) is the set of all buyers for which s is among the “best” sellers. 
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Now we define generalized equilibrium for the model (B, S, F, C, P, q) (see 
Świtalski, 2016).

Definition 8. A system of conditions W = {W(s)} is an equilibrium system for the 
model (B, S, F, C, P, q) if

 (i) # D(W, s)  ≤  q(s), for all  s ∈ S.
 (ii) W(s) = F(s), for all  s ∈ S  such that   # D(W, s)  <  q(s).

For an equilibrium system W = {W(s)} we define a matching associated with W as:

 u(W) = {(b, s) ∈ F:  b ∈ D(W, s)}.

Definition 9. An equilibrium (for a generalized GS-model (B, S, F, C, P, q)) is 
a pair (u, W) such that W is an equilibrium system and u = u(W).

If (u, W) is an equilibrium we will say that u = u(W) is an equilibrium allocation 
associated with W.

In the paper of Świtalski (2016) some special kind of generalized equilibria have 
been defined, namely the so-called order equilibria. These are equilibria for which the 
conditions W(s) are “order” conditions in the sense that if a buyer b satisfies W(s), 
then all the buyers better (not worse) than b also satisfy W(s) (so there is some kind 
of “compatibility” of W(s) with the preferences P).

Formal definitions are the following:

Definition 10. A system of conditions W = {W(s) is compatible (strongly compatible) 
with the sellers’ preferences if 

 b ∈ W(s)    ∧    c >s b     ⇒     c ∈ W(s), for all  s ∈ S,

 (b ∈ W(s)   ∧    c ≥s b     ⇒     c ∈ W(s), for all  s ∈ S).

Definition 11. An equilibrium (u, W) for a generalized GS-model (B, S, F, C, P, q) 
is an order equilibrium (strongly order equilibrium) if W is compatible (strongly 
compatible) with the sellers’ preferences.

Let (B, S, F, C, P, q) be a generalized GS-model. We will say that the family C 
satisfies the outcast (heritage) property if all the choice functions in the family C 
satisfy this property. 

In Świtalski (2016) some relationships between stability and order equilibria were 
proved. Namely, it was proved that under the outcast property of C, order (strongly 
order) equilibria allocations are stable (strongly stable) and that under the heritage 
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property, stable (strongly stable) matchings are order (strongly order) equilibria 
allocations. The exact formulations (see lemmas 1 and 2 in Świtalski, 2016) are the 
following: 

Theorem 1. Let M = (B, S, F, C, P, q) be a generalized GS-model such that C 
satisfies the outcast property. Let (u, W) be an order (strongly order) equilibrium for 
the model M. Then the matching u is stable (strongly stable).

Theorem 2. Let u be a stable (strongly stable) matching in a generalized GS-model 
M = (B, S, F, C, P, q) such that C satisfies the heritage property. Then there exists 
a system of conditions W compatible (strongly compatible) with P such that (u, W) 
is an order (strongly order) equilibrium.

In section 4 we use theorems 1 and 2 to characterize price equilibria for the 
generalized GS-models with reservation prices (= maximal prices, at which buyers 
are ready to sign contracts with the sellers). 

Models with reservation prices, price equilibria and relationships between price 
equilibria and order equilibria are described in the next section.

3. PRICE  EQUILIBRIA AND ORDER EQUILIBRIA

In most market models competitive equilibria are defined as price equilibria. In 
Świtalski (2016, section 2) price equilibria were defined for the simplest (one-to-one) 
version of the Gale-Shapley model. To define such equilibria we have introduced 
reservation prices r(b, s), where the number r(b, s) is interpreted as maximal price at 
which buyer b is willing to enter into the transaction with the seller s (to sign a contract 
with s). Such equilibrium model is analogous to the model of equilibrium for matching 
markets with budgets described by Chen et al. (2014) (authors interpret the number 
r(b, s) as budget which is at the disposal of b when signing the contract with s).

