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Endopolyploidy is a condition of a cell containing reduplicated genetic material in its nucleus. Cells with the 
nuclei of different ploidy levels are often present within a single polysomatic organism. Endoreduplication is thus 
a modified cell cycle that omits cytokinesis and leads to  chromatin replication in the endopolyploid cells. This 
study aimed to research the effect of salinity on endopolyploidy of Trifolium pratense and T. repens. Both spe-
cies are important pasture legumes and belong to the genus Fabaceae with the well documented endopolyploidy 
occurence. Endopolyploidy levels in the seedlings treated with 0, 30, 60, 90 and 120 mM NaCl were investigated 
by flow cytometry. The seedling organs were evaluated during three ontogeny stages. The cytometric data plotted 
on a histogram showed the presence of 2C-16C nuclei in T. pratense and 2C-8C in T. repens. The hypothesis that 
salinity induces additional endocycles was not confirmed. Our results show that the distribution of nuclei among 
ploidy levels does not differ markedly between the treatment groups and the control ones. Additionally, only minor 
changes were observed among the endoreduplication indexes (EI) of plant organs after exposure to various salt 
concentrations. Endopolyploidy patterns within the salt-treated seedlings during ontogeny are similar to the con-
trols. We suggest that endopolyploidy in Trifolium species is a conserved genetic trait, rather than an adaptation 
to salinity stress. The analyses of the roots of T. pratense at stage III show that with the increased concentrations 
of NaCl the length of roots decreased, but no evident changes in endopolyploidy occured.
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INTRODUCTION

Endopolyploidy is a common element of develop-
ment and physiology of many Angiosperms. It is 
characterised by repeated multiplications of the 
genetic material within nuclei, which in turn do 
not undergo cytokinesis. Some plant groups attain 
a higher degree of endopolyploidization than others. 
Several factors are in play but taxonomic position is 
the major one (Barow and Meister, 2003; Bainard 
et al., 2012). Endopolyploidy levels are specific 
for some tissues and organs (Barow and Meister, 
2003; Barow, 2006). The switch from mitosis to 
endoreduplication is irreversible and controlled by 
genetic, developmental and environmental signals 
(Maluszynska et al., 2013). Endopolyploidy was 
observed in the early development of plants, e.g., 
Chenopodium quinoa (Kolano et al., 2008), Beta 
vulgaris (Sliwinska and Lukaszewska, 2005) and 
Trifolium pratense (Straková et al., 2014). These 
works refer to endoreduplication as an essential 

part of normal development of seedlings of many 
plant species. In fact, the changes in endopolyploidy 
levels during ontogeny and the tissue-specific status 
of endopolyploidy indicate that endoreduplication 
is spatially and temporally regulated (Maluszynska 
et al., 2013).

The studies have revealed several roles of 
endopolyploidy, such as the control of organ growth 
(Sugimoto-Shirasu and Roberts, 2003; Cookson 
et al., 2006; Massonett et al., 2011), increasing 
of metabolism and utilization of the endocycle in 
stress-response pathways (Scholes and Paige, 
2015). In endopolyploid plants, more endocycles 
are induced under the conditions of environmental 
stress, which can be provoked by abiotic and biotic 
factors such as light (Gendreau et al., 1998; Kudo 
and Mii, 2004; Kinoshita et al., 2008; Gegas et al., 
2014), temperature (Engelen-Eigles et al., 2000), 
symbionts (Kondorosi and Kondorosi, 2004; 
Wildermuth, 2010), mycorrhizae (Bainard et al., 
2011) and nematodes (de Almeida Engler and 
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Gheysen, 2013). Less attention has been paid to 
salt stress and associated water deficiency. Salt 
treatment induced endoreduplication in root cells 
of Sorghum bicolor or Allium cepa and in cali of 
Nicotiana bigelovii (Ceccarelli et al., 2006; Bennici 
et al., 2008). Water deficiency reduced the cell size 
of leaves of Arabidopsis thaliana and the kernel 
growth in maize and these were in correlation with 
an endopolyploidy level decrease (Cookson et al., 
2006; Artlip et al., 1995). Scholes and Paige (2015) 
suggested that endoreduplication is employed 
as a plastic response to mitigate the effects of 
environmental stress. Plants typicaly respond to 
stress by increasing endopolyploidy beyond their 
‘normal’ level.

