Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 58
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The relative relationships “yield – evapotranspiration” were used long time ago. The well known linear relationship yi = 1 – ky (1 – ei), where yi is relative yield, ky – yield response factor and ei – relative evapotranspiration was proposed. It’s usually assumed that ky is constant for a given crop and climatic conditions. It was found, however, that ky for late variety of maize H 708 varied through the study years (1984–1990) in the Plovdiv region (South Bulgaria, altitude 150 m). During the dry years it was significantly higher than in the medium and humid years. The range of ky for maize in this location was 1.12–1.90, the average value being 1.50. The climate in the Sofia region (the ex-perimental field of Chelopechene, altitude 550 m) is comparatively more humid. The two regions approximately outlined the boundaries of the appropriate economical conditions for grain maize pro-duction. The experiments in the Sofia region were carried out in the years 1994–2000. The seven years results for mean variety maize showed that the relationships “yield – evapotranspiration” and, respectively, ky varied at these climatic conditions too. The highest ky value was 1.41 for the driest year (2000) and the lowest value – 1.05 for the most wet years (1995, 1999). The value of ky for av-erage years was 1.21. The yield response factor ky is of more significance when the relative evapotranspiration is less than 0.7–0.8. Thus, the extreme or the average values of ky could be used for the corresponding climatic regions. The relationships between ky and relative yield were estab-lished without considering irrigation.

Go to article

Authors and Affiliations

Bojidara Mladenova
Ivan Varlev
Download PDF Download RIS Download Bibtex

Abstract

Lublin Upland and Roztocze region are known for the occurrence of a large number of springs of high yield. These springs are fed mainly from Cretaceous or Tertiary water-bearing horizon. In order to determine variability of springs’ yield, 61 selected springs were analysed in spring periods of the years 1998–2008. Collected hydrometric materials allowed for comparing average and extreme yield values of springs in various physiographic regions within the period of 11 years. Average value was 76.1 dm3·s–1, while the mean of the minimal yields was 44.7 dm3·s–1 and of the maximal – 132.7 dm3·s–1. Coefficient of irregularity of the springs’ yield ranged from 1.5 to 5.0, which may lead to the conclusion that the springs’ yield is constant or varies slightly. In some cases the irregularity was higher but it was determined by hydrogeological, meteorological and local factors.

Go to article

Authors and Affiliations

Zdzisław Michalczyk
Stanisław Chmiel
Sławomir Głowacki
Beata Zielińska
Download PDF Download RIS Download Bibtex

Abstract

Soybean ( Glycine max (L.) Merrill.) yielding potential depends on environmental conditions (precipitation, temperature, soil). The aim of the work was to evaluate stability of yielding (and other traits) of three soybean cultivars (Abelina, SG Anser, Merlin) grown under the climatic conditions of central-eastern Poland. The studied material was obtain in a field experiment conducted at Łączka (52°15' N, 21°95' E) during the growing seasons of 2017–2019. Trait stability was determined based on Shukla’s genotype stability variance and Wricke’s ecovalence describing the genotype-by-environment interaction. For all the examined parameters, there were found significant differences between successive growing seasons, cultivars, and cultivars within study years. The greatest influence of environmental conditions (years) was determined for plant height (64%) and first pod height (54.2%). Stability parameters indicated that cv. Abelina was the most stable in terms of yielding, 1000 seed weight, seed number per pod and average seed number per pod, cv. SG Anser being the least stable in this respect
Go to article

Authors and Affiliations

Katarzyna Rymuza
1
ORCID: ORCID
Elżbieta Radzka
1
ORCID: ORCID

  1. University of Siedlce, Faculty of Agricultural Sciences 14 Prusa St., 08-110 Siedlce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two different porous ceramic carriers with immobilized activated sludge comprised a stationary filling of the reactors. Municipal wastewater was treated at hydraulic retention times from 15 to 70 min and internal circulation capacity of 20, 40 and 60 drn':h'. Depending on hydraulic retention time, the sludge yield ranged from 0.138 to 0.066 g TSS·g COD·' in reactor I and from 0.175 to 0.107 g TSS·g COD·' in reactor li. An increase in volumetric loading rate and internal circulation capacity caused a reduction in sludge yield. A decrease in the sludge yield corresponded to an increase in the ratio of endogenous to substrate respiration by the immobilized biomass
Go to article