If we assume that in the one-to-one Gale-Shapley model sellers’ preferences are 
represented by linear orders and are determined by reservation prices, i.e., if the 
following condition is satisfied (for any b, c ∈ B and s ∈ S):

 b >s c    ⇔    r(b, s)  >  r(c, s), (5)

then it can be proved that the respective price equilibria allocations are stable (in the 
sense of Gale, Shapley, 1962) and vice versa (see, Świtalski, 2016, theorem 1). Similar 
result, with the college admissions interpretation, was proved by Azevedo, Leshno 
(2011, “supply and demand lemma”, p. 18). 
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We generalize (see theorem 6) this result to many-to-many GS-models described 
in section 2. We start now with describing many-to-many models with reservation 
prices and with defining price equilibria for such models.

Consider a generalized GS-model (B, S, F, C, P, q). Assume that for every 
buyer b and every seller s such that (b, s) ∈ F, similarly as in the one-to-one model, 
a reservation price r(b, s) is defined such that b is ready to pay no more than r(b, s), 
when signing the contract (b, s).

A generalized GS-model with prices is defined as a 7-tuple (B, S, F, C, P, q, r), 
where r denotes the vector of reservation prices (for all (b, s) ∈ F).

Assume that every seller s ∈ S announces some price p(s) ≥ 0 interpreted as 
minimal price at which she is ready to sign contracts with the buyers. We define a price 
vector p as a sequence p = (p(s)) (s ∈ S) of prices announced by sellers. 

We can define price conditions W(p)(s) in the following way:

 W(p)(s) = {b ∈ F(s):  r(b, s) ≥ p(s)}.

Inequality r(b, s) ≥ p(s) can be interpreted as some kind of “budget constraint” (similarly 
as in the neoclassical model of consumer choice). The set W(p)(s) can be interpreted 
as the set of buyers, with which s can sign a contract when prices in the market are 
p. Having defined the conditions W(p)(s) we can easily define price equilibria for the 
model (B, S, F, C, P, q, r) namely: 

Definition 12. Let M = (B, S, F, C, P, q, r) be a generalized GS-model with prices 
and (u, W) an equilibrium for the model (B, S, F, C, P, q) (according to definition 9). 
We say that (u, W) is a price equilibrium for the model M if there exists a price 
vector p such that W = W(p).

If (u, W) is a price equilibrium and W = W(p), we also use the notation (u, W) = 
(u, W(p)) = (u, p). 

To state the results on relationships between stability and price equilibria in many-
to-many case (see theorems 3 and 4 below) we use three different conditions of 
compatibility of reservation prices r with preferences P, one of which is equivalent 
to (5) and two others are weaker versions of (5).

A triple (b, c, s) is called acceptable if (b, s) ∈ F and (c, s) ∈ F.

Definition 13. We say that the prices r are
 (i) compatible with the preferences P (shortly – COMP) if for all acceptable triples 

(b, c, s) we have

 b >s c    ⇒    r(b, s)  ≥  r(c, s), (6)
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 (ii) strongly compatible with the preferences P (shortly – SCOMP) if for all accep-
table triples (b, c, s) we have

 b ≥s c    ⇒    r(b, s)  ≥  r(c, s), (7)

 (iii) very strongly compatible with the preferences P (shortly – VSCOMP) if for 
all acceptable triples (b, c, s) we have

 b ≥s c    ⇔    r(b, s)  ≥  r(c, s). (8)

It is easy to see that (8) is the strongest condition and (7) is stronger than (6). In other 
words, implications (8) ⇒ (7) ⇒ (6) are valid, although none of these implications 
can be reversed. It is also easy to check that (8) is equivalent to (5).

Conditions (6) – (8) mean that there is some relationship between reservation prices 
and the sellers’ preferences. In the case of the strongest condition VSCOMP = (8) it 
means that preferences are determined by reservation prices similarly as in the one-
to-one case (see (5)). Observe that the conditions (6) – (8) do not restrict the domain 
of possible preference orderings of the sellers, because for any weak order ≥s we 
can obviously find reservation prices r satisfying VSCOMP (and hence COMP and 
SCOMP). 

Using the conditions (6) – (8) we study now relationships between price equilibria 
and order (or strongly order) equilibria defined in section 2 (such relationships are 
necessary for transforming theorems 1 and 2 into theorems about price equilibria).

The following proposition shows that under the conditions of (strong) compatibility 
price equilibria are order (or strongly order) equilibria

Proposition 1. If prices r in a model M = (B, S, F, C, P, q, r) are (strongly) 
compatible with the preferences P, then any price equilibrium for M is a (strongly) 
order equilibrium for (B, S, F, C, P, q).

