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KEYWORDS Summary Submerged breakwaters (SBWs) were used for the first time on the Polish coast in
Submerged breakwaters 2006, in the western coast of Gdansk Bay, in the area of Ortowo Cliff. They were built to prevent
(SBWSs); the abrasion and inundation of areas situated in the hinterland, especially in the conditions of
Morpholithodynamics; storm surges. The main objective of the study was to determine their effect on the morphology
Ortowo Cliff and grain size composition in the seashore and nearshore zone.

Based on the conducted research and analysis, it has been found that the construction has a
minor impact on the modification of the shore and nearshore zone morpholithodynamics, which is
evidenced by a sinuate shape of the shoreline and a relatively stable cape in the central part of the
area, present both before (1966—2005) and after SBWs were built. Furthermore, the progressive
abrasion, the lack of significant changes in the morphology and particle size distribution of the beach
and the nearshore zone, as well as the fact that those changes are limited only to the immediate
surroundings of the submerged breakwaters prove their neutral impact.
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1. Introduction

Submerged breakwaters are immersed, longshore construc-
tions built mostly of stone, rarely of the concrete or flexible
membranes filled with concrete, sand or water (Harris, 1996;
Stauble and Tabar, 2003). The specific structure of the con-
struction and the material used contribute to the fact that
they are more friendly to the marine environment and have a
minor impact on the esthetics of the protected area. There-
fore, they are more and more frequently used to replace the
traditional methods of the coast protection such as seawalls,
groins or detached breakwaters.

Submerged breakwaters are mostly used to reduce the
amount of energy reaching the shore by forcing the waves
to break and by extending the residence time of sediments
in a sheltered region (Basinski et al., 1993; Creter et al.,
1994). They are usually built on sandy shores where the
increased abrasion and the associated sediment deficit are
the main problems. So far, this type of construction has
been used in Italy, Spain, Egypt, Israel, Japan, Australia and
the USA. In many cases, however, they have not produced
the desired effects. Waves energy dissipation was too small
(Lamberti and Mancinelli, 1996; Ranasinghe and Turner,
2006), while the bottom in the neighborhood and in the
shade of the construction was extensively washed out
(Burcharth et al., 2007; Funakoshi et al., 1994; Homma
and Horikawa, 1961; Kuroki et al., 2002; Lamberti et al.,
2005; Shiraishi et al., 1960; Sumer et al., 2005; Zyserman
et al., 2005). Positive effects have been observed in addi-
tion to adverse ones. A salient depositional form occurred
in the shade of the construction, and the shore moved
several dozen meters toward the sea (El-sharnouby and
Soliman, 2010, 2011; Tomassicchio, 1996). Both the effi-
ciency of the construction in the protection of the coast,
and the resulting transformation of the littoral zone are
determined by several factors, of which the most important
are: parameters of the structure (the depth of crest, dis-
tance from the shoreline), wave climate and the nearshore
profile (Armono and Hall, 2003; Stauble and Tabar, 2003;
Wamsley et al., 2002). The design principles of SBWs are
well defined, and their verification is based on further
modeling and experiments, as well as monitoring and
results of tests performed on the existing constructions.

In Poland, the submerged breakwaters have been used on
the coast in the vicinity of Kotobrzeg and Gdynia Ortowo.
Especially the latter case deserves attention because the
breakwaters have been built on the cliff coast with an
intensive abrasion process and the average destruction rate
of 0.9 m per year (Chrzastowska, 2010). Apart from highly
dynamic coastal processes, the geological structure of the
area is equally unique. The nearshore zone is an abrasive
platform built of glacial till and covered with a thin layer of
sandy-gravel deposits washed out from the beach and the
cliff (Bogacka, 2003; Rudowski and teczynski, 2009; Suboto-
wicz, 1971a, 1971b; Wicher, 2003).

The objective of this study was to determine the impact of
submerged breakwaters on the morphology and particle size
distribution in the shore and nearshore zone. The results of
the presented study complement the existing knowledge
about the use of the aforementioned constructions and help
to understand their functioning in the marine environment.