Authors and Affiliations

Magdalena Zielińska
Irena Wojnowska-Baryła
Download PDF Download RIS Download Bibtex

Abstract

The energy sector, particularly that related to renewable energy, is growing rapidly. The analysis of factors influencing the production of electricity from solar radiation is important in terms of the ever-increasing number of photovoltaic (PV) installations. In Poland, the vast majority of installed PV capacity belongs to prosumers, so a comparative analysis was conducted for two domestic installations, one in southern Poland and the other located in central Poland. Operating conditions were compared, specifically with regard to irradiance, outdoor temperature and the calculated temperature of photovoltaic cells. The specific yield was then compared in daily, monthly and annual statements. The effects of the previously mentioned parameters on the energy yields of the two installations were considered. The installation in southern Poland in 2022 produced 5,136.6 kWh, which corresponds to a specific yield of 1,019.17 kWh/kWp, while the energy production of the installation in central Poland was 4,248.9 kWh, which corresponds to a specific yield of 965.67 kWh/kWp.
Go to article

Authors and Affiliations

Emilia Kazanecka
1
Piotr Olczak
2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences; AGH University of Science andTechnology, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research aimed to find suitable solutions to reduce the salinity stress of irrigation water for some types of vegetables in hydroponics under two drip and mist irrigation systems. The different concentrations of NaCl for irrigation water, are 500, 1000, 2000, 3000, and 4000 ppm used. Proline (30 mg∙dm –3), humic acid (300 mg∙dm –3) and compared without any from them were used to study their effect on the yield, and water use efficiency. The results indicated that the highest spinach and courgette yield (4.657 and 5.153 kg∙m –2) was observed for the DP500 treatment, and the lowest yield (0.348 and 0.634 kg∙m –2) was observed for the SW4000 treatment, respectively. The use of humic acid led to an increased yield on average by about 16.8 and 19.3% for spinach, and 39.4 and 51.7% for courgette, under drip and mist irrigation, respectively. Using proline led to an increased average yield of about 32.9 and 33% for spinach, and 51.8 and 58.4% for courgette, under drip and mist irrigation, respectively. The highest water use efficiency (WUE) of spinach and courgette (43.1 and 51.5 kg∙m –3) was observed for the DP500 treatment, and the lowest (3.2 and 6.3 kg∙m –3) was observed for the SW4000 treatment. According to our study, the use of proline and humic acid could compensate for the adverse effects of salinity under mist spraying more than drip irrigation.
Go to article

Authors and Affiliations

Ahmed I. Abd-Elhakim
1
ORCID: ORCID

  1. Agricultural Research Center, Agricultural Engineering Research Institute, Irrigation and Drainage Engineering Department, Nadi El-Said St., P.O. Box 256, Dokki, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Salinity is one of the most significant abiotic stress factors influencing crop production, especially in arid and semi-arid regions. Plants’ response to salinity stress depends on the cultivated genotype. A pot experiment was conducted to study the impact of two concentrations of sodium chloride (4 and 6 dS∙m–1) on some physiological and production traits of 58 chickpea genotypes. A genetic variation in the response of the investigated chickpea genotypes for NaCl-induced salinity stress was noted. Studied morphophysiological traits and yield components were affected under salt stress in all genotypes tested. Plant height was observed to have the lowest rate of reduction (32%, 48%) at 4 and 6 dS∙m –1, respectively. Leaf stomatal conductance decreased as salinity increased. Salinity stress conditions affected all studied yield components, but there was a genetic variation in the response of the studied genotypes. Under no stress conditions and compared to the other genotypes, the number of pods was significantly higher in BG362 genotype. The seed number was significantly higher in ILC9076 genotype. The 100 seed weight was significantly higher in the genotype ILC2664. The mean seed yield was significantly higher in ILC9354 and the harvest index was significantly higher in ILC8617. In general, salinity stress caused the reduction of all parameters. We assume that the assessment of tolerance of chickpea ( Cicer arietinum L.) genotypes to salinity stress should be based on a complex of morpho-physiological traits and analysis of yield complement.
Go to article

