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Summary This note provides estimates of the mean sea spray aerosol flux based on long-term
wave statistics using the whitecap method based on the limiting steepness and threshold vertical
acceleration criteria. The aim is to present a procedure demonstrating how global wave statistics
can be used to give estimates of the long-term aerosol flux. These estimates are obtained by using
bivariate distributions of significant wave height and characteristic wave period, representing
open ocean deep water waves in the Northern North Sea and the North Atlantic.
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1. Introduction

The air-sea interface couples the atmosphere and the ocean
by exchanging heat, momentum and water, and is crucial for
understanding the Earth's climate. For highly energetic flow
conditions the surface waves become unstable, and they will
break. Wave breaking plays a major role in sea surface spray
aerosol production. The ocean is a main source for water and
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aerosols in the atmosphere, hence playing a key role in
the climate control of the Earth. There are two main
aerosol production mechanisms; the bursting of bubbles
formed and dispersed primarily by breaking waves, and
droplets directly driven by the wind from the spume off
the wave crest (see e.g. Massel (2007), Figs. 8.1 and 8.2,
respectively); the first production mechanism is considered
in the present work.
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Different methods of determining the sea spray aerosol
production fluxes exist: The steady state dry deposition
method, statistical method, deposition method, micro-
meteorological methods (eddy correlation and gradient
methods), and the whitecap method (see de Leeuw et al.
(2011) for more details and a critical review). Despite a
better understanding of the sea spray aerosol production
fluxes, there is a large uncertainty in the predictions. Present
applications of these different methods in global climate
models have revealed a spread of nearly two orders of
magnitude in the estimates of global sea spray aerosol
emissions (de Leeuw et al., 2011). Moreover, de Leeuw
et al. (2011) found that sea spray contains organic particles
in addition to sea salt, especially for very small particles.
More details and reviews are given in Massel (2007) and de
Leeuw et al. (2011).

This note applies the whitecap method to give estimates
of the sea spray aerosol fluxes based on long-term wave
statistics, using the link between the whitecap coverage
and the sea state parameters significant wave height and
spectral peak frequency as given by Massel (2007). This
makes it possible to relate the aerosol fluxes to specific
sea locations and to seasonal variations. Here the results
are exemplified by using long-term wave statistics from
deep water sites in the Northern North Sea and the North
Atlantic. The whitecap method used herein is based on
the limiting steepness and threshold vertical acceleration
criteria (Massel, 2007). The main purpose is to provide
a procedure which can be applied to systematically
compare the aerosol fluxes at different locations based
on the long-term statistical information of the wave
climate.

2. Background

Here the sea spray aerosol flux is estimated by using the
whitecap (wc) method based on the limiting steepness and
threshold vertical acceleration criteria. Following Massel
(2007, Ch. 10.5), the sea spray generation function according
to the whitecap method, fðwcÞsgf , is given by

fðwcÞsgf ðrÞ ¼ fðwcÞprodðrÞ � Fcov; (1)

where fðwcÞprodðrÞ is the size-dependent aerosol production flux,
and Fcov is the whitecap coverage. The Woolf et al. (1988)
formula for fðwcÞprodðrÞ is adopted

fðwcÞprodðrÞ ¼ exp½16:1 � 3:43 log10 r � 2:49ðlog10 rÞ2

þ 1:211ðlog10 rÞ3�; (2)

where the droplet radius r is taken to represent r80, i.e. the
droplet radius in equilibrium with the atmosphere at a given
ambient relative humidity of 80% given in mm (=10�6 m).
Here Eq. (2) is valid for r in the range 0.8—10 mm. It should be
noted that for sea salt particles originating from sea water
with typical salinity 0.034—0.036, the droplet radius is also
approximated by the radius at its formation, r0 = 2r80, and by
its volume-equivalent dry radius, rdry = 0.5r80 (de Leeuw
et al., 2011; Massel, 2007). Here Eq. (2) represents an upper
estimate of the size-dependent aerosol production flux com-
pared with those given e.g. by Monahan et al. (1986) and
Monahan (1988) (see Massel (2007), Figs. 9.3, 9.4). Moreover,
the parameterizations of Fcov given in Massel (2007, Ch. 10.5)
are adopted:

Limiting steepness criterion

Fcov ¼ exp �0:1933
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Threshold vertical acceleration criterion
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Here Hs is the significant wave height, vp = 2p/Tp is the
spectral peak frequency, Tp is the spectral peak period, g
is the acceleration due to gravity, and F is the standard
Gaussian cumulative distribution function (cdf) given by

FðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z x

�1
exp � 1

2
t2

� �
dt: (5)

Further details are given in Massel (2007).
Thus the sea spray generation function in Eq. (1) is defined

in terms of r and the sea state parameters Hs and Tp. If, for
example, the mean zero-crossing wave period Tz is given,
then Tp is related to Tz by e.g. Tp = aTz where a is a constant.
Here Eq. (1) is written as

fðwcÞsgf ðr; Hs; TÞ ¼ fðwcÞprodðrÞFcovðHs; TÞ; (6)

where T represents Tp or Tz.
The results presented in Section 4 are based on taking

T = Tp and for T = Tz, Tp = aTzwith a = 1.28 in Eqs. (3) and (4),
where the latter is taken from Myrhaug and Kjeldsen (1987,
Fig. 11) for a JONSWAP spectrum with peakedness factor
g = 3.3. However, it should be noted that this relationship
between Tp and Tz is not necessarily valid for the data sets
used here; these might contain mixed swell and wind sea for
which other relationships exist.

3. Long-term aerosol flux estimation

A quantity of interest is the expected (mean) value of the sea
spray generation function based on long-term variation of Hs

and Tp (or Tz), i.e.

E½ fðwcÞsgf ðr; Hs; TÞ� ¼ fðwcÞprodðrÞE½FcovðHs; TÞ�; (7)

where

E½FcovðHs; TÞ� ¼
Z
Hs

Z
T
FcovðHs; TÞ pðHs; TÞdHsdT: (8)

Here p(Hs, T) is the joint probability density function ( pdf) of
Hs and T (i.e. Tp or Tz).

Different parametric models for the joint pdf of Hs and Tp
or Hs and Tz, are given in the literature. Examples are Haver
(1985) and Moan et al. (2005) (hereafter referred to as
MGAU05) for Hs and Tp; Mathisen and Bitner-Gregersen
(1990) and Bitner-Gregersen and Guedes Soares (2007) (here-
after referred to as BGGS07) for Hs and Tz. In the present
note, the aerosol flux estimation is exemplified by using the
joint pdf of Hs and Tp proposed by MGAU05 based upon
29 years of wave data in the Northern North Sea, and the



Table 2 Mean value of ln Tz, see Eq. (15).

Data a1 a2 a3

Data set 1 1.350 0.366 0.392
Data set 2 1.365 0.375 0.453
Data set 3 0.790 0.805 0.292
Data set 4 0.835 1.139 0.119
Data set 5 1.952 0.168 0.499

Table 3 Standard deviation of ln Tz, see Eq. (15).

Data b1 b2 b3

Data set 1 0.020 0.165 �0.166
Data set 2 0.033 0.285 �0.752
Data set 3 0.055 0.195 �0.269
Data set 4 0.140 0.030 �0.958
Data set 5 0.070 0.066 �0.081
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joint pdf of Hs and Tz proposed by BGGS07 based upon five
data sets from the North Atlantic. These pdfs are given as

pðHs; TÞ ¼ pðTjHsÞ pðHsÞ; (9)

where p(Hs) is the marginal pdf of Hs, which for the MGAU05
model is given by the following combined lognormal and
Weibull distributions (this type of distribution was first sug-
gested by Haver (1985))

pðHsÞ ¼

1ffiffiffiffiffiffi
2p

p
kHs

exp �ðln Hs � uÞ2
2k2

" #
; Hs � 3:25 m

b
Hb�1
s
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� �b
" #

; Hs > 3:25 m

8>>>><
>>>>:
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Here u = 0.801, k2 = 0.371 are the mean value and the vari-
ance, respectively, of ln Hs and z = 2.713, b = 1.531 are the
Weibull parameters.

