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Abstract: The paper presents the estimation methodology for uncertainties of magnetic 

flux linkage measurements, when the flux linkage and current functions with respect to 

time are obtained instead of single values of these quantities. The computed uncertainties 

are then used to estimate the quality of an approximation of a current-flux characteristic 

in the mathematical model of an electrical machine when the approximation is based on 

the results of measurements. 
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1. Introduction 
 

Mathematical models of electrical machines require the determination of the relation 

between currents in the windings of the machine and their flux linkages. In the models that 

take into account the nonlinearities of the magnetization curve the most convenient way to do 

it is to use an approximation of the current-flux characteristic. The current-flux characteristic 

is a vector function that for a given vector of phase currents assigns a corresponding vector of 

flux linkages. Such an approach is used in the Hamiltonian model of an electromechanical 

actuator [1] and it does not need calculations of any additional parameters. The opposing stra-

tegy is to determine the values of inductance matrix elements for a certain set of current 

values. The way of calculating data for such an approach, presented for an induction motor, 

but applicable in the analysis of the synchronous reluctance machines, is described in [2].  

In the Hamiltonian model, the simplicial approximation of the current-flux characteristic is 

used. It requires sets of corresponding points in the spaces of flux linkages (space of fluxes 

below in the paper) and currents, and the division (triangulation) of both spaces. The sets of 

points can be obtained for a fixed rotor angular position using a measuring procedure that is  

a modification of the current decay test. However, for the measurement results to be relevant, 

their uncertainties have to be calculated. These calculations are also needed to determine the 
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precision of the used measuring method and to designate the requirements on the measuring 

devices that has to be used to keep the precision of the approximation on the desired level. 

In the paper, an estimation of uncertainties of the approximation of the current-flux charac-

teristic, based on sets obtained with the use of measurement results, is presented. First, the 

measuring method and laboratory stand are briefly described. Then the measurement uncer-

tainties for a single measurement of current are evaluated, followed by the estimation of un-

certainties of the computed flux linkage. In the end, the impact of these uncertainties on the 

quality of the approximation of the flux-current characteristic is discussed. 

 

2. Method of measurement and laboratory stand 

The measurement of the flux linkages in the windings of the machine is performed for the 

fixed angular position of the rotor. For a three-phase machine with phase windings in a wye 

configuration, the electrical state of the machine is given by two phase current values and two 

corresponding generalized flux linkage values. The measuring procedure for obtaining these 

values consists of setting the specified current values in the machine windings, followed by 

their short-circuit and registration of the decaying current time plots. Corresponding flux 

linkage time plots are obtained by the integration of the general voltage Equation (1) that 

describes the machine, taking phase-to-phase voltages eAC and eBC equal to 0: 
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where: iA, iB are the currents in phase A and B, respectively, ΨAC = ΨA – ΨC, ΨBC = ΨB – ΨC 

are the generalized flux linkages, where ΨA, ΨB, ΨC are the flux linkages in winding of phase 

A, B and C, respectively, rA, rB, rC are the resistances of windings connected to phase A, B 

and C, respectively. 

The result of a single measurement done with the use of this method is a pair of corres-

ponding trajectories, one in the space of fluxes and the second in the space of currents. From 

this pair of trajectories, several points, best characterizing the curvature, can be chosen to be 

included into the required sets. The selection of points is based on the magnetic field coenergy 

calculations. The method of measurement and selection of points included into the required 

sets is described in literature [3]. 

The presented measurement results are obtained for a prototype three phase Synchronous 

Reluctance Machine with wye-connected phase windings, with the rotor in an arbitrary 

position (neither aligned nor unaligned). This prototype machine has 4 poles and is built based 

on the stator of an induction machine, with rated parameters IN = 2.2 A; PN = 0.55 kW; and 

with 36 winding slots. In such a machine the magnetic saturation effects are well visible 

during normal work and hence the Hamilton approach is well suited to describe it. However, 

the results should be treated as an illustration of the presented method of uncertainties 

calculation rather than the construction of the precise model of this particular machine. The 

laboratory stand that was used during measurements is presented in Fig. 1 and is described in 

details in literature [4]. 
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Fig. 1. Schematic view of the used laboratory stand 