Authors and Affiliations

Hayat Touchan
1
ORCID: ORCID
Oqba Basal
2
ORCID: ORCID

  1. Aleppo University, Faculty of Agriculture, Department of Field Crops, Aleppo, Syria
  2. University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Department of Applied Plant Biology, Böszörményi Rd, 138/B, 4032, Debrecen, Hungary
Download PDF Download RIS Download Bibtex

Abstract

The Sianjo-anjo reservoir is used to meet the need for downstream clean water. Land activity at the Sianjo- anjo reservoir watershed can potentially increase the rate of erosion and the silting of rivers and reservoirs due to sedimentation. Reservoir siltation is a crucial challenge for reservoir management because it can reduce its function and affect its service life. However, sediment yield is often overlooked in reservoir planning and environmental assessment. This study aims to predict the rate of land erosion and sediment yield, and create an erosion hazard map of the Sianjo-anjo reservoir watershed. The study used a Geographic Information System, GIS-based Universal Soil Loss Equation (USLE) method and discovered that the erosion rate of the Sianjo-anjo reservoir watershed was between 35.23 Mg∙ha –1∙y –1 until 455.08 Mg∙ha –1∙y –1, with 95.85% classified as the low level, 0.03% as moderate, and 4.12% as high. Meanwhile, the sediment yield from the Sianjo-anjo reservoir watershed was 218,812.802 Mg∙y –1. USLE is vital to identify areas susceptible to erosion and crucial for reservoir sustainability. Furthermore, it is necessary to plan good sediment management. Long-term land conservation is required to maintain storage capacity and ensure effective operation of the reservoir.
Go to article

Authors and Affiliations

Felia Gusma
1
Azmeri Azmeri
1
ORCID: ORCID
Faris Z. Jemi
2
ORCID: ORCID
Hafnati Rahmatan
3
ORCID: ORCID

  1. Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  2. Universitas Syiah Kuala, Engineering Faculty, Electrical Engineering Department, Banda Aceh, Indonesia
  3. Universitas Syiah Kuala, Faculty of Education and Teacher Training, Biology Department, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare the effect of controlled-release monensin on the automatic registered body condition score (BCS), and biomarkers registered using a fully automated inline analyzer, such as milk β-hydroxybutyrate (BHB), milk yield (MY) and milk lactate dehydrogenase (LDH).
Two experimental groups were formed: (1) monensin group (GK) supplemented with monensin (a monensin controlled release capsule (MCRC) of 32.4 g, n = 42) and (2) control group (GO) (capsule containing no monensin, n = 42). Treatment began 21 days before calving, and the experiment was finished one month after calving. In order to gather data about MY, BHB, and LDH, Herd Navigator a real-time analyzer (Lattec I/S, Hillerød, Denmark) was used together with a DeLaval milking robot (DeLaval Inc., Tumba, Sweden). BCS was measured using 3D BCS cameras (DeLaval, DeLaval International AB). All data were registered at one, 15 and 30 days after calving. The statistical analysis was performed using SPSS 26.0 (SPSS Inc., Chicago, USA) package. It was concluded that in the group of cows with monensin supplement (a monensin controlled release capsule of 32.4 g,), the body condition score was statistically significantly higher at the 15th (+0.24, p=0.003) and 30th (+0.52, p<0.001) days after calving, the productivity of cows in this group increased by 10.25% from the 1st to the 15th day and by 22.49% from the beginning of the experiment to the 30th day (p<0.001), lactate dehydrogenase activities at the 15th and 30th days after calving in this group were lower (p<0.001), and also in this group, the number of cows with a value of β-hydroxybutyrate of 0.06 mmol/L decreased from the beginning of the experiment to 30 days after calving by 4.70% (from 19.00% to 14.30%) compared with the control group.
Go to article

Authors and Affiliations

M. Urbutis
1
V. Juozaitienė
2
G. Palubinskas
3
K. Džermeikaitė
1
D. Bačėninaitė
1
R. Bilskis
4
W. Baumgartner
5
R. Antanaitis
1

