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Abstract

In their recent paper, Węsławski et al. (2012) showed that the Svalbardbanken
area of the Barents Sea is characterized by a high organic carbon settlement to the
permeable sea bed, which consists of gravel and shell fragments of glacial origin. In
the present paper, which can be considered as a supplement to the Węsławski et al.
paper, two potential hydrodynamic mechanisms of downward pore water transport
into porous media are discussed in detail. In particular, estimated statistical
characteristics of the pore water flow, induced by storm surface waves, indicate
that the discharge of water flow can be substantial, even at large water depths.
During stormy weather (wind velocity V = 15 m s−1 and wind fetch X = 200 km)
as much as 117.2 and 26.1 m3 hour−1 of water filter through the upper 5 m of the
shell pit at water depths of 30 and 50 m respectively. For a porous layer of greater
thickness, the mean flow discharge is even bigger.

The second possible mechanism of flow penetration in the porous layer is based
on the concept of geostrophic flow and spiral formation within the Ekman layer.
Assuming that the current velocity in the near-bottom water layer is u = 1 m,
the resulting mean discharge through this layer becomes as large as 0.99 and
0.09 m3 s−1 for downstream and transverse flows respectively.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introduction

In a recently published interesting paper, Węsławski et al. (2012)
suggested that the Spitsbergenbanken may be acting as a huge sink for
organic carbon owing to the substantial permeability of the sediments.
This area is a large converter, capable of processing a significant part
of the primary production below the seabed surface and enriching the
surrounding waters with regenerated nutrients. The sea bed in this area
is covered with loose carbonate material: barnacles, molluscs, and a mix of
very coarse sand and gravel. The resulting permeability of the sediments
(av = 4.28 × 10−10 m2) is well above the permeability of comparable sands
of the order of 10−12 m2 for an average sand grain diameter of 250 µm.

Węsławski et al. (2012) mentioned some modelling results in their paper,
but without making reference to the assumptions and methods applied.
It is clear that modelling results are very sensitive to the values of the
critical parameters used in calculations. The interpretation of the results
of calculations should therefore be considered from this perspective. In
the present paper, two potential hydrodynamic mechanisms, which may
be responsible for the penetration of flow into highly porous media, are
presented in detail. Firstly, the flow in porous media due to high ocean
surface waves is discussed and the discharge of the flow penetrating into
the porous layer is estimated. Secondly, the structure of the frictional layer
of the geostrophic flow appearing in a porous bottom due to the Earth’s
rotation is described. The flow structure, similar to the Ekman spiral,
induces a discharge of pore water with attenuating velocity. The theoretical
results are illustrated by examples of calculations of some velocity profiles
and flow discharges for selected porous layer characteristics, and wave and
current parameters.

2. Material and methods

2.1. Porous media characteristics

The porous layer in the Spitsbergenbanken area is made up largely of
loose carbonate material. Samples of sediment and benthos collected with
a van Veen grab and dredge showed that the mean sediment grain diameter
was D = 0.02 m, and that the porosity of the mixture of shells, stones
and gravel n = 0.39. The intrinsic permeability K, determined by Klute
& Dirksen (1986), ranges from 3.5 to 5.4 × 10−10 m2 with a mean value
of 4.28 × 10−10 m2. This permeability is well above the permeabilities of
comparable Baltic sands, which are of the order of 10−12–10−11 m2.

In practice, the relationship between the permeability K and the grain
diameter D is often used, namely K = C × D2. Harleman et al. (1963)
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suggested that C = 6.54 × 10−4 (D is expressed in [cm] and K in [cm2]).
Therefore, for D = 2.0 cm, we obtain K = 2.62×10−3 cm2 = 2.62×10−7 m2.
This value is very different from the Klute & Dirksen (1986) estimate.
In the following calculations, the hydraulic conductivity Kf rather than

the intrinsic permeability K is used. These two quantities are related by
the following formula

Kf =
g

ν
K, (1)

where ν = 1.06 × 10−6 m2 s−1.
Substituting the permeability value given by Harleman et al. (1963) into

eq. (1) we obtain Kf = 2.47 m s−1.
Bear (1972) in his Table 5.5.1 gives a summary of the hydraulic

conductivity and permeability of various bottom materials: the value for
clean gravel is 10−2 < Kf < 100 m s−1, and that for clean sand or sand and
gravel is 10−5 < Kf < 10−2 m s−1. For a given sediment diameter Bear
suggested the following experimental relationship between the hydraulic
conductivity and the sediment diameter D:

Kf = 6500D2, (2)

where D is expressed in [m] and Kf is in [m s
−1]. After substituting the

mean sediment diameter D = 0.02 m, we obtain Kf ≈ 2.6 m s−1. This
value appears to be very close to the estimate of Harleman et al. (1963).
Therefore, a hydraulic conductivity of Kf ≈ 2.5 m s−1 will be used in the
following calculations. Similar values of the hydraulic conductivity of gravel
were obtained in the outflow experiment reported by Sanford et al. (1995).