1.1. The study area

The study area is situated in the western coast of Gdansk Bay
(the Southern Baltic) (Fig. 1).

In the region of Gdansk Bay, wind from the western sector
dominates. For Gdynia, ca. 59% of strong winds occur in the
period from October to early April, and those are mostly
westerlies, from NW, W and SW (Trzeciak et al., 1999). The
NE-SE wind is particularly important. Despite its small con-
tribution (ca. 25%), it generates the highest and the most
dangerous waves in the coastal zone of the Southern Baltic
(Pruszak et al., 2000). In the study area, the NE-E wind with a
velocity of 10 and 15ms~", generates 0.85—1.6 m high
waves (Boniecka et al., 2004). For the other directions,
the range of wind is limited and does not generate significant
waves (Schonhofer and Szmytkiewicz, 2008).

The study area covers the southern part of the Ortowo Cliff
stretching at the foot of Kepa Redtowska. It represents a
500 m section (from 81 to 81.5 km of the Polish coastline)
located within a local bay, enclosed from the north by the
most seaward fragment of Kepa Redtowska — so-called Cypel
Ortowski, and from the south — by the northern stone groin,
built next to a fishery harbor (81 km of the shoreline) (Fig. 2).
The bay is divided into two smaller bays with the common
part in the form of a cape in the central part, the position of
which has been changing, both in the longitudinal and trans-
verse profiles, depending on the hydrometeorological con-
ditions.

There are two small coastal sediment transport streams in
the study area, including one moving northwards and the other
one — southwards of Cypel Ortowski. The southern creates a
several meters long stream, which receives sediments from
abrasion of Kepa Redtowska cliffs and, in particular, from
washing out the coastal platforms situated at the toe of the
cliffs (Musielak, 1980). The presence of longshore sediment
transport is confirmed by several studies based on the analysis
of grain size composition and the content of heavy minerals
in the sediments of the coastal zone (Chmielowski, 1964;
Gotebiewski, 1967; Masto, 1967; Musielak, 1967; Nowak,
1965; Subotowicz, 1971b). In addition, it is reflected in the
accumulation of sediment in the groin area, situated in the
southern part of the study area. The sediment isimpounded on
its up-drift side, resulting in abrasion on the down-drift side. In
addition to longshore transport, silty and clayey fractions
in the Ortowo Cliff area are transported toward the sea; the
fractions come mainly from the cliff abrasion and the bottom
of the nearshore zone.

The region is characterized by large lithological differences
in the rock deposits within the shore and littoral zone, and the
geological structure of the Ortowo Cliff — by a clear dichotomy.
The stretch from the south of Cypel Ortowski is built of the
Pleistocene sand, gravel and fluvioglacial silt (Bogacka and
Rudowski, 2001; Kaulbarsz, 2005; Pepek and Olszak, 1995;
Subotowicz, 1971a), whereas Cypel Ortowski (Ortowo Head-
land) is built of up to 20 m thick glaciotectonically disturbed
till deposits (Bogacka and Rudowski, 2001; Kaulbarsz, 2005;
Pepekand Olszak, 1995; Subotowicz, 1971a; Szopowski, 1961).
Glacial till occurs also in the bottom of the nearshore zone.
The contemporary sea sand (with an abrasive pavement at the
floor) is deposited on the glacial till. The pavement within
the abrasive platform contains large boulders, the content of
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Figure 2 Location of submerged breakwaters in Gdynia Ortowo.

which decreases along the increasing distance from the shore
in favor of thick gravel with single boulders of 0.5m in
diameter (Wicher, 2003).

Because of the direct threat of sea abrasion and inunda-
tion of areas situated south of Cypel Ortowski, in particular
during storm surges, a project concerning the coastal pro-
tection system was conducted in 2006 in the region of Ortowo
Cliff in Gdynia Ortowo, along the stretch of 800 m, i.e. from
80.6 to 81.4km of the shoreline (Fig. 2). The protection
system consists of three parts covering different methods of
protection:

1. three submerged breakwaters (81.0—81.4 km of the Pol-
ish coastline),

2. artificial beach nourishment (80.6—81.24 km of the Polish
coastline),

3. northern and southern stone groins (80.9—81 km of the
Polish coastline).