Trifolium pratense L. and T. repens L. belong 
to the most important pasture legumes and are 
widely distributed in temperate regions throughout 
the world (Abberton, 2007). T. pratense is diploid 
(2n = 14) with 2C = 0.9 pg DNA and T. repens 
is tetraploid (2n = 32) with 2C = 2.48 pg DNA 
(Kocová et al., 2014). They are phylogenetically 
distinct: T. pratense belongs to the section 
Trifolium and T. repens to the section Trifoliastrum 
(Ellison et al., 2006). Recent studies showed that 
these two species are polysomatic in general; 
enhanced endopolyploidy levels were detected in 
T. pratense throughout its lifespan, from seeds 
to flower senescence (Kocová and Mártonfi, 2011; 
Kocová et al., 2014, Straková et al., 2014). Kocová 
et al. (2014) demonstrated that these two species 
have different endopolyploidy levels. Taxonomic 
affiliation seems to be the major factor impacting 
endopolyploidy in these species.

Salinity is a very destructive abiotic stress 
which limits crop productivity. It is a huge 
environmental problem in agricultural crop lands 
(Pitman and Läuchli, 2002; Munns and Gilliham, 
2015; Shrivastana and Kumar, 2015). Many forage 
legumes are cultivated in irrigation areas with 
this problem. T. pratense has been determined as 
a highly salt-sensitive plant (Mandić et al., 2014). 
A decrease in germination and growth of seedlings 
in T. pratense was demonstrated with an increase 
of NaCl concentration (Asci, 2011; Mandić et al., 
2014). Germination and subsequent development 
of seedlings are the crucial life phases of plants. 

With regard to the role of endopolyploidy 
in early plant development under the salt stress 
conditions, the aim of this study was to estimate 
how endopolyploidy levels in individual organs 
of T. pratense and T. repens change during three 
ontogeny stages under application of various NaCl 
concentrations. Additionaly, we aimed to map the 
patterns of polysomaty in T. repens during the early 
phase of ontogeny – for the first time.

MATERIAL AND METHODS

PLANT MATERIAL

For the study we used seeds of T. pratense culti-
var ‘Nike‘ and T. repens ‘Rivendel‘. Twenty-five 
individual seeds were placed into Petri dishes with 
a piece of filter paper and 10 ml NaCl in the fol-
lowing concentrations: 0, 30, 60, 90 and 120 mM. 
The Petri dishes were sealed to prevent evaporation. 
The seeds were incubated in darkness at laboratory 
temperature (for 2 or 3 days). After the completion 
of germination (radicle protrusion), the seeds with 
the radicle penetrating the seed coat were trans-
ferred into plastic boxes with an openable cap and 
small holes at the top. 15 ml of the solutions in the 
concentrations mentioned above were pipetted onto 
filter paper supported on glass beads, onto which 
the seedlings were placed. The boxes were stored 
in a controlled environment (light 12 hours / dark 
12 hours). The plants were harvested for analyses 
after they underwent one of the three ontogenic 
stages: seedlings with the cotyledons fully opened 
(stage I), seedlings with the first leaves developed 
(stage II), seedlings with the second leaves devel-
oped (stage III). To estimate the effect of salinity on 
the organ size and endopolyploidy level, the length 
of T. pratense roots was measured in all salt treat-
ments (0, 30, 60, 90 and 120 mM) at stage III. 

FLOW CYTOMETRY

Evaluation of endopolyploidy. Polysomaty of the 
organs was evaluated by flow cytometry. We pre-
pared the samples from the following organs: root, 
hypocotyl, cotyledon, first leaf, petiole of the first 
leaf (first petiole), second leaf and petiole of the sec-
ond leaf (second petiole). Every individual sample 
of fresh plant material was chopped in a Petri dish 
with a razor blade together with 1 ml GPB (General 
purpose buffer 0.5 mM spermin.4HCl, 30 mM 
sodium citrate, 20 mM MOPS, 80 mM KCl, 20 mM 
NaCl, 0.5% (v/v) Triton X-100 pH 7.0) prepared 
according to Loureiro et al. (2007). The resulting 
mixture was filtered through 42 μm nylon mesh 
filter. This suspension was supplemented with 
10 μg.ml-1 propidium iodide (PI) and 10 μg.ml-1 
RNase.