2.2. Pore water circulation due to wind-induced surface waves

The meteorological conditions in the Barents Sea are dominated by
cyclones that form in the North Atlantic and move into the Barents Sea
from the south-west, which is the sector with the longest wave-generating
fetches. There is little variation in the mean significant wave height in the
western Barents Sea, but the wave height decreases eastwards. The highest
significant wave height recorded at the AMI location was 12.7 m on 31
October 1997 during south-westerly winds caused by a rapidly developing
area of low pressure moving from Jan Mayen into the Barents Sea. At the
Nordkapbanken, the highest significant wave height of 13.6 m was recorded
during a severe storm on 3 January 1993.
To estimate the local velocity of water flow in the porous layer of

Svalbardbanken, let us apply the general model for multiphase flow in
porous media (Massel et al. 2004, 2005). However, for conditions in the
region between Bjornoya and Hopen in the Barents Sea, this general model
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Figure 1. Reference scheme

can be much simplified by assuming that the porous layer is fully saturated
by water. Let the water depth be constant (= h) and the thickness of the
porous layer be (hp − h), where hp is the depth of the non-porous bottom
(see Figure 1). We assume additionally that surface waves are characterized
by the JONSWAP spectrum (Massel 1999).

S(ω) = αg2ω−5 exp

[

−5

4

(

ω

ωp

)

−4
]

γδ, (3)

where

α = 0.076

(

gX

V 2

)

−0.22

, (4)

ωp = 7π
( g

V

)

(

gX

V 2

)

−0.33

, (5)

δ = exp

[

−(ω − ωp)
2

2σ2
0
ω2

p

]

, (6)

in which V is the wind velocity, X is the wind fetch, ωp is the spectrum
peak frequency, the peakedness parameter γ = 3.3 and parameter σ0 = 0.07
for ω < ωp, and σ0 = 0.09 for ω > ωp.

The directional characteristics of the surface waves in this area are not
known. For simplicity, therefore, we assume that the waves are propagating
in one direction, along the x axis with very narrow directional spreading.
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The surface waves induce pore water flow in the porous layer. For
a layer completely saturated by water, this flow is controlled by the Laplace
equation in the vertical plane (x, z). Thus we have

∂2p

∂x2
+

∂2p

∂z2
= 0. (7)

The solution to the above equation with proper boundary conditions
becomes (Massel et al. 2005)

p(x, z, t) = ℜ







ρwg

∞
∫

0

cosh[k(z + hp)]

cosh(kh) cosh[k(hp − h)]
exp[i(kx − ωt)] dA(ω)







,(8)

where ρw is the water density, and the increments of the random amplitudes
dA(ω) are related to the sea surface spectrum S(ω) as follows:

dA(ω)dA (ω1) = S(ω) δ(ω − ω1) dω dω1, (9)

where δ(x) is the Dirac delta.
For the conditions at the Svalbardbanken we can assume, moreover, that

the horizontal and vertical velocities of the pore water satisfy Darcy’s law,
i.e.

u(x, z, t) = − Kf

ρwg

∂p

∂x

w(x, z, t) = − Kf

ρwg

∂p

∂z















, (10)

Therefore we have

u(x, z, t) =

= −ℜ







iKf

∞
∫

0

k cosh[k(z + hp)]

cosh(kh) cosh[k(hp − h)]
exp[i(kx − ωt)]dA(ω)







, (11)

and

w(x, z, t) =

= −ℜ







Kf

∞
∫

0

k sinh[k(z + hp)]

cosh(kh) cosh[k(hp − h)]
exp[i(kx − ωt)]dA(ω)







, (12)

From the above equations it follows that the standard deviations of the
velocities u and w in the porous media are (for simplicity, it was assumed
that x = 0)

σu(z) = Kf







∞
∫

0

[

k cosh[k(z + hp)]

cosh(kh) cosh[k(hp − h)]