According to the accepted premises, submerged break-
waters were to protect the coast section by suppressing a
large part of the energy further away from the shoreline, and
— together with groins — to prolong the residence time of
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the nourished material in the shoreline zone (Boniecka et al.,
2004).

Submerged breakwaters were made of three basic stone
fractions: 5—8 cm, 20—30cm and 70—150 cm in diameter,
arranged on geotextile fabrics in shallow trenches. The core
of the construction made of 20—30 cm diameter elements
was covered with two layers of stones with a diameter of 70—
150 cm (Fig. 3) (Korzenski, 2005a).

SBWs were built in the shallow nearshore zone, at a
distance of 140—200 m from the shore, at a depth of ca.
2.7 m. They were spaced at 60 m intervals, and the length of
each SBW was 70 m (Fig. 2). Three-meter wide crests of
breakwaters are submerged ca. 0.5 m below the mean sea
level. Inclination of the landward and seaward escarpment
was 1:2 and 1:3, respectively (Fig. 3) (Korzenski, 2005a).

In May 2006, the artificial beach nourishment was carried
out, which covered ca. 600 m stretch of the shore (80.6—
81.24 km of the shoreline) and part of the nearshore zone at a
distance of ca. 120 m from the shoreline (Fig. 2 — artificial
beach nourishment limited to the region with SBWs). For this
purpose, ca. 38,100 m® of sand was used, including ca.
19,700 m® within the study area (Korzenski, 2005b). In accor-
dance with the project (see Fig. 2 — projected water line),
the abrasive bay stretching in the shade of the central
breakwater B and the southern breakwater A was filled up
(Korzenski, 2005b).

2. Material and methods

The research was conducted in 2007—2010. The profiling of
the beach and the nearshore zone was carried out, and
samples of the surface sediments of the beach and bottom
sediments of the nearshore zone were collected. The survey
covered the land part enclosed by the foothills of the cliff in
the northern part, the concrete seawall in the southern part,
and the underwater part which represents the nearshore
zone, up to ca. 250 m seawards and up to a depth of ca.
3.5m (Fig. 4).

Beach profiling was performed five times, i.e. in October
2007, May 2008, October 2008, May 2009 and October 2009,
along nine profiles (Fig. 4). Each time, samples of the surface
sediments were collected at characteristic sites such as a
runnel, a coastal berm or a seaward slope of a berm.

Bathymetric measurements of the bottom in the near-
shore zone were taken seven times. Profiling of the bottom
for the whole study period was completed by the Department
of Sea Measurements, the Maritime Office in Gdynia. The
analysis of bathymetric changes in the nearshore zone
included data from the previous years, i.e. 2005 year, before
the implementation of the coast protection project.

In the nearshore zone, bottom sediment samples were
collected four times (February 2008, September 2008, March
2009, November 2009), at the sites selected beforehand
where major changes in the grain size composition had been

TIFICIAL SEDIMENT

expected due to the presence of submerged breakwaters
(Fig. 4).

Sieve analysis was performed on sediment samples from
the beach and the nearshore zone (Myslinska, 2001) using a
set of sieves with a mesh size: 5.6; 4; 2.8; 2; 1.4; 1; 0.71; 0.5;
0.355; 0.25; 0.18; 0.125; 0.09; 0.063; 0.04 [mm]. The results
of the granulometric analysis were compiled using the soft-
ware GRADISTAT (Blott and Pye, 2001). The statistical part of
the grain size composition analysis was conducted based on
the method of moments (Krumbein and Pettijohn, 1938). Of
the four moments: M1 — average diameter, M2 — standard
deviation (sorting), M3 — skewness and M4 — kurtosis, the
first three moments were taken into account; they are most
often included in the sedimentological discussions (Gao and
Collins, 2001).

3. Results

The shore in the study area has bay characteristics. Three
sections were distinguished within the area (Fig. 5): (1) the
abrasive section stretching at the toe of the active part of the
Ortowo Cliff, flooded during storm surges; (2) the relatively
stable section in the central part of the shore stretch,
susceptible to abrasion during storm surges, with a clear
contour of a berm; (3) the depositional section susceptible
to abrasion during the autumn and winter season in the
southern part, with a clear contour of a berm and a relatively
high beach, composed primarily of nourished deposits.