 

During a single measurement, for a fixed DC supply, the decaying time plots are sampled 

and registered 4 times, and then they are averaged to increase the precision of measurement 

and reduce the random noise influence. At this stage, the random (Type A uncertainties) and 

the systematic (Type B uncertainties) effects can be assessed. The acquired and averaged time 

plots in general contain a non-decaying constant component, which is caused e.g. by unba-

lanced amplifiers that are used in the measuring devices. This constant can be eliminated by 

finding the time value T0, after which the “real”, decaying time plots of currents go to 0. It can 

be done by the analysis of the magnetic coenergy time plot Ecm(t) that is computed with the 

use of obtained time plots of currents (2): 

     
 

 
 

dτ
d

d
Ψ

d

d
Ψ B

BC
A

ACcm  


















T

t

ii
tE , (2) 

where time plots iA(τ), iB(τ), ΨAC(τ), ΨBC(τ) are registered in the time range from 0 to T. After 

the coenergy computation, time T0 is found to be the time that ensures Ecm(T0) ≈ 0. The ob-

tained time plots of currents are then “cut” to this moment and the mean value on the interval 

(T0, T) is computed. This value is the constant component that needs to be filtered (subtracted) 

from the measurement results. It has to be clearly stated that the above procedure is a part of 

preprocessing of the measured time plots of currents, as the correct time plots of flux linkages 

and coenergy can be computed only after getting rid of the non-decaying component from the 

obtained time plots of currents. The processing of the measurement results is shown for 

exemplary time plots of currents in Fig. 2 and Fig. 3. 

Fig. 2 presents the time plot obtained using a LEM transducer, that measures the current in 

the windings of phase A (the time plot obtained with the use of LEM that measures the current 

in the B phase is similar). Both full time plot and the decaying fragments are denoted. Fig. 3 

presents the decaying time plots of currents computed using fragments shown in Fig. 2, the 
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decaying time plot of coenergy used in measurements processing and finally the decaying time 

plots of fluxes computed using the processed time plots of currents. The time value T0 is 

marked in the figure. 

 

 

Fig. 2. Time plot registered during the measuring procedure 

 

 

Fig. 3. Decaying time plots of currents, coenergy (left) and computed generalized flux linkages 

 

 

3. Uncertainties of current and flux linkages measurements 
 

In the calculation of uncertainties of current measurements, standard procedures of deter-

mining the Type A and Type B uncertainties were used to obtain the uncertainty of every 

sample of the measured time plots of currents. The Type A uncertainty, denoted uA, was 

computed as a square root of the variation, further extended by multiplying it by the fractile 

t3,α = 1.20 of the student distribution for a confidence level α = 0.6827. The Type B uncer-

tainty, denoted uB, was computed using technical documentations of the used measuring 

equipment and took into account the resolution of the used analog-to-digital converter (ADC), 

the accuracy of the DC gain of the used oscilloscope, the accuracy and linearity error of the 

used LEM transducers and uncertainty of the resistances connected to their outputs and used 

as the current to voltage transducers. 
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The standard uncertainty of the measurements of currents affects the uncertainty of the 

calculated flux linkages. The process of determining this uncertainty will be shown for a ΨAC 

flux linkage and is analogous for a ΨBC flux. It starts from the formula for computing the 

values of the generalized flux ΨAC(t) in a given moment in time t, based on (1), which is as 

follows: 
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The law of uncertainty propagation applied to (3) yields the square of standard uncertainty 

u(ΨAC(t)) to be equal to: 
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where: IiA(t), IiB(t) are the integrals of the time plot of the respective current from t to T0. 

Because the measured data are discrete time series, the above integrals are approximated with 

sums: 
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where: Δt is the time between subsequent current samples, N is the number of samples in the 

whole discrete time plot of current, iA, iB, IiA and IiB are the column vectors that replace the 

continuous functions iA(t), iB(t), IiA(t) and IiB(t) registered in time interval t ∈ 〈0,T0〉, consisting 

of samples of the respective time plots. All the calculations are in fact performed on these 

vectors. 