Usually 8–12 repetitions in T. pratense 
and 4–8 repetitions in T. repens per organ/
concentration/stage were analyzed. Lower numbers 
of duplicates or none were prepared in the cases 
when the lethal effect of salt was critical for the 
seedlings. All flow cytometric analyses were 
carried out by Partec CyFlow ML (Partec Gmbh, 
Münster, Germany) equipped with an argon-ion 
laser tuned at a wavelength of 532 nm. This flow 
cytometer is housed at the Institute of Biological 
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and Ecological Sciences, P.J. Šafárik University in 
Košice (Slovakia). The histograms were displayed 
on a logarithmic scale (x-axis). The resulting data 
were analyzed using FloMax Software 2.7 (Partec 
Gmbh, Münster, Germany). The measurements 
were made with an effort to reach approximately 
the same cv (%) for all samples. The number of 
nuclei per individual peak was recorded on counts 
vs. PI fluorescence histograms. Then the percentage 
of nuclei of individual DNA levels in each sample 
was calculated and the acquired data were used to 
calculate the endoreduplication index (EI) (Bainard 
et al., 2012) according to the formula of Barow 
and Meister (2003). EI is averaging the number of 
endocycles undergone by each nucleus:

EI = ––––––––––––––––––––––––––––––––––––––––––
(0 × n2C + 1 × n4C + 2 × n8C + 3 × n16C...)

(n2C + n4C + n8C + n16C...)

where n represents the number of nuclei of the cor-
responding ploidy level. The samples with EI less 
that 0.1 are not considered endopolyploid (Barow 
and Meister, 2003).

Determination of genome size. Genome sizes 
[pg] of T. pratense cultivar ‘Nike‘ and T. repens 
‘Rivendel‘ were evaluated by flow cytometry. 
Preparation of the samples for genome size 
estimation was analogous to the protocol used 
for endopolyploidy measurements. The same flow 
cytometer was utilized. The first leaf of T. pratense 
was used and chopped together with the reference 
standard, Solanum lycopersicum cv. Stupické 
(2C = 1.96 pg DNA, Doležel et al., 1992). The first 
leaf of T. repens was evaluated with Zea mays 
CE-777 (2C = 5.43 pg DNA, Lysák and Doležel, 
1998). Nine repetitions were carried out for both 
species. The histograms were displayed on a linear 
scale (x-axis). The coefficients of variation (CV) 
of the G0/G1 peaks of both our species and the 
internal standards did not exceed 5%. The data 
were analyzed with FloMax 2.7 (Partec Gmbh, 
Münster). DNA content was calculated according 
to Doležel and Bartoš (2005): Sample 2C DNA 
content = 2C sample peak mean / 2C standard 
peak mean × standard 2C DNA content [pg].

STATISTICAL METHODS

Exploratory data analysis was done in Microsoft 
Office Excel 2007. If the requirements of ANOVA 
were met, then ANOVA test (and Tukey’s post hoc 
test for pairwise comparisons) was applied to test 
the mean difference of EI between treatments within 
specific organs. In few cases the requirements of 
ANOVA were not met and then Kruskal-Wallis test 
(with Mann-Whitney post hoc test with Bonferroni 
corrected p values to determine significance) was 

applied instead. These tests were performed in Past 
3.14 (a significance level of 0.05 was used). Graphs 
were created in ggplot2 package (Wickham 2009) 
in R (ver. 3.2.4) environment (R Core Team, 2016). 

RESULTS

The genome size of T. pratense cultivar ‘Nike‘ was 
estimated as 0.91 ± 0.018 pg (mean ± SD) and of 
T. repens ‘Rivendel‘ as 2.22 ± 0.022 pg.