]2

S(ω) dω







1/2

(13)
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and

σw(z) = Kf







∞
∫

0

[

k sinh[k(z + hp)]

cosh(kh) cosh[k(hp − h)]

]2

S(ω) dω







1/2

. (14)

Using standard deviations we can calculate some statistical characteristics
of the pore water velocities, which are in fact random quantities. The
initial point for the statistical analysis is the assumption that the probability
density function for the sea surface displacements ζ(t) is a Gaussian one,
i.e.

f(ζ) =
1√

2π σζ

exp

[

−(ζ − ζ)2

2σ2

ζ

]

, (15)

where ζ is the mean value and σζ is the standard deviation.
We assume that the Gaussian distribution is also valid for the wave-

induced pore water velocities. Thus, for the horizontal u(t) and vertical
w(t) components of the flow in porous media we have

f(u(z)) =
1√

2π σu(z)
exp

(

−(u − u)2(z)

2σ2
u(z)

)

(16)

and

f(w(z)) =
1√

2π σw(z)
exp

(

−(w − w)2(z)

2σ2
w(z)

)

. (17)

It is clear that the mean values of both velocities are zero, i.e.

u(z) =

∞
∫

−∞

u√
2πσu(z)

exp

[

− u2

2σ2
u(z)

]

du = 0 (18)

and

w(z) =

∞
∫

−∞

w2

√
2πσw(z)

exp

[

− w2

2σ2
w(z)

]

dw = 0. (19)

For making a practical estimate of the flow discharge within the porous
layer, the module of the velocity U(z, t) becomes an important quantity.
Thus we have

U(z, t) =
√

u2(z, t) + w2(z, t). (20)

It should be noted that the direction of the instantaneous velocity U(z, t)
makes an oblique angle θ(z, t) with the vertical axis given by

θ(z, t) = arctan

(

σu(z)

σw(z)

)

. (21)
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The velocity U(z, t) is a random quantity with the following probability
density function (Papoulis 1965):

f(U(z)) =
U(z)

σu(z)σw(z)
I0(m1U

2) exp(−m2U
2), (22)

where I0 is a Bessel function of the second kind and zero order. The
functionsm1(z) andm2(z) are given by the following relationships (Papoulis
1965):

m1(z) =
σ2

u(z) − σ2
w(z)

4σ2
u(z)σ2

w(z)
, (23)

m2(z) =
σ2

u(z) + σ2
w(z)

4σ2
u(z)σ2

w(z)
. (24)

Therefore, the mean value of the velocity module for a particular water
depth z becomes

U(z) =
1

σu(z)σw(z)

∞
∫

0

U2I0(m1U
2) exp(−m2U

2)dU. (25)

Finally, let us define the total mean velocity Û and the mean discharge M
of flow through a porous layer of thickness (hp − h) by integrating the mean
module velocity U(z) over z. Thus we have

Û =
1

hn − h

∫

−h

−hn

U(z)dz. (26)

Hence, the mean discharge of flow through the surface of one square metre
in one hour is

M̂ = Û × 1m2 × 3600 in [m3 hour−1]. (27)

2.3. Pore water circulation due to tidal currents

The second mechanism that may be responsible for pore water circula-
tion in the porous layer in the Svalbardbanken area is due to tidal currents
and bottom Ekman layer formation. The tides in the Barents Sea are
particularly interesting since the major tidal constituents have amphidromic
structures within the area. For example, the main amphidromic point of
constituent M2 is located south-east of Bear Island. This leads to somewhat
larger M2 amplitudes observed over Svalbardbanken (Gjevik et al. 1994,
Kowalik & Proshutinsky 1995). Kowalik & Proshutinsky, in particular,
using a high-resolution grid, showed a well-developed trapped motion with
a distinctive tidal oscillatory character in the Bear Island-Spitsbergenbanken
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Figure 2. Coordinate system for a porous layer

domain. Calculations with a resolution of 4.63 km confirm the existence of
mixed tidal currents due to eight tidal constituents with an amplitude of up
to 0.8 − 1.0 m s−1.
Let us consider for a moment the motion of the particular tidal

constituent as the motion of a very long wave. For example, the most
important M2 constituent has a period of T = 12.42 hours. This means
that the corresponding wave number k is ≈ 6.3 × 10−6 m−1 for a water
depth h = 50 m. If we neglect the Earth’s rotation, the horizontal and
vertical velocities due to tidal waves become (Massel et al. 2005)

u(x, z, t) ≈ Kf
k cosh[k(z + hp)]

cosh[k(hp − h)]
≈ 10−5 [m s−1], (28)

w(x, z, t) ≈ Kf
k sinh[k(z + hp)]

cosh[k(hp − h)]
≈ 10−5 [m s−1]. (29)