In the northern part of the area, at the toe of the cliff, the
shore is narrow and profiles of the beach with abrasive
characteristics are incomplete, without berms, gently
inclined toward the sea (Fig. 6). The course of the profiles
results inter alia from waves bouncing off the cliff. A wave
hitting the cliff toe loses some of its energy, while the
diverted part has an intensified runoff, thereby prevents
building of the beach and a berm (Leontjew et al., 1982).
In the southern part, where the artificially raised beach is
wider and higher, a coastal berm is emerging on the profiles,
with periodic abrasive undercuts in its lower part. The
thickness of the beach deposits systematically decreases
with time, particularly within the stretch covered by nour-
ished sediment (Fig. 6 — profiles P5—P9). The most important
changes occurred from May to October 2009, mainly as a
result of the October storm. At that time, traces of abrasion
appeared in the upper shore zone. The height of the beach
decreased by ca. 05—0.8 m (Fig. 6 — profiles P5—P8). Due to a
large accumulation of broken roots, measurements were not
performed on profile P9.

The situation is slightly different with changes in the
beach height on profiles at the toe of the cliff (Fig. 6 —
profiles P1—P4). An increase in the thickness of sediments,
resulting in the “accumulation effect” during storm seasons,
is associated with the presence of a colluvium, accumulated
as a consequence of slope destruction.

CORE - diameter 20-30 cm

Figure 3  Sketch of a submerged breakwater built in Gdynia Ortowo.
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Surface deposits of the beach consist mainly of medium-
grained sands. The presence of deposits with a larger grain size:
coarse-grained sand, gravel, pebbles (Fig. 7 — October 2007,
May 2008, May 2009), especially in the northern part of the area,
is associated with the presence of a pebble streak reported by
Subotowicz (1971a, 1971b). The streak emerges with the low-
ering sea level and becomes the lower part of the shore (Fig. 7 —
October 2007, May 2008, May 2009), while it remains under the
water during storm surges as part of the nearshore zone (Fig. 7 —
October 2008, October 2009). Short-term directions of the
sediment transport were determined based on the differences
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in average diameter and sorting of sediments. These are proper-
ties of sediments which do not change significantly over time,
unlike the skewness which varies greatly (Racinowski and Bar-
aniecki, 1989). Toward the south, the pebble streak becomes
narrower, the diameter of rock crumbs decreases, their round-
ness and oblateness increase, the content of sand fraction
(>1 mm) becomes reduced (Fig. 7), which is consistent with
the dominant sediment transport in this area, on the way of
which segregation and changes in the grain size occurs. The
sorting increases with the increasing distance from the toe of
the cliff (the source of sediment supply) (Fig. 8).
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Figure 5 Morpholithodynamics of the beach and the nearshore zone.
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In some cases, certain differences can be observed in
relation to the generally accepted pattern of longshore
differentiation of sediment. The aforementioned transport
of sediments is affected by a specific circulation of cur-
rents, most probably induced by the presence of submerged
breakwaters. SBWs modify the wind-generated waves and
hence disturb the longshore sediment transport, as a con-
sequence of which linear differences in the grain-size dis-
tribution indices are disturbed, which is mostly reflected in
the sorting values (Fig. 8 — May 2008, October 2008, May
2009) and the skewness (Fig. 9 — May 2008, October 2008,
May 2009).

Slightly lesser sorting of sediments in the central part of
the area may be a manifestation of changing dynamics of the
sedimentary environment. Enrichment of sediments with fine
fractions <0.125 mm (positive skewness) proves the existing
tendency for deposition, so in this case — the presence of the
convergence of sediment transport (Fig. 9 — May 2008,
October 2008, May 2009). Obviously, during the storm fine

X.2008

sediments are washed out, while coarser sediments remain
ashore. In the study area, the situation is different. After a
storm the sediments are very well and well sorted (Fig. 8 —
October 2009), moreover enriched with fine fractions
<0.125 mm over the entire surface of the beach (Fig. 9 —
October 2009). This may be associated with a long calm phase
which took place after the October storm in 2009 and was
conducive to smooth segregation and deposition of fine
fractions, or most likely — with the loss of nourished material
and exposure of the primary, abrasive beach surface, largely
enriched with fractions of a smaller diameter compared to
artificially deposited material.