Proof. Assume that the prices r are compatible with P. Then, for any acceptable triple 
(b, c, s) we have:

 b >s c    ⇒    r(b, s)  ≥  r(c, s). (9)

We want to prove (by definition 10) that for any price vector p = (p(s)) and any 
acceptable triple (b, c, s) we have:

 r(c, s)  ≥  p(s)   ∧    b >s c    ⇒    r(b, s)  ≥  p(s).  (10)

It is easy to see that (9) implies (10). The proof for strong compatibility and strong 
equilibrium is quite analogous (we change b >s c by b ≥s c). □
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Of course we can also ask the reverse question: whether every (strongly) order 
equilibrium is a price equilibrium. The following proposition shows that this is true 
under the condition of very strong compatibility (taking into account the previous 
proposition we can prove even “if and only if” statement in this case). 

Proposition 2. If prices r in a model M = (B, S, F, C, P, q, r) are very strongly 
compatible with the preferences P, then an equilibrium (u, W) is a price equilibrium 
for M if and only if it is a strongly order equilibrium for (B, S, F, C, P, q).

Proof. (⇒) Let (u, W) be a price equilibrium for M. Very strong compatibility of r 
implies strong compatibility of r, hence, by proposition 1, (u, W) is a strongly order 
equilibrium for (B, S, F, C, P, q).
(⇐) Let (u, W) be a strongly order equilibrium for (B, S, F, C, P, q). By the defi-
nition of equilibrium system, all the sets W(s) are non-empty. Let c(s) be the worst 
buyer (one of the worst buyers) in the set W(s). We define p(s) = r(c(s), s). We want 
to prove that (u, W) is a price equilibrium for M. It suffices to show that W = W(p), 
where p = (p(s)) (s ∈ S) or, equivalently, to show that W(s) = W(p)(s) for all s ∈ S.
To prove that W(s) ⊂ W(p)(s), let b ∈ W(s). Then b ≥s c(s) (because c(s) is worst in 
W(s)). By (8), r(b, s) ≥ r(c(s), s) = p(s), hence b ∈ W(p)(s).
To prove that W(p)(s) ⊂ W(s), let b ∈ W(p)(s). Then b ∈ F(s) and r(b, s) ≥ p(s) = r(c(s), s). 
By (8), b ≥s c(s). We have c(s) ∈ W(s) and (u, W) is a strongly order equilibrium, 
hence, by definition 10, b ∈ W(s). □

Propositions 1 and 2 will be used to prove the characterization results (theorems 3 
and 4) in section 4.

Denote by PE – the condition of being a price equilibrium, by OE – the condition 
of being an order equilibrium, by SOE – the condition of being a strongly order 
equilibrium.

Taking into account that SOE ⇒ OE, propositions 1 and 2 imply the following 
statements:

 COMP ⇒    (PE  ⇒  OE), (11)

 SCOMP ⇒    (PE  ⇒  SOE  ⇒  OE), (12)

 VSCOMP ⇒    (PE  ⇔  SOE  ⇒  OE). (13)

The next examples show that the implications at the right side of the implications 
(11) – (13) cannot be reversed or that they cannot be made stronger (example 1 shows 
that under the assumptions COMP, SCOMP or VSCOMP, OE ⇒ PE may be not true, 
example 2 shows that under COMP or SCOMP, SOE ⇒ PE may be not true and 
example 3 shows that under COMP, PE ⇒ SOE may be not true).
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Example 1. Let B = {b, c}, S = {s}, F = {(b, s), (c, s)}, C(b, {s}) = {s}, 
C(c, {s}) = {s}, b and c are indifferent for s, all quotas are equal to 1, r(b, s) = r(c, s) = 1, 
W(s) = {b}. Then VSCOMP = (8) is satisfied, and hence COMP = (6) and also 
SCOMP = (7) (because VSCOMP ⇒ SCOMP ⇒ COMP). It is easy to see that 
(u, W) is an order (but not strongly order) equilibrium with allocation u = {(b, s)} 
and (u, W) is not a price equilibrium (for any equilibrium prices p we should have 
W(p)(s) ≠ ∅, hence W(p)(s) = {b, c} ≠ W(s), because r(b, s) = r(c, s) = 1). Hence 
(u, W) satisfies OE but not PE and so the implication OE ⇒ PE is not true.