To compute the standard uncertainties of those sums when the time series of Type A and 

Type B uncertainties are given separately, the approach described in [5] can be used. Using it 

the uncertainties of the integrals u(IiA(t)), u(IiB(t)) are approximated by their discrete analo-

gues, e.g. computation of u(IiA(t)) leads to the formula: 
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where: u(IiA(n)) is the uncertainty of n-th sample in the integral of the iA current time series, 

with the n-th sample corresponding to the t moment in time, uA(iA(j)), uB(iA(j)) are the Type A 

and B uncertainty of the j-th sample in the iA current time series. Formulas (5) and (6) are 

valid for a constant sampling rate and for the computation of integrals using the rectangle 

method. 

In the Equation (6) the law of propagation is strictly applied only to the random part of 

uncertainty, i.e. the integral of the random uncertainties is treated as a simple sum. That way 

the random uncertainties are greatly diminished, whereas the systematic errors “pass” through 
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the calculations. It is consistent with intuition – integration filters the random noise, but when 

the integrated data differ from the true values “by a percentage”, the result of calculations 

should also differ from the true result by the same percentage. 

The average relative uncertainty of flux linkages values, computed using Formulas (4), (5) 

and (6) is equal to 20.93%, and the maximum value of this uncertainty is equal to 32.28%, 

which is very pessimistic considering the average relative uncertainty of the current equal to 

4.87%. To check these calculations, another approach was used to obtain the time plots of flux 

linkages. This approach and Formulas (7)­(9) are introduced in [6]. Similarly to the earlier 

approach, here only the equations for computing the uncertainty of IiA integral are presented, 

as the calculations for computing the IiB integral are analogical. In this approach the time plots 

of currents are approximated using Chebyshev polynomials of the first kind. The column 

vector α consisting of mCh coefficients is computed so that the error ε, written for the N  1 

column vector iA, is minimized: 
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where C is the N  mCh matrix, where column k stores samples of the Chebyshev polynomial 

of degree k-1. The minimization of the error in (7) leads to the coefficients in α being a linear 

combination of the samples in the iA vector: 
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Similarly, the integral of the approximated time plot of currents is a linear combination of 

the integrated Chebyshev polynomials, which can be computed analytically. When the column 

vectors of samples of these integrals build a matrix IC similar to the matrix C, the integral 

column vector IiA can be evaluated as: 

  AAA NiMiIII CC  αi . (9) 

The true values of elements of the matrices IC and M are known, and thus the computation 

of an integral is simply a weighted sum. Applying the law of uncertainty propagation to (9) 

results in the uncertainties of subsequent samples in the IiA vector that fulfills: 
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where N 
2
(n, j) is the squared value from n-th row and j-th column of the matrix N, 

u
2
(iA(j)) = uA

2
(iA(j)) + uB

2
(iA(j)) is the square of the standard uncertainty of the j-th sample in 

the iA vector. 

The relative uncertainties of flux linkages computed using the Chebyshev approximation 

are much more optimistic, being equal to 2.98% in average, with a maximum value equal to 

4.51%. At the same time, the results of flux linkages calculations using the mCh = 14 Che-

byshev polynomials to approximate time plots of currents were very close to the results 

obtained using a simple rectangle method. 
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Using two different methods of calculations on the same dataset and obtaining the same 

results should also result in similar values of uncertainties “connected” to both methods. This 

leads to the hypothesis that the methods of uncertainties computation require additional 

information to make the results consistent. 

As this information, the fact that the acquired time plots of currents have to decay to 0 can 

be used. With such an assumption, even if at the start of the measuring procedure the initial 

values of the currents were measured with a significant error, both measured and “real” tra-

jectories (in both space of currents and space of fluxes) have to come closer to each other as 

the system evolves, as long as the system is not chaotic. Considering uncertainties as a measure 

of the distance between “real” and measured trajectories, it can be assumed that the uncer-

tainties also become smaller and decay at the rate similar to the rate of decay of the time plots 

of currents. In other words the influence of the uncertainty is the greatest at the start of the 

measurement (when the initial point of the trajectory to be measured is fixed) and diminishes 

as the system evolves to the known point (0, 0). 