The highest concentration of NaCl showed vast 
negative effects on Trifolium species; therefore, 
the results for the roots at stage III of T. pratense 
treated with the 120 mM solution are not present 
here (Table 1). The seedlings of T. repens showed 
higher sensitivity to salinity than the seedlings 
of T. pratense. The results for T. repens at stage 
I include the data from 90 mM and 120 mM 
NaCl treatment, whereas the data for these 
concentrations at stage II and stage III are missing, 
since the plants were not able to grow in these NaCl 
concentrations (Table 2).

We studied the relationship between the 
organ size and the DNA content. The differences 
in the root length between the control and the 
salt treatments were obvious at stage III. The 
average lenght of T. pratense roots for 0 mM NaCl 
was 7.65 ± 2.51 cm (mean ± SD), for 30 mM 
9.34 ± 3.02 cm, for 60 mM 6.62 ± 2.9 cm, 
for 90 mM 2.36 ± 1.55 cm and for 120 mM 
0.84 ± 0.35 cm. 

Developing organs of T. pratense contain 
cells with the nuclei of 2C, 4C, 8C and even 16C 
in some cases (Fig. 1). T. repens shows very low 
amounts of the 8C nuclei and the predominant 2C 
and 4C nuclei are present (Fig. 2). The seedlings 
of T. pratense and T. repens are polysomatic 
during the early stages of their ontogeny in both 
the control and the treatment groups. Exceptions 
were found for the first and the second leaves of 
T. pratense and the first and the second leaves and 
petioles of T. repens. These organs are considered 
non-endopolyploid (EI was under 0.1, Barow and 
Meister, 2003) (Tables 1, 2). 

The effect of salinity on ploidy levels and the EI 
of the cells in developing organs can be discussed in 
two aspects. Firstly, we have to consider the effect 
of various concentrations of salt solution applied on 
individual organs compared to the control group. 
The second aspect deals with the long-term effect 
of salt concentration on EI of organs within the salt 
treatments during their ontogeny. 

First aspect. In general, salt concentrations 
did not induce more endocycles in comparison 
to the control and only moderate changes in the 
percentage of nuclei were detected in salt-treated 
plants of Trifolium species. 
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Quantitatively significant differences for 
T. pratense were only found in the roots, the 
hypocotyls and the cotyledons at stage I, the first 
petioles and the first leaves at stage II and the first 
petiole at stage III (Table 1). The most significant 
difference in EI was found at stage I between the 
hypocotyls of 120 mM (1.1) and 0 mM NaCl (0.86). 
In general, we observed only moderate increase in 
EI of the salt-treated roots (at stage II), hypocotyls 
(at stages I and II), first and second petioles, 
first and second leaves, compared to the control 
(Table 1). EI of the hypocotyls at stage III rose only 
with the application of 30 mM salt solution. The 

cotyledons of the experimental plants in general 
(except for the 120 mM NaCl solution treatment 
at stage I) show lower EI values than those of 
the control group. Inspecting the first and the 
second petioles, we found EI slightly rising as 
a response to the salt treatment. EI of the leaves 
also increased, altough it still could not formally 
be considered endopolyploid. Similarly, EI of the 
first and the second leaves of T. repens increased 
with higher salt concentration, but always remained 
under 0.1. EI of the first petiole at stage II treated 
with 60 mM salt solution increased above 0.1 
with significant difference in comparison to 

Fig. 1. Percentage of nuclei in organs of T. pratense seedlings within different NaCl concentrations [0–120 mM] during 
three ontogenetic stages.
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the control (ANOVA, p < 0.05; Table 2). Other 
organs of T. repens showed the salt-induced 
endopolyploidy patterns similar to T. pratense 
(Suppl. Fig. S1). 

Second aspect. EI for both T. pratense and 
T. repens roots, hypocotyls and first petioles was 
predominantly decreasing during the ontogeny 
stages (Tables 1, 2). An opposite pattern was 
detected for the first leaves. A single difference 
between the species was detected: while 
endopolyploidy of the cotyledons in T. pratense 
increased with ontogeny, it decreased in T. repens 
(Tables 1, 2; Suppl. Fig. S1).

In general, the tendencies of EI are similar 
in T. pratense and T. repens, irrespective of the 
salt concentration or the ontogeny stage (Suppl. 
Fig. S1).