Example 2. Let B = {a, b, c}, S = {s, t, v}, F = B × S and all quotas are equal 
to 1. Preferences of the buyers and sellers are the following:
  a:   s   t   v s: [a b]   c
  b:   t   s   v t: a   b   c
  c:   s   v   t v: c   a   b
All preference orderings are strict (linear orders) except preferences for the seller s, for 
which the buyers a and b are indifferent (it is denoted by [a b]). The choice functions 
of the buyers are determined by the preference orderings in an obvious way (we choose 
the best seller from any non-empty set of sellers).

We consider the matching u = {(a, s), (b, t), (c, v)}. It is easy to see that u is 
strongly stable (and hence stable). The only weakly blocking pair could be (c, s), 
but this is impossible, because a >s c. Hence, by theorem 2, there exists a strongly 
order equilibrium (u, W) and, by the proof of theorem 2 (see Świtalski, 2016, proof 
of lemma 2), we can take W(s) = {a, b}, W(t) = {a, b}, W(v) = {c}. Assume that all 
reservation prices for s are equal to 1. Hence the conditions COMP and SCOMP are 
satisfied. If (u, p) would be a price equilibrium, then W(p)(s) = {a, b, c} (because 
W(p)(s) ≠ ∅). Hence a, c ∈ D(W(p), s), and so # D(W(p), s) ≥ 2. Thus the system 
of conditions W(p) would not be an equilibrium system (because q(s) = 1). Hence 
(u, W) satisfies SOE, but not PE (there is no price equilibrium at all in this case) and 
the implication SOE ⇒ PE is not valid.

Example 3. Consider once more example 1 but with reservation prices r(b, s) = 2, 
r(c, s) = 1. Hence the condition COMP is satisfied. Take p(s) = 2. Then W(p)(s) = {b} 
and it is easy to see that (u, W(p)) is a price equilibrium with u = {(b, s)}. On the 
other hand it does not satisfy SOE (because b ∈ W(p)(s), c ∉ W(p)(s) and c ≥s b, by 
indifference of b and c). Hence PE ⇒ SOE is not true in this case. 

4. PRICE EQUILIBRIA AND STABLE MATCHINGS

Now we state the main results of our paper, namely the results on relationships 
between stable matchings and price equilibria allocations for the models (B, S, F, C, 
P, q, r). Proofs of these results will be based on theorems 1 and 2 and propositions 1 
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and 2. Firstly, using theorem 1, we prove that, under the assumptions of compatibility 
COMP (SCOMP), any price equilibrium allocation is stable (strongly stable).

Theorem 3. Let M = (B, S, F, C, P, q, r) be a generalized GS-model with prices 
in which choice functions C satisfy the outcast property and prices r are compatible 
(strongly compatible) with the preferences P. Let (u, p) be a price equilibrium for the 
model M. Then u is stable (strongly stable).

Proof. If (u, p) is a price equilibrium, then (u, p) = (u, W(p)). Prices are compatible 
(strongly compatible) with the preferences P, hence, by proposition 1, equilibrium 
(u, W(p)) is an order (strongly order) equilibrium. Hence, by theorem 1, u is stable 
(strongly stable). □

Theorem 3 implies that under any compatibility condition (COMP, SCOMP, 
VSCOMP), in the generalized models with outcast choice functions, price equilibria 
allocations are stable or even (under SCOMP or VSCOMP) strongly stable.

Now we want to reverse theorem 3. Namely we want to state conditions under 
which any stable (or strongly stable) matching in a model (B, S, F, C, P, q, r) is 
a price equilibrium allocation.

To this end, we could use theorem 2 which says that if C satisfies the heritage 
property, then any stable (strongly stable) matching is an order (strongly order) 
equilibrium allocation. Unfortunately, neither COMP nor SCOMP nor VSCOMP 
conditions do not guarantee that the obtained order equilibrium allocation would be 
a price equilibrium allocation (as it is shown by example 1) and neither COMP nor 
SCOMP conditions do not guarantee that the obtained strongly order equilibrium 
allocation would be a price equilibrium allocation (example 2).

The only result we can obtain with the help of theorem 2, which could be interpreted 
as reversion of theorem 3 is the following. 