Both velocities are negligibly small and can be ignored, except perhaps
in the boundary layer close to the sea bottom at z = −h, as in the close
proximity of the porous bed, a viscous boundary layer of thickness δ of the
order O(

√

ν/ω) forms in which the flow can be considered as essentially
horizontal. In our case, for long waves of the period T = 12.42 hours,
δ = ca 0.08 m.
In general, circulation in the porous layer in the Svalbardbanken area

can be induced by the tidal current, when the Earth’s rotation is taken into
account, and the Ekman bottom layer is formed. Let us therefore consider
a uniform, geostrophic flow in a homogeneous fluid over a flat porous bottom
with velocity u, corresponding to the semidiurnal tidal current, which
dominates the diurnal current (Figure 2). Following Danielson & Kowalik
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(2005) it is assumed that the velocity is a combination of the zero-order
geostrophic solution (u0, v0) and the first-order solution (u0, v0) representing
changes due to friction. For the zero-order solution we have the following
set of equations:

∂u0

∂t
− fv0 = −g

∂ζ

∂x
∂v0

∂t
+ fu0 = −g

∂ζ

∂y















, (30)

while for the first-order solution these equations are

∂u1

∂t
− fv1 = Az

∂2u1

∂z2

∂v1

∂t
+ fu1 = Az

∂2v1

∂z2















, (31)

where ζ is the surface elevation, f is the Coriolis parameter f = 2Ω sin φ,
where the Earth’s rotational frequency Ω = 7.25 × 10−5 rad s−1, φ is the
latitude of a given location and Az is the eddy viscosity coefficient.

As we are interested only in a rough estimate of the pore water
circulation, we shall make some simplifications to the above equations. First
of all we assume that for a short period of time, the time gradients can
be neglected and that the motion can be treated as stationary. Also, in
the close vicinity of the point of observation, the spatial surface gradients
are negligibly small: thus u0 = v0 = 0. Furthermore, we assume that the
direction of flow near the bottom coincides with the x axis.

Owing to the high permeability of porous material, the flow penetrates
into the porous layer and becomes influenced by the Coriolis force. Taking
into account the above simplifications, the governing equations of motion
in the porous layer take the form (Pedlosky 1987, Cushman-Rosin 1994,
Danielsen & Kowalik 2005)

−fv = Az
d2u

dz2

1

f(u − ū) = Az
d2v

dz2
1



















, (32)

where u and v are the horizontal components of the final flow velocity.

The general solution of the system of eqs. (32) takes the form

u − u

u
= C1 exp

[

(1 + i)
z1

δp

]

+ C2 exp

[

(1 − i)
z1

δp

]

+
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+ C3 exp

[

−(1 + i)
z1

δp

]

+ C4 exp

[

−(1 − i)
z1

δp

]

(33)

and

iv

u
= C1 exp

[

(1 + i)
z1

δp

]

− C2 exp

[

(1 − i)
z1

δp

]

+

+ C3 exp

[

−(1 + i)
z1

δp

]

− C4 exp

[

−(1 − i)
z1

δp

]

, (34)

where the so-called Ekman layer thickness for stationary motion becomes

δp =

√

2Az

f
. (35)

The unknown complex coefficients C1,C2,C3 and C4 should be determined

from the boundary conditions at z1 = 0 and z1 = hp. In particular, for

z1 = 0 (z = −hp) velocities u and v should both be equal to 0, and at the
porous sea bottom z1 = hp, (z = 0), velocities u and v must be equal to

u = u and v = 0 respectively. Therefore, after substitution of eqs. (33) and
(34) into these boundary conditions we obtain

C1 =

exp

[

−2(1 + i)
hp

δp

]

2

(

1 − exp

[

−2(1 + i)
hp

δp

]) , (36)

C2 =

exp

[

−2(1 − i)
hp

δp

]

2

(

1 − exp

[

−2(1 − i)
hp

δp

]) , (37)

C3 =
−1

2

(

1 − exp

[

−2(1 + i)
hp

δp

]) , (38)