DISCUSSION

T. pratense is among the well known polysomatic 
species (Barow and Meister, 2003; Kocová et al., 
2014; Straková et al., 2014). Here we document 
and prove, along with the previous study (Kocová 
et al., 2014), that T. repens is polysomatic at early 

Fig. 2. Percentage of nuclei in organs of T. repens seedlings within different NaCl concentrations [0–120 mM] during 
three ontogenetic stages.
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 TABLE 1. EI of organs of T. pratense seedlings within different NaCl concentrations [0–120 mM] during three ontogenetic 
stages [I–III].

I II III

root

0  mM 0.816 ± 0.056 a 0.735 ± 0.080 ns 0.706 ± 0.053 ns

30 mM 0.739 ± 0.085 a 0.799 ± 0.071 0.668 ± 0.076

60 mM 0.777 ± 0.040 a 0.796 ± 0.103 0.646 ± 0.125 

90 mM 0.829 ± 0.099 ab 0.803 ± 0.065 0.708 ± 0.182 

120 mM 0.953 ± 0.176 b 0.818 ± 0.145 –

hypocotyl

0  mM 0.860 ± 0.050 a 0.883 ± 0.127 ns 0.832 ± 0.140 ns

30 mM 0.947 ± 0.116 ab 0.933 ± 0.085 0.879 ± 0.110 

60 mM 0.937 ± 0.124 ab 0.969 ± 0.099 0.823 ± 0.140 

90 mM 1.030 ± 0.141 ab 0.840 ± 0.063 0.835 ± 0.097 

120 mM 1.096 ± 0.132 b 0.972 ± 0.150 0.796 ± 0.172 

cotyledons

0  mM 0.828 ± 0.080 ab 0.919 ± 0.125 ns 0.932 ± 0.133 ns

30 mM 0.812 ± 0.063 ab 0.821 ± 0.074 0.824 ± 0.083 

60 mM 0.748 ± 0.088 a 0.874 ± 0.086 0.922 ± 0.070 

90 mM 0.788 ± 0.056 a 0.810 ± 0.043 0.841 ± 0.111 

120 mM 0.899 ± 0.080 b 0.820 ± 0.098 0.854 ± 0.073 

1. petiole

0  mM 0.357 ± 0.106 a 0.386 ± 0.092 ab

30 mM 0.506 ± 0.076 b 0.458 ± 0.096 ab

60 mM 0.521 ± 0.072 b 0.518 ± 0.076  a

90 mM 0.481 ± 0.098 b 0.382 ± 0.110 ab

120 mM 0.362 ± 0.091 a 0.328 ± 0.035  b

1. leaf

0  mM 0.042 ± 0.006 a 0.045 ± 0.020 ns

30 mM 0.049 ± 0.014 ab 0.050 ± 0.027

60 mM 0.053 ± 0.015 ab 0.073 ± 0.019

90 mM 0.073 ± 0.019 b 0.093 ± 0.049

120 mM 0.066 ± 0.025 ab 0.091 ± 0.028

2. petiole

0  mM 0.311 ± 0.116 ns

30 mM 0.412 ± 0.088 

60 mM 0.457 ± 0.108 
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and late development stages, but it does not reach 
the same endopolyploidy level as T. pratense. It is 
clear that polysomaty is a permanent trait through-
out the whole life cycle of this crop species.

The level of endopolyploidy present in 
individual organs of seedlings is important with 
regards to their differentiation and development 
(Scholes and Paige, 2015). Scholes and Paige 
(2015) suggest that plants use endoreduplication 
as an adaptive mechanism to mitigate the effects 
of stress. Based on Scholes and Paige (2015) 
and with the insight into the impact of salinity 
on endoreduplication by Bennici et al. (2008) 
and Ceccarelli et al. (2006), we expected to find 
considerable changes in endopolyploidy levels in 
Trifolium seedlings.