The decay of the measured time plots is approximately exponential. For a given vector of 

samples, e.g. iA, the biggest positive parameter λ can be found that satisfies the formula: 
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where: ip1, ip2 are the positive parameters chosen at the start of the procedure of finding λ. The 

parameter ip1 was set as max(|iA|) assuming that in most cases the biggest value of the acquired 

time plot of a current is measured at the start of the time plot, and the parameter ip2 was set to 

be the maximum absolute value of the “tail” of the acquired time plot (in most cases ip2 was 

small), so that the expression at the left side of the inequality in (11) does not decay to 0 as 

n → N. In practical calculations it was also permitted to violate (11) for a certain low number 

of iA(n) values to make the process of finding the biggest possible λ more robust. 

After the parameter λ is found, the new, bounded random uncertainty of the current in 

phase A uAb(iA) are evaluated.  
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Similar calculations are performed for systematic uncertainty uBb(iA). In these compu-

tations, the uncertainties obtained during measurements are multiplied by a “normalized” time 

series of the left side of the inequality (11) that decays from 1 to ip1/ip2. Then, those new values 

of uncertainties are incorporated into the previously introduced methods ((6), (10) and then (4)). 

The results of computations for an exemplary time plot of current iA is shown in Figure 4. 

A time plot f (t) of type given by the (11), that decays at the rate similar to the time plot of 

current, is shown on the left, and the standard uncertainties of the considered time plot of 

currents, both unbounded u(iA) and bounded ub(iA), are shown on the right. 

The average and maximum values of the relative uncertainties, computed using different 

methods, are shown in Table 1. 

The results of computations is satisfactory and consistent, although they may seem to be 

too optimistic. It should be also pointed out, that although bounding the uncertainties of 
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measured currents is useful in flux linkages calculations, this uncertainty should not be applied 

when measuring the arbitrary values of currents. 

 

Fig. 4. An exemplary time plot of current against the selected time plot f (t) (left) 

 and its bounded and unbounded standard uncertainty 

 
Table 1. Relative uncertainties of currents and flux linkages, computed using different methods. 

“Bounded” values refer to (11) and (12) 

Relative 

uncertainty, 

% 

Current measurements Flux linkages computations 

unbounded bounded 
using rectangle method using Chebyshev appr. 

unbounded bounded unbounded bounded 

average 4.87 3.72 20.93 4.50 2.98 2.35 

maximum 10.72 6.64 32.28 14.21 4.51 3.82 

 

The reason for this is that the bounding procedure is suited only for decaying current time 

plots. In other words, when measuring values of currents in a certain point of the space of 

currents, uncertainties determine the rectangle where the “real” point should be found – this 

rectangle “lessens” its size only along the decaying trajectory that starts in the initially 

measured point. If one would like to later measure the values of currents in a point that is 

located on this trajectory, the uncertainties of this measurement are bigger than the bounded 

ones, e.g. due to the uncertainty of the way of forcing this desired current values in the 

windings of an examined electrical machine. 

After the analysis of Table 1 and considering the computational effort connected to the 

examined methods, a method of flux linkages computation using the rectangle method of 

integration and bounded uncertainties of currents along the integrated time plots of currents is 

chosen as the best. 

 

4. The approximation of the current-flux characteristic 

As stated earlier, the goal of the measurements is to build sets of corresponding points 

located in the spaces of currents and fluxes. These points are chosen from the measured and 
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computed trajectories, along with their corresponding uncertainties. The chosen points with 

error bars, the representative pair of corresponding trajectories in both spaces and the areas of 

these spaces determined by the calculated uncertainties are presented in Fig. 5. 