For the BGGS07 model, p(Hs) is given by the following
three-parameter Weibull distribution

pðHsÞ ¼ r
s

Hs � t
s

� �r�1

exp � Hs � t
s

� �r� �
; Hs � t; (11)

where r, s and t are the Weibull parameters given in BGGS07,
see Table 1.

p(TjHs) is the conditional pdf of T given Hs, which for both
models is given by the lognormal distribution

pðTjHsÞ ¼ 1ffiffiffiffiffiffi
2p

p
sT

exp �ðln T � mÞ2
2s2

" #
; (12)

where m and s2 are the mean value and the variance,
respectively, of ln T. For the MGAU05 model, T = Tp and m,
s2 are given by Gao (2007) as

m ¼ a1 þ a2Ha3
s ; ða1; a2; a3Þ ¼ ð1:780; 0:288; 0:474Þ; (13)

s2 ¼ b1 þ b2eb3Hs ; ðb1; b2; b3Þ ¼ ð0:001; 0:097; �0:255Þ: (14)

For the BGGS07 model T = Tz and

m ¼ a1 þ a2Ha3
s ; s ¼ b1 þ b2Hb3

s ; (15)

where the parameters in m, s are given in BGGS07, see
Tables 2 and 3. All these data represent wave conditions in
the North Atlantic. Data sets 1, 2 and 3 are numerically
generated wave data taken from global databases represent-
ing 44 years (1958—2004) at 598000N, 198000W. Data set
4 refers to Global Wave Statistics (GWS) zone 9 (the zone
located south of Iceland and west of UK) representing
visual observations collected from ship in normal service
all over the world in the period 1949—1986. Data set 5 refers
to Juliet Shipborne Wave Recorder (SBWR) representing data
Table 1 Weibull parameters for Hs, see Eq. (11).

Data s r t

Data set 1 3.104 1.357 0.906
Data set 2 2.848 1.419 1.021
Data set 3 2.939 1.240 0.896
Data set 4 2.857 1.449 0.838
Data set 5 2.420 1.169 1.258
registered at the Ocean Weather Station Juliet during
13 years since 1952 at 528000N, 208000W. More details are
given in BGGS07.

The main differences between the parametric models
used to exemplify the aerosol flux estimation (MGAU05 and
BGGS07) are the fraction of “steep sea states” contained in
them, as will be discussed further in Section 4.

4. Results and discussion

Here the long-term aerosol flux is estimated based on the
results given in Section 3. Thus the results are limited to
aerosols produced by the bursting of bubbles formed and
dispersed primarily by breaking waves, and for droplets with
radii in the range 0.8—10 mm.

Figs. 1 and 2 show the expected (mean) aerosol volume
flux, E [fvol(r)], versus the droplet radius r = r80 in the range
0.8—10 mm for the six different distributions based on the
limiting steepness criterion (criterion 1) (Fig. 1) and the
threshold vertical acceleration criterion (criterion 2)
(Fig. 2). The volume flux is obtained by multiplying the
results in Eq. (7) by the factor (4p/3)r3. As expected it
appears that the volume flux increases as r increases. The
corresponding values of the total expected volume aerosol
flux (i.e. the values obtained by integrating the fluxes
E [fvol(r)]) given in Figs. 1 and 2 over the droplet radii
(0.8—10 mm) are given in Table 4. These values confirm
the visual impression provided by Figs. 1 and 2 with respect
to the effect of using criteria 1 and 2, and to the relative
ranking of the different sites. First, the results based on
criterion 1 give larger fluxes than using criterion 2 except for
BGGS07 data set 5. Second, BGGS07 data set 1 corresponds to
the highest flux, BGGS07 data set 5 gives the lowest flux,
while the other data sets give intermediate volume flux
values.