The study of Ceccarelli et al. (2006) showed 
that an increased presence of salt noticeably 
enhanced endoreduplication in roots of Sorghum 
bicolor. Specifically, root hairs showed an increase 
in the amount of 8C nuclei and additional 16C and 
32C nuclei were present. However, the proportions 
of the nuclei in the leaves and the vascular cylinder 
of Sorghum bicolor were similar to the controls 
(Ceccarelli et al., 2006). In the salt-treated root 
differentiation zone of Allium cepa, an increase of 
4C and aditional 8C and 16C nuclei were observed 
(Bennici et al., 2008). With an increased NaCl 
concentration, higher DNA contents were recorded 
in Nicotiana bigelovii (Bennici et al., 2008). 
However, our results suggest that increased salinity 
does not affect endoreduplication in Trifolium 
organs of seedlings as extensively as expected. 
Both the control and the salt-treated plants of 
Trifolium species showed the same ploidy level 
distribution, meaning that the heightened salinity 
did not induce aditional endocycles. Aditionally, 

only minor differences in the distribution of nuclei 
among ploidy levels induced by the salt treatment 
were observed (Fig. 1, 2). These results show that 
excessive salinity does not cause significant changes 
in the ploidy distribution within the developing 
Trifolium seedlings (Fig. 1, 2).

We found slight (statistically insignificant) 
increases in EI for some organs caused by the 
application of salt solution to the growth medium 
(Tables 1, 2). This may serve the young seedlings 
as a means of preservation of the integrity and the 
function of plant organs. Consulting our results, we 
propose that endopolyploidy of Trifolium species 
is more likely conditioned by genetic prerequisites 
while less susceptible to the stress factor. Referring 
to the study of Ceccarelli et al. (2006), the salt-
induced endoreduplication occured in the salt-
adapted Sorghum bicolor cv. 610, while remaining 
unchanged in another genotype of S. bicolor (Dk 
34-Alabama), incompetent for salt adaptation. The 
studies of Bennici et al. (2008) and Ceccarelli et 
al. (2006) together with our results suggest that 
the plasticity of endoreduplication is a genomic 
response to high salinity. It also exhibits tissue and 
species specificity and variation related to genetic 
characteristics of the studied plant. 

In general, the patterns of endopolyploidy 
during the ontogeny stages within the organs of 
T. pratense and T. repens treated with salt are 
similar to the control group and correspond 
with the results of Straková et al. (2014). 
Again, this suggests the low impact of salinity 
on endopolyploidy of both species. However, 
ambiguous values of EI were obtained from the 
analyses of cotyledons of T. pratense (Table 1). The 
average EI of the cotyledons treated with 60 mM 
salt solution rose up from 0.75 at stage I to 0.92 

I II III

90 mM 0.430 ± 0.104 

120 mM 0.390 ± 0.048

2. leaf

0  mM 0.032 ± 0.006 ns

30 mM 0.034 ± 0.008 

60 mM 0.046 ± 0.018 

90 mM 0.048 ± 0.017 

120 mM 0.054 ± 0.023

Values are mean of EI ± standard deviation, different letters indicate homogeneous groups revealed by Tukey’s or Mann–Whitney pairwise 
post hoc tests, if ANOVA and Kruskal-Wallis test have indicated significant differences in EI between NaCl concentrations. ns = no significant 
difference

 TABLE 1. continued
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TABLE 2. EI of organs of T. repens seedlings within different NaCl concentrations [0–120 mM] during three ontogenetic 
stages [I–III].