The nearshore zone is an abrasive platform with a thin
cover of loose, sandy and gravelly deposits derived from the
destruction of the beach and the cliff, as reported by:
Subotowicz (1971a, 1971b), Bogacka (2003), Wicher
(2003), and Rudowski and teczynski (2009). Four morpho-
lithodynamic areas are distinguished within the nearshore
zone, three of which are parallel to the shoreline (Fig. 5).
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Figure 7 Distribution of mean diameter values of surface deposits on the beach.
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The area A — a relatively stable area where conditions are
favorable to deposition of sediments. It stretches in a shallow
part of the nearshore zone, up to the 2 misobath (Fig. 5). The
material is arranged in two strips. Gravel and boulders occur
up to a depth of 1 m, while sands of sediment flow — at a
depth ranging from 1 to 2 m; the latter are mostly medium-
grained sands with some admixture of fine-grained sands
whose sorting and content of fine fractions (<0.25 mm)
increase toward the south. The zone A covers a flow of
longshore sediment and is of major importance to the
dynamics of the seashore. The sediments come mainly from
the destruction of the Ortowo Cliff and washing out of the
beach, particularly during storm surges. They are the main
source of material used to build the seashore and nearshore.
The area A is characterized by discontinuity (Fig. 5). It results
from the presence of gaps between SBWs, which are the main
transit zone for sediment flows. The main course of transport
and tendency for sediment deposition are evidenced by
values of grain-size composition indices (Fig. 10).

The diameter of grains (M1) decreases and sorting (M2)
increases from north to south (Fig. 10), which proves the
differentiation of sediment during the transportation. Sedi-
ments of this zone consist mainly of medium-grained sands,
and in one case after a storm — well-sorted fine-grained
sands (Fig. 10 — M1, M2, November 2009). Positive skewness
(M3) indicates favorable conditions for the deposition or

large-scale transit. There are sites with negative skewness
within this zone, susceptible to washing out of the bottom
material (Fig. 10). Changes in the M3 index throughout the
zone prove the heterogeneity of the sedimentary environ-
ment and may be associated with specific circulation of
currents caused by SBWs.

At greater depths, between 2 m and 4 misobaths, the area
B is located in the vicinity of SBWs, with intensive processes
of abrasion, and the area C — the transit of sediment between
individual segments of SBWs (Fig. 5). Changes in the relief
and granulometry of sediments in the nearshore zone are
particularly apparent in profiles perpendicular to the sea-
shore, running directly through SBWs and the gaps between
them.

Dispersion of grain-size composition indices’ values is
much greater in profiles passing through SBWs (Fig. 11)
compared to profiles in the gaps (Fig. 12). Along the direc-
tion from the shore toward the SBW, sorting (M2) is reduced
and skewness (M3) is negative (Fig. 11). Slightly positive
skewness, occurring just in front of the SBW (Fig. 11), may
indicate a tendency for accumulation. Nevertheless, condi-
tions conducive to washing out and redeposition of the
bottom material prevail. The broad range of changes
in the values of skewness indicates unstable dynamic con-
ditions with a varying flow velocity. In the gaps, the
bottom is leveled and the range of changes in the grain-size
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Figure 9 Distribution of skewness values for surface sediments of the beach.
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composition indices is narrow (Fig. 12). Along the direction
from the seashore toward the sea, sorting of sediments
increases, and skewness becomes increasingly negative
(Fig. 12). This is reflected in the large-scale transport of
sediments. In the close vicinity of SBWs, an increase in the
flow velocity is followed by the elimination of fine fractions.
Scouring occurs in the surroundings of SBWs, both in the
landward part (Fig. 11 — bathymetrical profiles) and in the

scour holes range from 0.5 to 1 m, and they most likely
result from the currents generated by phenomena referred
to as pumping effect.