  1. Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, LT-47181 Kaunas, Lithuania
  2. Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio St. 58, LT-47181, Kaunas, Lithuania
  3. Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences,Tilžės 18, LT-47181 Kaunas, Lithuania
  4. Animal Husbandry Selections, Breeding Values and Dissemination Center, Agriculture Academy, Vytautas Magnus University, Universiteto St. 10A, Akademija, Lt-53361 Kaunas Distr., Lithuania
  5. University Clinic for Ruminants, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate the impact of heat stress on production performance and oxidative stress in different plumage colors of Japanese quail. For this purpose, a total of 100 birds were used in this study. The 25 birds belonged to Wild-type (n=25, grey), Tuxedo (n=25, black), Golden (n=25, yellow) and Recessive white (n=25). The birds were reared for 42 days in an environmentally controlled room at 39°C and relative humidity of 60-65%. The body weight, body weight gain (g/bird/day), and feed conversion ratio were not different between the groups (p>0.05). However, the feed intake (g/bird/day) of the Wild-type had a higher value than the Tuxedo (black) group counterparts between 15 and 21 days different (p<0.05). There was no significant effect of heat stress on the carcass traits (p>0.05). Spleen weights were different between the groups (p<0.05). The yellow group had the highest spleen weight. The highest MDA level was found in the Recessive White variety, followed by Wild-type (grey), Golden (yellow) and Tuxedo (black), respectively. However, there were no statistical differences amongst the groups (p>0.05). There was also no statistical significance in glutathione (GSH) and superoxide dismutase (SOD) levels (p>0.05). The heat shock protein 70 kDa (HSP70) level was significantly different between the groups (p<0.001). The highest percentage was observed in the Golden (5.06%) and the lowest in the White (1.43%) variety.
There was no superior color variety of Japanese quail regarding fattening performance and carcass traits. It is conceivable that when considering the stress response of the different colors, the Golden group is more sensitive to stress due to the hepatic and cellular level of HSP70.
Go to article

Authors and Affiliations

S. Aslan
1
Y. Baykalir
2
U.G. Simsek
3
B. Gul
4

  1. Dokuz Eylul University, Faculty of Veterinary Medicine, Department of Zootechny, Izmir 35890, Turkey
  2. Balikesir University, Faculty of Veterinary Medicine, Department of Biostatistics, Balikesir 10463, Turkey
  3. Firat University, Faculty of Veterinary Medicine, Department of Animal Science, Elazig 23200, Turkey
  4. Firat University, Faculty of Health Science, Department of Nursing, Elazig 23200, Turkey
Download PDF Download RIS Download Bibtex

Abstract

One of the most serious seed-borne diseases of flax is anthracnose or seedling blight caused by Colletotrichum lini (West.) Toch. This disease affects flax seedlings, leaves, stems, and fruit bags. It causes reductions in linseed germination power, stand density, stem and linseed yield, fibre output and quality. During 1999-2001 experiments were carried out at the Lithuanian Institute ofAgriculture Upyte Experimental Station to test the efficacy of seven fungicides used for seed dressing against flax anthracnose and other seedborne diseases. Experimental findings indicated that 19.0% to 34.0% of flax seeds were annually infected with C. lini (West.) Toch. causing flax anthracnose. As the disease can spread through the soil, on control plots sown with untreated with fungicides seeds 33.0% to 79.5% of seedlings showed symptoms of anthracnose. Seed treatment with Sportak 45 EC used at the dose 0.8 l f1 and Maxim Star 025 FS used at the dose 1.51 t-1 gave the best control of seedling blight causal agents. Their biological efficacy was as follows: against seed anthracnose 97.3% and 96.3%, at seedling stage, 76.5% and 76.3%, at 'fir-tree' stage - 67.8% and 60.4%. Biological efficacy of the other seed treaters was lower. The highest straw yield increases resulted from seed treatment with the Maxim Star 025 FS and Sportak 45 EC - 0.5 and 0.3 t ha" or 11.0% and 6.2%, respectively. The effect of fungicides used for seed treatment on linseed yield was similar. Maxim Star 025 FS increased the yield on average by 22.1%, and Sportak 45 EC and Premis 25 FS by 13. 7% and 13.3%. The other fungicides, except for Raxil 2 WS and Rovral FLO, also had a positive effect on flax straw and linseed yield, however, in all experimental years the increases were not higher than the least significant difference.
Go to article