C4 =
−1

2

(

1 − exp

[

−2(1 − i)
hp

δp

]) . (39)
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It should be noted that for a porous layer of infinite thickness (hp = ∞),
the solution to the problem is much simplified. Hence for coefficients C we
obtain C1 = C2 = 0 and C3 = C4 = −1/2, and the velocities now become

u(z) = u

[

1 − exp

(

−z1

δp

)

cos

(

z1

δp

)]

v(z) = u exp

(

−z1

δp

)

sin

(

z1

δp

)



















. (40)

The above solution is in agreement with the ones obtained by Pedlosky
(1987) and Cushman-Rosin (1994). In this case, very close to the non-
porous bottom (z1 → 0), the transverse flow v is equal to the downstream

velocity (v ∼ u ∼ ūz1

δp
). Therefore the resulting flow vector is directed at 45

from the interior flow.
When we integrate both velocity components over the z axis we obtain

the mean discharge of flow through the porous layer per unit width for
a given tidal current as follows:
– downstream flow

Mu =
1

hp

hp
∫

0

u(z1)dz1, (41)

– transverse flow

Mv =
1

hp

hp
∫

0

v(z1)dz1. (42)

3. Results and discussion

To obtain some insight into predicted flow velocity and discharge over
the Barents Sea shelf, some simulations were done using the theoretical
formulae developed in the previous Sections. In particular, the four specific
cases mentioned by Węsławski et al. (2012) were considered. However,

Table 1. Wind parameters and flow discharge due to surface waves

Case h hp (hp − h) V X M̂

[m] [m] [m] [m s−1] [km] [m3 hour−1]

1 30 35 5 15 200 117.2
2 30 50 20 15 200 99.0
3 50 55 5 15 200 26.1
4 50 70 20 15 200 21.0
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only one sediment diameter D = 0.02 m was used in the calculations. The
characteristic depths h and hp, as well as the wind parameters are given in
Table 1. A hydraulic conductivity of Kf = 2.5 m s−1 was assumed in all
the calculations.
Figures 3–6 show the vertical profiles of the standard deviations of both

horizontal components u and v as well as the module of velocity vector U .
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Figure 6. Standard deviations and mean velocity profiles for Case 4

When the thickness of the porous layer is small (Case 1 (see Figure 3) and
Case 3 (see Figure 5)), the flow velocities are very uniform. The standard
deviation σu changes a little in the vertical direction while σv attenuates
linearly in the porous layer.

The mean module of the velocity vector U(z) (see eq. (25)) is also given
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in Figures 3–6. Again, for a small porous layer thickness this does not
change substantially with depth. For a porous layer thickness of 20 m,

velocity U(z) attenuates with depth and its value at the non-porous depth
depends on the water layer thickness. However, even for a water depth
h = 50 m, U(z) is still > 3 mm s−1.

The mean flow discharge M̂ , based on the mean module velocity U , is

summarized for all cases in Table 1 in m3 hour−1. For Case 1 (shallow water
depth, small porous layer thickness) M̂ = 117.2 m3 hour−1, while for the

same porous layer thickness but for deeper water (Case 3), the mean flow
discharge is only 26.1 m3 hour−1.

When the porous layer is thicker (Case 2 and 4), the standard deviations
σu and σv, as well as the mean total velocity Ū change distinctly with depth

(see Figures 4 and 6). As in the case of a thin porous layer, the mean flow
discharge depends on the water depth and for Cases 2 and 4, it is equal

to 99.0 and 21.0 m3 hour−1 respectively. The relationships of the flow
discharges for thicker or thinner porous layers reflect the fact that velocity
attenuation is more intensive in the upper part of the porous layer.

In Section 2.3, it was shown that the geostrophic flow in the water

layer penetrates into porous media and forms an Ekman-type spiral. Each
layer of pore water is retarded by friction with the layer beneath it and the

stresses within the pore water layer are communicated from one lamina to
another. The resulting pore water velocity vector gradually turns as the
non-porous bottom is approached. The thickness of the Ekman layer δp

depends strongly on the eddy viscosity coefficient Az (see eq. (33)). This
coefficient Az for flow in a porous media is not known. However, it is quite

reasonable to consider the eddy viscosity coefficient Az as a function of the
Reynolds number, Re ≈ U×D

ν , where U is the characteristic velocity, D is
the sediment grain diameter and ν = 1.0 × 10−6 m2 s−1 is the coefficient

of molecular viscosity. In oceanic water columns coefficient Az is much
larger than the molecular viscosity. Values of Az ≈ 10−3 − 10−2 m2 s−1

are usually used in the hydrodynamic models. Water flow in the porous
layer is less turbulent than in the water layer. On the other hand, owing to
the considerable permeability of the porous material, the flow in the porous

layer cannot be considered laminar. As the relationship between coefficient
Az and the Reynolds number for flow in the porous layer is still unknown,

the values of Az = 10−5 − 10−2 m2 s−1, used in the calculations, seem to be
a reasonable compromise.