The area D is a zone covering the remaining part of the
nearshore zone (Fig. 5) where processes of redeposition and
abrasion dominate, while their course and extent are deter-
mined by the intensity of storm events during the year. This is
caused by a periodic lack of deposits or their small amount in

gaps (Fig. 12 — bathymetrical profiles). Deepenings and the deeper part of the bottom. In the case of the study area
WNW ESE
342350 342400 342450 342500 342550 342600
0
05 - ~
T 11 e o ) )
S 15 A5 A4 B2
Fo21
& 254
o 3
3,5 1
-4
X[m]
BATHYMETRICAL PROFILES ——II1.2005 XI.2006 ——V.2010  © SEDIMENT SAMPLE LOCATION
3
[72]
w 2’5 A \
=2
g 27
> — ®
o ' ——————
E 1 = e
o o5 4 - .
£ e )
I —
® 05 1 8 )
= -1 1 °
-
& -,
S ca A5 A4 B2
SEDIMENT SAMPLE NUMBER
—e—\111.2008 —e—M211.2008 ®-M311.2008 —o—M1 1X.2008 —o—M21X.2008 - M3 1X.2008
=a—M1 111.2009 =8—M2 111.2009 ®-M3 11,2009 =#=M1X|.2009 =a=M2 X1.2009 M3 X1.2009

Figure 11

Changes in bathymetry and grain size composition along profile Z2.
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Figure 12 Changes in bathymetry and grain size composition along profile Z3.

the bottom is a bare abrasive surface, and the shoaled
bottom slope of the littoral at an altitude of Cypel Ortowski
is composed mainly of glacial till resistant to abrasion (Sub-
otowicz, 1971b). Sediments in this part of the nearshore zone
are composed of gravel and pebbles with sandy sites of
varying granulation.

The presence of sediments with lesser and moderate
sorting (M2) (Fig. 13) indicates changing dynamics of
the sedimentary environment, while large differences in
the skewness (M3) (Fig. 13) and the dominance of coarser
fractions in the sediment indicate conditions favorable to
washing out and redeposition of sediments. The areas of
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Changes in bathymetry and grain size composition along profile Z4.
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deposition with positive skewness are of periodic nature and
their occurrences are associated with favorable hydrome-
teorological conditions. Compared to the area A (Fig. 10),
higher dispersion of indices occurring in the zone D (Fig. 13)
results most likely from a stronger direct impact of SBWs.

Despite the partial reconstruction of the beach and the
nearshore zone during calm seasons, both the seashore and
the nearshore in the region of Ortowo Cliff are susceptible to
abrasion.

4. Discussion

Assessment of the impact exerted by SBWs on the morpho-
lithodynamical changes of the coastal zone in the area of
Ortowo Cliff was performed based on the identification of
coastal processes and developmental trends of the shore and
the nearshore in the period preceding the construction of
SBWs (1960—2005).

Based on the conducted research and analysis, it has been
found that the submerged breakwaters have a minor impact
on the modification of the shore and the nearshore zone
morpholithodynamics. This is evidenced by a sinuate shape of

Photo L. Bohdziewicz 20.11.1966 !

<

Photo M. Burciu 08.11.

Photo A. Kubowicz-Grajewska 13.12.2009

Figure 14

the shoreline and the relatively stable cape in the central
part of the area, which was present both before (1966—2005)
and after SBWs were built (Fig. 14).

Already in October 2007, i.e. 18 months after the nour-
ishment and the foundation of SBWs, an abrasive bay devel-
oped in the place where the artificial beach had been
reconstructed (Fig. 15). After some time, the bay became
deeper and the cape in the central part of the section
became relatively stable. In the end, the shore developed
into a sinuate shape, similar to that in 2005 year.