Authors and Affiliations

Elvyra Gruzdeviene
Zenonas Dabkevicius
Download PDF Download RIS Download Bibtex

Abstract

The quantity and quality of spears from asparagus plants infected with Asparagus virus 2 was lower in comparison to healthy plants. The total number of spears was decreased in 16% and mass of spears in 24.7%. Asparagus virus 2 reduced the number of marketable spears in 31.9%, and increased the number of unmarketable spears in 20.2%. The green mass of stem brushes of infected plants was reduced in 19.4% in field conditions and in 20% in seedlings growing in a greenhouse.
Go to article

Authors and Affiliations

Zofia Fiedorow
Agnieszka Szelka
Anna Gąsiorowska
Download PDF Download RIS Download Bibtex

Abstract

Lignite still plays a key role in the production of electricity in Poland. About one-third of domestic electric energy comes from lignite burned in large power plants that produce megatons (Mt) of bottom ash and fly ash annually. Nearly 11 wt% of the total ash generated by the lignite-fired power industry in Poland comes from lignite extracted from the Konin Lignite Mine. Part of the ash escapes into the atmosphere, and the rest is utilized, which is expensive and often harmful to the environment; hence, geochemical studies of these ashes are fully justified and increasingly carried out. The lignite samples examined in this paper represent the entire vertical section of the first Mid-Polish lignite seam (MPLS-1) mined in opencasts at Jóźwin IIB, Drzewce, and Tomisławice. First, the samples were oxidized (burnt) at one of three temperatures: 100, 850, and 950°C; then the chemical composition of oxides and trace elements was determined according to the ASTM D6349-13 standard. The ashes were rich in SiO2 and CaO; Ba, Sr, and Cu dominated the trace element content. Among the harmful elements found, Pb is of most concern. Only a few elements (Ba, Cu, Pb, Sb) reached values higher than their corresponding Clarke values. Based on the results obtained, it can be concluded that the examined ashes are approximately as harmful to the environment as ashes from other lignite used to generate electricity. Moreover, the increased amount of CaCO3 in the MPLS-1 is beneficial in the process of natural desulphurization.

Go to article

Authors and Affiliations

Lilianna Chomiak
Marek Widera
Download PDF Download RIS Download Bibtex

Abstract

The aim of any industrial plant, which is dealing in the energy sector, is to maximise the revenue generation at the lowest production cost. It can be carried out either by optimizing the manpower or by improving the performance index of the overall unit. This paper focuses on the optimisation of a biomass power plant which is powered by G50 hardwood chips (Austrian standard for biomass chips). The experiments are conducted at different operating conditions. The overall effect of the enhanced abilities of a reactor on the power generation is examined. The output enthalpy of a generated gas, the gas yield of a reactor and the driving mechanism of the pyrolysis are examined in this analysis. The thermal efficiency of the plant is found to vary from 44 to 47% at 400◦C, whereas it is 44 to 48% for running the same unit at 600 ◦C. The transient thermal condition is solved with the help of the lumped capacitance method. The thermal efficiency of the same design, within the constraint limit, is enhanced by 5.5%, whereas the enthalpy of the produced gas is magnified by 49.49% through nonlinear optimisation. The temperature of biomass should be homogenous, and the ramping rate must be very high. The 16% rise in temperature of the reactor is required to reduce the mass yield by 20.17%. The gas yield of the reactor is increased by up to 85%. The thermal assessment indicates that the bed is thermally thin, thus the exterior heat transfer rate is a deciding factor of the pyrolysis in the reactor.

Go to article

Authors and Affiliations

Alok Dhaundiyal
Suraj B. Singh
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an experiment with sugar-industry waste (molasses) as an organic carbon source for denitrification. The investigations concern the influence of untreated molasses and molasses after pretreatment (hydrolyzed molasses) and variable COD/N ratio (6.0: 5.0: 4.0) on denitrification efficiency and kinetics. Moreover, sludge production, in dependence on tested carbon source, was estimated. Al COD/N ratio 6 and 5, regardless or applied organic carbon source (untreated molasses. hydrolyzed molasses), the denitrification efficiency was over 98%,. However. from kinetic analysis it results that a kind or carbon source and COD/N ratio have an effect on denitrification rate. The highest nitrate removal rate - 9.5 mg N,0/(dm-1-h) was obtained al COD/N = 6 in the reactor with hydrolyzed molasses as a carbon source and the lowest - 5.14 mg N,0J(dm1-h) in reactor with untreated molasses at COD/N = 5.0. The lowering or COD/N ratio to 4 caused decrease otthe process efficiency to 27.6% (untreated molasses) and 44.3% (hydrolyzed molasses). Hydrolyzed molasses as a carbon source caused higher production of activated sludge. In reactors with untreated molasses Y equals 0.40 mg VSS/rng COD at COD/N ratio 6 and 0.31 111g VSS/111g COD at COD/N ratio 5. In reactors with molasses alter hydrolysis Y, were 1.35-lolcl and 1.5-lold higher, respectively. Since, the molasses hydrolysis results in rising costs of wastewater treatment and cause higher sludge production, untreated molasses seems to be a more suitable carbon source for dcniuification.
Go to article