Theorem 4. Let M = (B, S, F, C, P, q, r) be a generalized GS-model with prices 
in which choice functions C satisfy the heritage property and prices r are very strongly 
compatible with the preferences P. Let u be a strongly stable matching. Then there 
exist prices p, such that (u, p) is a price equilibrium.

Proof. By theorem 2, there exist conditions W such that (u, W) is a strongly order 
equilibrium. By proposition 2, (u, W) is a price equilibrium for M, hence there exist 
prices p such that (u, W) = (u, W(p)) = (u, p) and (u, p) is obviously a price equili-
brium. □

Example 2 shows that the assumption about very strong compatibility of r is 
essential in theorem 4 (in this example u is strongly stable and prices r are strongly 
compatible with P, yet there is no price equilibrium of the form (u, p)).
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Also the assumption about strong stability of u is essential in theorem 4 (in the 
example 1 we have stable matching u, prices r are very strongly compatible with P, 
yet there are no prices p such that (u, p) is a price equilibrium). 

Combining theorems 3 and 4 we obtain the following result on equivalence of 
strongly stable matchings with price equilibria allocations in the generalized GS-models 
with prices.

Theorem 5. Let M = (B, S, F, C, P, q, r) be a generalized GS-model with prices 
in which choice functions C satisfy Plott condition and reservation prices r are very 
strongly compatible with the preferences P. Then a matching u is strongly stable if 
and only if it is a price equilibrium allocation.

Unfortunately, as the example 2 shows, there is no, in general, similar equivalence 
between stable matchings and price equilibria allocations. Yet, if we take a model with 
linear preferences (i.e. one in which preferences of the sellers are linear orders), then 
such equivalence is obvious, because stability = strong stability in this case. So we have 
the following result (a many-to-many generalization of theorem 1 in Świtalski, 2016): 

Theorem 6. Let M = (B, S, F, C, P, q, r) be a generalized GS-model with prices, 
with choice functions C satisfying Plott condition, with linear preferences P and with 
the reservation prices r satisfying VSCOMP = (8) (equivalently (5)) condition. 

Then a matching u is stable if and only if it is a price equilibrium allocation.

Now we consider the problem of existence of equilibrium prices for the generalized 
GS-models with prices. It is easy to see that in general there can be models for 
which there are no equilibrium prices at all (as in the example 1). Yet, theorem 6 
combined with some results of Alkan, Gale (2003) implies that for the models with 
linear preferences of the sellers we can prove the existence theorem, namely:

Theorem 7. Let M = (B, S, F, C, P, q, r) be a generalized GS-model with prices, 
with choice functions C satisfying Plott condition, with linear preferences P and 
with the reservation prices r satisfying VSCOMP condition. Then there exists a price 
equilibrium (u, p) for the model M.

Proof. Using the results of Alkan, Gale (2003) we can prove, similarly as in the proof 
of theorem 3 in the paper of Świtalski (2016), that there exists a stable matching u for 
the model (B, S, F, C, P, q). Obviously u is also stable for the model M = (B, S, F, 
C, P, q, r) and, by theorem 6, it is a price equilibrium allocation. Hence, there exists 
a price equilibrium (u, p) for the model M. □

Using theorem 7 we can also prove some existence result for a many-to-many 
variant of the model of Chen, Deng and Ghosh (CDG-model, 2014). Define generalized 
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CDG-model as a 6-tuple (B, S, F, C, q, r) (C – choice functions, r – reservation prices 
= budgets in the terminology of Chen, Deng and Ghosh). Having reservation prices r 
we can define preference relation P(r, s) for a seller s as:

 b P(r, s)  c    ⇔    r(b, s)  ≥  r(c, s).

Definition 14. Let M = (B, S, F, C, q, r) be a generalized CDG-model. We say 
that r are differentiated reservation prices if for any b, c ∈ B and any s ∈ S we have

 b ≠  c    ⇒    r(b, s)  ≠  r(c, s)

(i.e. any two different buyers have different reservation prices for the contract with 
the same seller).

Obviously reservation prices are differentiated if and only if all preferences P(r, s) 
are linear orders. Hence if we have a CDG-model (B, S, F, C, q, r) with differentiated r, 
then we can construct a generalized GS-model (B, S, F, C, P(r), q, r) with P(r) – family 
of linear orders P(r, s). By theorem 7 we obtain the following result:

Theorem 8. Let M = (B, S, F, C, q, r) be a generalized CDG-model with prices, 
with Plott choice functions C and differentiated reservation prices r. Then there exists 
a price equilibrium (u, p) for the model M.