Furthermore, the neutral impact exerted by submerged
breakwaters on the morpholithodynamics of the shore and
the nearshore zone is reflected in the rhythm of morpholo-
gical changes on the beach and varying indices of the grain
size composition, similar to changes in the period preceding
the implementation of the seashore protection project, i.e.
1966—2005 (Bohdziewicz, 1967; Boniecka et al., 2004; Bur-
ciu, 2006; Szabtowska, 2000; Wasilewska, 1983). The analysis
of changes in the width of the beach on the short term (2007—
2009) and long-term scale (1960—1982) revealed that start-
ing from the 1960s, despite the presence of SBWs, the region
of bays remains exposed to abrasion, while the central part is
relatively stable. Abrasion processes occur over the entire

F I\

Photo L. Bohdziewicz 20.11.1966 g |

IPhoto M. Burciu 08.11.

Sinuate shape of the seashore together with the shore cape in the central part of the study section (yellow arrow). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Figure 15 Changes in the width of the beach.

length of the shore and the nearshore zone, both in the long-
term and short-term scale.

The impact of submerged breakwaters is primarily limited
to the construction area. The most significant changes were
observed in the vicinity of SBWs where deepenings occurred
in the landward part, as well as in the area of gaps and crests,
in some places up to 1 mdeep (Fig. 16) (Kubowicz-Grajewska,
2013).

Most likely they are the effect of currents occurring in the
vicinity of SBWSs, induced by phenomena such as set up,
overtopping, and pumping effect (Dean and Walton, 2010;
Johnson et al., 2005; Lamberti et al., 2003; Mendez et al.,
2001; Pruszak, 2003; Sanchez-Arcilla, 2003; Schittrumpf
et al., 2010; Van der Meer et al., 2005, 2010; Yanliang
etal., 2010; Zyserman et al., 2005). The mechanism of these
processes is activated when the wave passes over the SBW
and its swelling on the landward side. In the phase when the
wave trough passes over the construction, a large water
gradient is produced, which results in a strong flow toward
the sea (Calabrese et al., 2003; Debski and Loveless, 1997;
Diskin et al., 1970; Homma and Horikawa, 1961; Lesser et al.,
2003; Longuet-Higgins, 1967; Penchev, 2005; Stauble and
Tabar, 2003; Van Rijn, 2011; Zyserman et al., 2005). The
process is all the more intensive when the SBW is higher than
0.7 of the water depth (Homma and Horikawa, 1961). Given
the parameters of SBWs in Gdynia Ortowo (the construction
height of ca. 2.2 m; the foundation depth of ca. 2.7 m;
Korzenski, 2005a), the height of SBWs is ca. 0.82 of the water
depth. Thus, the permanent washing out of the bottom is
expected in the construction area. Because the natural run-
off of water masses toward the sea is blocked by SBWs, part of
the water is intercepted on the landward side. Then the
longshore flow is generated, which abrades the substrate and
carries away the deposits far from the construction site

(Caceres et al., 2005; Dean et al., 1994; Ruol et al., 2004;
Stauble and Tabar, 2003). When the construction consists of a
few segments, as in the case of submerged breakwaters in
Gdynia Ortowo, the flows are concentrated in the gaps in the
form of rip currents (Burcharth et al., 2007; Fulford, 1985;
Van Rijn, 2011; Zyserman et al., 2005).

Similar effects of abrasion and scouring were observed on
the coast of Japan, in the region of Niigata (the Sea of Japan)
and Italy: in the region of Pellestrina, Lido di Dante (the region
of Marche and Emilia Romagna) and Lido di Ostia (the mouth
of the Tiber River). In the region of Niigata, the offshore
abrasion of the bottom is up to 1 m (Funakoshi et al., 1994;
Homma and Horikawa, 1961; Kuroki et al., 2002; Ranasinghe
and Turner, 2006; Shiraishi et al., 1960). In the case of
Pellestrina (the Adriatic Sea), the bottom was strongly
abraded as a result of intensive flows and eddies (Lamberti
et al., 2005; Sumer et al., 2005; Zyserman et al., 2005).
Within 3 years, the construction sunk by ca. 0.3—0.5m,
thereby reduced its efficiency (Burcharth et al., 2007). In
the region of Marche (Lamberti and Mancinelli, 1996; Rana-
singhe and Turner, 2006) and Emilia Romagna (Burcharth
etal., 2007; Lamberti et al., 2005), washing out of the bottom
was observed in the gaps between the segments and at the
base of the construction. In the second case — Emilia
Romagna, deepenings of the bottom occurred even at a
distance of up to 70m from the SBW crest (Burcharth
et al., 2007; Lamberti et al., 2005). As a result of intensive
scouring and sinking of the bottom (in some places even up to
0.8 m), the submerged breakwater in Lido di Ostia (the mouth
of the Tiber River) required renovation and raising of the crest
(Burcharth et al., 2007; Lamberti et al., 2005; Ranasinghe and
Turner, 2006; Tomassicchio, 1996). Scouring of SBWs and
abrasion of the surrounding bottom is common and seems
to be an intrinsic shortcoming of this type of construction.