Authors and Affiliations

Dorota Kulikowska
Karolina Dudek
Download PDF Download RIS Download Bibtex

Abstract

The studies were conducted from 2012 to 2015 at the National Institute of Horticultural Research in Skierniewice, Poland. The aim of the research was to determine the yield of Chinese cabbage, its storage ability and nutritional value, depending on weed management methods used during cultivation. In the field experiments the following methods were compared: mechanical treatments, mechanical treatments + growth stimulators, soil mulching with black polypropylene, black polyethylene and biodegradable foil and hand weeding. After harvest the Chinese cabbage was stored at 0–2°C for 125–126 days depending on the year and after storage marketable and rotten heads were sorted. The percent of yellowed, rotten leaves in the total mass of the stored heads was also determined, as well as the natural weight loss. The chemical composition of Chinese cabbage was analyzed after harvest and after storage. The analyses included: dry matter, total sugars, vitamin C and soluble phenol content. After harvest the highest yield of Chinese cabbage grown in black polyethylene mulch was obtained. After storage the highest yield of marketable heads from cabbage mechanically weeded with additional application of biostimulator AlfaMax during cultivation was obtained. Chemical analyses showed that after harvest the highest dry matter, total sugars and vitamin C content were found in Chinese cabbage mechanically weeded and soluble phenols were the highest in non-weeded Chinese cabbage. After storage the highest content of dry matter was recorded in non-weeded Chinese cabbage, while total sugars were the highest in cabbage mulched with black polyethylene and biodegradable foil. Vitamin C was the highest in mechanically weeded and soluble phenols were the highest in hand-weeded cabbage.
Go to article

Authors and Affiliations

Joanna Golian
1
Zbigniew Anyszka
1
Ryszard Kosson
2
Maria Grzegorzewska
2

  1. Weed Science Laboratory, The National Institute of Horticultural Research in Skierniewice, Skierniewice, Poland
  2. Laboratory of Fruit and Vegetables Storage and Postharvest Physiology, The National Institute of Horticultural Research in Skierniewice, Skierniewice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Excessive use of chemical fertilizers, in agriculture, has negative impacts on water, soil and affects the environment and health. In recent decades, researchers have been interested in the natural benefits of natural microorganisms and how they could be a good alternative to the use of chemical fertilizers. The aim of this study was to investigate the effect of soil inoculation with strains of mycorrhizae and beneficial bacteria on soil properties and productivity of table grapes. Field trials were conducted on a commercial table grape production farm ( Vitis vinifiera cv. Mousca), located in northeastern Morocco. Twelve-yearold plants were used. Control plants were not inoculated (T1). The prototype plants were inoculated with 1.2 × 104 of Glomus iranicum var. tenuihypharum/100 g (T2), a mixture of 1/2 concentration of Glomus iranicum var. tenuihypharum and 1/2 concentration of Pseudomonas putida (T3) and 1 × 108 CFU ∙ g–1 of Pseudomonas putida (T4). The inoculations were realized twice; the first inoculation was completed on July 19, 2019 while the second inoculation on February 21, 2020. Soil analyses were carried out, both physicochemical (pH, electrical conductivity (EC), salinity, % of dry matter) and microbiological properties (total flora, fungi and actinobacteria). Plant growth (length of the plant, number and diameter of sticks, number of clusters per tree, number of nodes per stick, distance between nodes and bud burst), yield and fruit quality (number of berries per cluster, cluster weight, cluster length and width, pH, Brix degrees, acidity, EC and % dry matter) were measured. Results showed slight trends regarding the effects of treatments on the physicochemical and microbiological properties of the soil, plant growth and fruit quality. The number of clusters was significantly higher in Glomus (T2) Pseudomonas (T4) and Glomus than in control treatments.
Go to article