 

 

Fig. 5. Sets of points chosen to approximate the flux-current characteristic 

of the analyzed electrical machine 

 

The approximation of the current-flux characteristic performed with the use of simplicial 

approximation is of course affected by these uncertainties. To compute this influence, the 

process of approximating the characteristic should be briefly introduced. It starts with the 

measurement of the values of currents in phases A and B in a single moment in time, that 

determine a single point ip = (iAp; iBp) in the space of currents. The standard uncertainty of the 

measured value is known to be u(ip). To find the corresponding point Ψp in the space of fluxes, 

first a simplex (a triangle-shaped subarea of the space of currents, determined by three points 

ik, il, im) that contains the point ip has to be found. Then the barycentric coordinates 

b = [bk bl bm]
T
 that determine the position of the point ip in the found simplex are calculated, 

fulfilling: 
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where e.g. ik = (iAk; iBk) and so on. Because the points ik, il, im have their corresponding points 

Ψk, Ψl, Ψm in the space of fluxes, the point Ψp lies in the simplex determined by them. 
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where e.g. Ψk = (ΨACk; ΨBCk) and so on. Using the law of propagation to (14) to calculate the 

standard uncertainty u(ΨACp) yields: 
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and similarly to calculate the standard uncertainty u(ΨBCp). In (15) Σ(b) is a covariance matrix 

of the vector b containing barycentric coordinates. Calculation of the values of its elements 

requires the calculation of the covariance matrix of the inverse of the 33 matrix that can be 

found in (13). The method for computing the covariance matrix that was used in the paper is 

described in [7]. 

To test an approximation based on the sets of points shown in Fig. 5, an approximation of 

the points located in the middle of every simplex (i.e. every barycentric coordinate equal to 

1/3) from the triangulated set of points in the space of currents was performed. Then the 

uncertainty of the approximated flux linkages value was computed using (15), taking the 

uncertainty of the current value equal to u(ip) = (u(iAsim) + 0.05; u(iBsim) + 0.05) (A), where 

u(iAsim) = (u(iAk) + u(iAl) + u(iAm))/3 is the average uncertainty of the “phase A” coordinate of 

the points in the vertices of a considered simplex (u(iBsim) is computed similarly). The results 

of computations for determining a relative uncertainty of the ΨACp value are shown in Fig. 6. 

The average uncertainty of the ΨACp value is equal to 6.54%, while the maximum value of 

this uncertainty was determined to be equal to 13.74%. In Fig. 6 it can be seen that the 

computed uncertainties are bigger for the points, that in the space of currents are located near 

the line iA = −iB, where the flux-current characteristic is known to be highly nonlinear. In the 

regions where both iA and iB components are big in absolute value and have the same sign, the 

computed uncertainty is at the rate of 4­5 %. 

 

 

Fig. 6. Relative uncertainty of the approximated ΨAC flux value viewed from two angles 

 

 

4. Conclusions 
 

In the paper, a methodology for evaluating the uncertainty of the simplicial approximation 

of the flux-current characteristic based on data obtained during measurements is shown. 
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First, the method of computing the uncertainty of the modified current decay test is pre-

sented. Because flux linkages are coupled with the measured decaying time plots of currents 

by an integral equation, the main problem was to determine the uncertainty related to the com-

puted integrals of these time plots. The final uncertainty value can be significantly lowered 

with the use of the information that the time plots of a current have to decay to 0 and using the 

computed coenergy value to find the time of this decay. 

From the computed decaying time plots of currents and flux linkages, several points can be 

chosen to the sets that the simplicial approximation of the flux-current characteristic is based 

on. Those points have their associated uncertainty that propagates on the approximated flux 

linkage value when using the aforementioned sets of points. The method of computing this 

uncertainty is also presented. 

The presented methods were used to evaluate the uncertainty of the approximation of the 

flux-current characteristic for an exemplary synchronous reluctance machine. The relative 

uncertainty of the approximation can be evaluated to be approximately 7%, which is sufficient 

for the use in the Hamiltonian model of the examined machine. It is worth noting that the 

measurements leading to this result were performed using relatively low requirements on the 

data acquisition equipment. The presented methods of measurements and approximation can 

thus be used in the control system of an electrical machine (at least considering the measu-

rement part of it) without high requirements concerning the used measurement devices. 
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