Morpholithodynamical changes of the beach and the nearshore zone 155

MARCH 2005 - NOVEMBER 2006

20
T
3&2-’7—6“
o
60’591 %OA'LZO

MARCH 2005 - MAY 2010

Cypel Ortowski %

Kepa Redlowska

NOVEMBER 2006 - MAY 2007

Cypel Ortowski S

Kepa Redtowska

EXPLANATIONS

P

% SUBMERGED BREAKWATER

Vaae

EEnLnesess:  SEA WALL

GROIN

ACCUMULATION ABRASION

Figure 16  Bathymetric changes in the nearshore zone in the period of March 2005—November 2006, November 2006—May 2007 and

March 2005—May 2010.

In addition to abrasive changes in the nearshore zone, the
accumulation effect was observed and reported in papers
referring to differences between bathymetric maps from
different time intervals (Fig. 16). However, this does not
result directly from the impact of SBWs, but from the long-
shore sediment flow. A shoal appearing within the shallow
nearshore zone is periodic and supplied with sediments
coming from abrasion of the cliff and the beach, deposited
in favorable hydrometeorological conditions. The strongest
accumulation effect covering the largest part of the bottom
was observed in November 2006, i.e. 6 months after the SBWs
foundation (Fig. 16). At that time, the nearshore zone was
formed as a result of storms and the associated storm surges,
which led to the transfer of artificially supplied sediments
from the beach and the shallow nearshore zone into deeper
regions of the bottom and their deposition on the landward
and seaward side of SBWs. Six months later, most of the
sediment was almost completely removed (Fig. 16), mainly as
a result of extreme storm surges which took place in the first
quarter of 2007.

Similar changes in the nearshore zone were observed on
the Italian coast in the region of Lido di Ostia, near the mouth
of the Tiber River (Burcharth et al., 2007; Lamberti et al.,
2005; Ranasinghe and Turner, 2006; Tomassicchio, 1996).
Within 12 months, the nearshore zone was strongly affected
by abrasion, the rate of which remained unchanged com-
pared to the conditions before the construction. Similarly as

in the case of Ortowo, the analysis of grain-size composition
indices showed a migration of deposits both toward the sea
and along the seashore. Preservation of the beach required
annual supplies of sediments (Lamberti et al., 2005; Tomas-
sicchio, 1996).

Considering the bottom sediments, the grain size compo-
sition over the largest part of the area has not changed
significantly, particularly in the zone of longshore sediment
flows. The sustained type of grain size composition in this
zone results from a small impact of SBWs on the longshore
water current prevailing in the protected area, because they
do not completely block the aforementioned flow, instead
they only slow it down (Van Rijn, 2011). Changes were
observed only in the shade of SBWs where sites of periodic
sediment deposition occurred during low-intensity storm
events (Kubowicz-Grajewska, 2013; Kubowicz-Grajewska
and Piekarek-Jankowska, 2009).

5. Conclusions

To sum up, the submerged breakwaters have a minor impact
on the modification of the seashore and the nearshore zone
morphology and lithodynamics. The progressing abrasion of
the shore section, no significant changes in the morphology
and particle size distribution of the beach and the
nearshore zone, limitation of these changes to the immediate
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surroundings of the construction, as well as the persistent
sinuate shape of the shoreline, similar to the period preced-
ing the foundation of SBWs, prove the neutral impact of the
construction.
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