I II III

root

0 mM 0.569 ± 0.083 ns 0.551 ± 0.051 ns 0.412 ± 0.076 ns

30 mM 0.587 ± 0.049 0.534 ± 0.082  0.407 ± 0.040 

60 mM 0.550 ± 0.067 0.535 ± 0.074 0.471 ± 0.104 

90 mM 0.597 ± 0.057 – –

120 mM 0.644 ± 0.025 – –

hypocotyl

0 mM 0.644 ± 0.078 ns 0.540 ± 0.070 ns 0.492 ± 0.114 ns

30 mM 0.749 ± 0.104 0.579 ± 0.070 0.473 ± 0.100 

60 mM 0.658 ± 0.095 0.595 ± 0.096 0.486 ± 0.050 

90 mM 0.628 ± 0.081 – –

120 mM 0.645 ± 0.102 – –

cotyledons

0 mM 0.549 ± 0.075 ns 0.542 ± 0.040 ns  0.487 ± 0.042 ns

30 mM 0.575 ± 0.112 0.504 ± 0.109 0.400 ± 0.095 

60 mM 0.550 ± 0.057 0.548 ± 0.082 0.457 ± 0.031 

90 mM 0.535 ± 0.209 – –

120 mM 0.496 ± 0.161 – –

1. petiole

0 mM 0.101 ± 0.023  a 0.075 ± 0.017 ns 

30 mM 0.114 ± 0.043  a 0.088 ± 0.037 

60 mM 0.160 ± 0.042  b 0.113 ± 0.040 

90 mM – –

120 mM – –

1. leaf

0 mM 0.014 ± 0.011 ns 0.024 ± 0.019 ns

30 mM 0.017 ±0.008 0.028 ± 0.027 

60 mM 0.025 ± 0.009 0.032 ± 0.021 

90 mM – –

120 mM – –

2. petiole

0 mM 0.073 ± 0.058 ns 

30 mM 0.082 ± 0.025 
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at stage III. Very high EI of the cotyledons is most 
likely caused by a strong metabolic activity of these 
organs (Maluszynska et al., 2013) further utilized 
for primary nutrition processes during the salinity 
stress. 

According to several studies, cell size is 
positively correlated to endopolyploidy (Barow 
et al., 2006; Sugimoto-Shirasu and Roberts, 
2003). It has been speculated that cell division, 
cell expansion and endoreduplication work on 
organ growth in conjunction with each other. 
Endoreduplication can aid organ development 
through cell expansion. Massonnet et al. (2011) 
describe the crucial role of endoreduplication in 
the leaf growth. Another study shows how shading 
and water deficit lead to a reduced leaf volume, 
lower cell numbers and endopolyploidy (Cookson 
et al., 2006). We elaborated on this hypothesis 
and found out that the lenght of roots at stage 
III exposed to salt varied greatly: 30 mM treated 
roots were longer than the control; in all other 
instances the lenght of the roots decreased with 
the treatment, from 30 mM to 120 mM. When 
considering the impact of various treatments 
on ploidy levels present in the roots, our results 
show the same 2C, 4C and 8C nuclei proportions 
as in the control group. It suggests that salt stress 
affects the growth of roots negatively, while at the 
same time the proportions of 2C, 4C and 8C nuclei 
are maintained. It means that the differences in 
the root size are apparently caused by an overall 
lower growth rate (the decrease in cell division 
rate) as the salt treatment intensifies, rather than 

a physiological effect of endopolyploidy changes. 
De Veylder et al. (2011) describe how a plant with 
an elevated percentage of higher-ploidy cells can 
use the growth potential of these endopolyploid 
cells to compensate for the decreased cell number 
caused by external factors. However, it is not our 
case. It seems that the roots of T. pratense prefer 
to maintain constant endopolyploidy levels and the 
effect of salt treatment is directly translated into 
the hindered tissue development and the inhibited 
elongation of roots without any compensation on 
the plant´s part. 

C ONCLUSION

Mandić et al. (2014) determined that T. pratense 
is a highly salt-sensitive plant, especially during 
germination and early seedling growth stages. Our 
results dealing with T. pratense and T. repens show 
that Trifolium species may not be salt-competent, 
because the plants conserve default ploidy levels 
in their organs despite the salt stress. This proves 
that endopolyploidy in T. pratense and T. repens 
is genetically fixed. Some of the detected changes 
in EI could stand for an attempted adaptation to 
salt, since maintaining of the function of the stud-
ied organs is crucially important. To sum up, salt 
stress may induce endopolyploidy changes in 
Trifolium species, but only to a negligible extent. 
We suggest that in the case of the studied species, 
the genetic predisposition for a certain polysomatic 
pattern outweighs its induction by stress. 

I II III

60 mM 0.051 ± 0.048 

90 mM –

120 mM –

2. leaf

0 mM 0.020 ± 0.010 ns

30 mM 0.022 ± 0.023  

60 mM 0.019 ± 0.013 

90 mM –

120 mM –

Values are mean of EI ± standard deviation, different letters indicate homogeneous groups revealed by Tukey’s or Mann–Whitney pairwise 
post hoc tests, if ANOVA and Kruskal–Wallis test have indicated significant differences in EI between NaCl concentrations. ns = no significant 
difference

 TABLE 2. continued
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