The results in Figs. 1 and 2 and Table 4 are obtained by

multiplying the aerosol production flux, fðwcÞprodðrÞ, with the
expected value of the whitecap coverage, E [Fcov(Hs, T)] (see
Eqs. (7) and (8)). It should be noted that these results are
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Figure 1 The expected (mean) value of the aerosol volume flux function, E [fvol(r)], versus r for the six different distributions based
on the limiting steepness criterion (criterion 1), where r is r80.

0.8 2 5 10
0.02

0.5

1.

5

15

Droplet radius [µm]

V
ol

um
e 

Fl
ux

 ×
 1

0-1
2  

[m
 s

-1
 µm

-1
]

MGAU05

BGGS07-DS01

BGGS07-DS02

BGGS07 -DS03

BGGS07-DS04

BGGS07-DS05

Figure 2 The expected (mean) value of the aerosol volume flux function, E [fvol(r)], versus r for the six different distributions based
on the threshold vertical acceleration criterion (criterion 2), where r is r80.
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criteria- and site-dependent. Values of E [Fcov(Hs, T)] are
given in Table 5, showing the consistency with the results
in Figs. 1 and 2 and Table 4. First, criterion 1 gives higher
whitecap coverage than criterion 2 except for BGGS07 data
set 5. Second, BGGS07 data set 1 corresponds to the highest
Table 4 Comparison of total expected volume aerosol flux
of r80 at six different sites.

Long-term distribution at site E [ f(
tot)

vol ] [�10�12 m s�1]

Criterion 1 Criterion 2

MGAU05 15.3 11.5
BGGS07 Data set 1 71.5 46.0
BGGS07 Data set 2 17.2 17.1
BGGS07 Data set 3 70.0 44.9
BGGS07 Data set 4 10.4 9.0
BGGS07 Data set 5 1.9 2.3
whitecap coverage, BGGS07 data set 5 gives the lowest
whitecap coverage, while the other data sets give intermedi-
ate values of the whitecap coverage.

The main differences between the parametric models
(MGAU05 and BGGS07) used to exemplify the application
Table 5 Expected value of the whitecap coverage, E [Fcov],
at six different sites.

Long-term distribution at site E [Fcov(Hs, T)]

Criterion 1 Criterion 2

MGAU05 7.67 � 10�3 5.75 � 10�3

BGGS07 Data set 1 3.59 � 10�2 2.31 � 10�2

BGGS07 Data set 2 8.64 � 10�3 8.55 � 10�3

BGGS07 Data set 3 3.51 � 10�2 2.25 � 10�2

BGGS07 Data set 4 5.23 � 10�3 4.51 � 10�3

BGGS07 Data set 5 9.29 � 10�4 1.17 � 10�3
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of the present procedure are those associated with the
fraction of “steep sea states” contained in the models. Here
“steep sea states” mean the combination of relatively large
values of Hs and relatively low values of T (Tp or Tz) resulting
in relatively large values of Hs/T

2, which is directly related to
Hsv

2
p in Eqs. (3) and (4). As reflected in the results in Figs.

1 and 2 and Tables 4 and 5 it appears that BGGS07 data set
1 contains the largest fraction of “steep sea states”, followed
by, in decreasing order, BGGS07 data sets 3, 2, MGAU05,
BGGS07 data sets 4 and 5.

5. Summary

Estimates of the long-term sea spray aerosol flux by using the
whitecap method based on the limiting steepness and thresh-
old vertical acceleration criteria are provided. This is
obtained by adopting the criteria given in Massel (2007)
and by using joint pdf models of significant wave height
and characteristic wave period representing open ocean
deep water wave data sets at six different sites in the
Northern North Sea and the North Atlantic. The example
estimates of the total mean volume aerosol flux at these sites
ranges from about 2 � 10�12 m s�1 to 72 � 10�12 m s�1,
where the droplet radius is r80.

Overall, this work provides a procedure which can be
applied to systematically compare the aerosol fluxes at
different locations based on the long-term statistical infor-
mation of the wave climate.
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