5. CONCLUDING REMARKS

In our paper we have studied relationships between stable (strongly stable) 
matchings and price equilibria for generalized many-to-many Gale-Shapley market 
models with choice functions representing preferences of the buyers, weak orders 
representing preferences of the sellers and reservation prices of the buyers. We have 
shown that strongly stable matchings, under the assumptions of path independency of 
choice functions and very strong compatibility of reservation prices with the preferences 
of the sellers, are identical with price equilibria allocations. Unfortunately, in general, 
there is no similar characterization for stable matchings (in Świtalski, 2016 it is shown 
that stable matchings can be characterized by order equilibria). A special case in which 
such characterization for stable matchings is possible is the one with linear preferences 
of the sellers, because stability = strong stability in this case. 

We have also shown how to use characterization results to prove existence of 
price equilibria for many-to-many GS-models with Plott (= path independent) choice 
functions and linear preferences of the sellers or for many-to-many Chen-Deng-
Ghosh-models with Plott choice functions and differentiated reservation prices. Simple 
examples show that in the cases of non-linear preferences (for the GS-models) or 
non-differentiated prices (for the CDG-models) price equilibria may not exist.
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We have used standard pairwise stability condition and this helped us to prove 
the existence result by using Alkan and Gale theory (2003). There are other stability 
conditions for many-to-many models (see, e.g. Echenique, Oviedo, 2006), but they 
are defined under the assumption that choice functions are generated by strict linear 
orders on the families of subsets of feasible contracts. It would be interesting to 
study relationships between stability and price equilibria for other stability concepts 
(different from pairwise stability) and for the model with general choice functions. 
But this could be the problem for further research.

A method of studying many-to-many model is the transforming of such model 
into equivalent many-to-one or one-to-many model by cloning the agents at one side 
of the market (under suitable assumptions). We did not follow this way, because we 
could directly use the results from our previous paper (Świtalski, 2016), but of course 
it would be interesting to study possibility of such transformation.

It would be very important for matching theory to have a model of matching 
market, in which we could prove relationships between stability and equilibria as 
general as possible. Our model cannot be embedded directly into contract theory, 
hence an interesting question would be the possibility of building a general model 
including our model and contract models (for example the model of Hatfield et al., 
2013) for which similar results on stability and equilibria will hold. 
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STABILNOŚĆ I RÓWNOWAGI CENOWE W MODELU RYNKU 
GALE’A-SHAPLEYA TYPU „MANY-TO-MANY”

S t r e s z c z e n i e

W artykule zbadano zależności między uogólnionymi równowagami konkurencyjnymi zdefiniowa-
nymi w pracy Świtalskiego (2016), a równowagami cenowymi dla pewnego wariantu modelu rynku 
Gale’a-Shapleya (typu „many-to-many”), a także między równowagami cenowymi a skojarzeniami 
stabilnymi dla tego modelu. Uzyskane wyniki wykorzystano do udowodnienia twierdzeń o istnieniu 
równowag cenowych w modelu GS typu many-to-many oraz w pewnym modelu typu many-to-many 
uogólniającym model zawarty w pracy Chen i inni (2014). 

Słowa kluczowe: skojarzenie stabilne, teoria Gale’a-Shapleya, model „many-to-many”, równowaga 
cenowa, funkcje wyboru, dyskretny model rynku
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STABILITY AND PRICE EQUILIBRIA  
IN A MANY-TO-MANY GALE-SHAPLEY MARKET MODEL

A b s t r a c t

In the paper we study relationships between generalized competitive equilibria defined in the paper 
of Świtalski (2016) and price equilibria for some variant of many-to-many market model of Gale-
Shapley type and between price equilibria and stable matchings for such a model. Obtained results are 
used for proving theorems on existence of price equilibria in the many-to-many GS-model and in the 
many-to-many model generalizing the model of Chen, Deng and Ghosh (Chen et al., 2014).

Keywords: stable matching, Gale-Shapley theory, many-to-many model, price equilibrium, choice 
function, discrete market model