Let us therefore assume that the latitude of the point under consider-
ation in the Barents Sea is φ = 75◦. The porous layer thicknesses hp are

listed in Table 2. The current velocity at the sea bottom induced by tides
is assumed to be equal to u = 1 m s−1 and directed along the x axis. The
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Table 2. Mean discharges in the porous layer in the Ekman spiral

Case Az [m2 s−1] Mean discharge [m3 s−1]

downstream flow transverse flow

1 10−3 0.55 0.65

thickness: 10−4 0.88 0.62

hp = 5m 10−5 0.96 0.18

2 10−3 0.91 0.09

thickness: 10−4 0.97 0.03

hp = 20m 10−5 0.99 0.009

pattern of the vertical profiles depends strongly on the value of Az and
in consequence on the Ekman layer thickness δp. The thickness δp changes
from δp = 3.78 m for Az = 10−3 m2 s−1, to δp = 1.19 m for Az = 10−4 m2 s−1

and δp = 0.38 m for Az = 10−5 m2 s−1.

In Figure 7, the vertical profiles of both horizontal components of the
Ekman spiral, i.e. u and v are shown for a thin porous layer (Cases 1 and
3). In the figure the symbol n denotes the power in the expression for the
eddy viscosity coefficients, i.e. Az = 10−n m2 s−1, where n = 3, 4, 5.
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Figure 7. Vertical profiles of velocities u and v for a shallow porous layer (hp =
5 m)

Figure 8 ilustrates the vertical profiles of a porous layer of greater
thickness (Cases 2 and 4). The same three values of the eddy viscosity
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Figure 8. Vertical profiles of velocities u and v for a deeper porous layer (hp =
20 m)

coefficients Az have been used. As in the previous case, the thickness of the
Ekman spiral decreases with decreasing coefficient Az.

Additionally, in Figure 9, the velocity vector as a function of coordinate
z is given for the greater thickness. The tip of the velocity vector traces
a spiral as z decreases to z = −hp value.
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Figure 9. The velocity vector within the Ekman layer. The locus of the tip of
the velocity vector traces the Ekman spiral. The value of depth z corresponding
to each vector is indicated on the spiral curve

When we integrate the vertical velocity profiles we obtain the discharges
through the entire porous layer per unit width. Mean discharges Mu
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(downstream flow) and Mv (transverse flow) calculated by eqs. (41) and
(42), are summarized in Table 2.
The results obtained in this paper appear to be different from those

given by Węsławski et al. (2012). First of all, the present results are related
to the mean values of the flow velocities and discharges in contrast to the
root-mean-square values used in the former paper. Additionally, the mean
sediment diameter D was fixed and equal to 0.02 m. As a consequence,
the hydraulic conductivity Kf , estimated by a Bear-type relationship, is
equal to 2.5 m s−1. Assuming the JONSWAP spectra and the validity of
Darcy’s law, the calculated mean values of the mean module velocity and
mean flow discharge show that the pore water flow due to high permeability
can penetrate very deep into porous media.
The second possible flow mechanism in the form of a bottom Ekman

layer appears to be very successful in transporting pore water into the
porous layer. The flow discharges are higher than for the case of surface-
wave induced flow. Substantial attenuation of both velocity components is
observed only within the Ekman layer. Above this layer, the downstream
velocity in particular remains rather high, while the transverse velocity
approaches zero close to the sea bottom.
Summarizing the above discussion we may suggest that both presented

flow mechanisms in the highly porous bottom of the Svalbardbanken area in
the Barents Sea are capable of transporting a substantial amount of water
into the porous layer. The first suggested mechanism is related to stormy
surface waves, while the second one depends on the geostrophic flow and
Ekman bottom layer formation. The results are purely theoretical, so direct
measurements in the sediment layer are of vital importance for the proper
description of the pore water flow in the sediments in the Svalbardbanken
region.
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