Bibliography


Aguín O., Mansilla J.P., Vilariño A., Sainz M.J. 2004. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Ecology and Viticulture 55 (1): 108−111. Available on: https://www.ajevonline.org/content/55/1/108.articleinfo [Accessed: 15 May 2021]
Aktar W., Sengupta D., Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2: 1−12. DOI: https://doi.org/10.2478/ v10102-009-0001-7
Atafa Z., Mesdaghinia A., Nouri J., Homaee M., Yunesian M., Ahmadimoghaddam M., Mahvi A.H. 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment 160 (1−4): 83. DOI : https://doi.org/10.1007/s10661-008-0659-x
Augé R.M. 2004. Mycorhizes à arbuscules et relations eau/sol/ plante. Canadian Journal of Soil Science 84: 373−381. DOI: https://doi.org/10.1139/b04-020
Baslam M., Esteban R., García-Plazaola J.I., Goicoechea N. 2013. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology 97: 3119−3128. DOI: https://doi.org/10.1007/s00253-012-4526-x
Birhane E., Sterck F.J., Fetene M., Bongers F., Kuyper T.W. 2012. Les champignons mycorhiziens arbusculaires améliorent la photosynthèse, l’efficacité d’utilisation de l’eau et la croissance des semis d’encens dans des conditions de disponibilité en eau pulsée. Oecologia 169: 895−904.
Bona E., Cantamessa S., Massa N., Manassero P., Marsano F., Copetta A., Lingua G., D'Agostino G., Gamalero E., Berta G. 2017. Arbuscular mycorrhizal fungi and plant growth- -promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27: 1−11. DOI: https://doi.org/10.1007/s00572-016-0727-y
Bona E., Todeschini V., Cantamessa S., Cesaro P., Copetta A., Lingua G., Gamalero E., Berta G., Massa N. 2018. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae 234: 160−165. DOI: https://doi.org/10.1016/j.scienta.2018.02.026
Boutas Knit A., Baslam M., Ait-El-Mokhtar M., Anli M., Ben- -Laouane R., Douira A., El Modafar C., Mitsui T., Wahbi S., Meddich A. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants 9 (1): 80. DOI: https://doi.org/10.3390/plants9010080
Brundrett M.C., Abbott L.K. 2002. Arbuscula mycorrhiza in plant Communities. p. 151−193. In: “Plant Conservation and Biodiversity” (K. Sivasithamparam, K.W. Dixon, R.L. Barrett eds.). Kluwer Academic-Publishers: Dordrecht, Netherlands, 391 pp.
Chen W., Meng P., Feng H., Wang C. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A. Mey. under drought stress. Forests 11 (10): 1117. DOI: https://doi.org/10.3390/ f11101117
Childers D.L., Corman J., Edwards M., Elser J.J. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61 (2): 117−124. DOI: https://doi.org/10.1525/bio.2011.61.2.6
Criss R., Davisson M. 2004. Fertilizers, water quality and human health. Environnemental Heath Perspectives 112 (10): A536. DOI : https://doi.org/10.1289/ehp.112-a536
Farhadinejad T., Khakzad A., Jafari M. 2014. The study of environmental effects of chemical fertilizers and domestic sewage on water quality of Taft region, Arabian Journal of Geoscience 7: 221−229. DOI: https://doi.org/10.1007/s12517-012-0717-0
Garcia K., Zimmermann S.D. 2014. Le rôle des associations mycorhiziennes dans la nutrition potassique des plantes. Plant Science 5: 337. DOI: https://doi.org/10.3389/fpls.2014.00337
Geng Y., Cao G., Wang L., Wang S. 2019. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 14 (7): e0219512. DOI : https://doi.org/10.1371/journal.pone.0219512
Gianinazzi S., Gollotte A., Binet M.N., van Tuinen D., Redecker D., Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: 519−530. DOI: https://doi.org/10.1007/s00572-010-0333-3
Halpern M., Bar-Tal A., Ofek M., Minz D. 2015. The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130: 141−174. DOI: https://doi.org/10.1016/ bs.agron.2014.10.001
Hmelak Gorenjak A. 2013. Nitrate in vegetables and their impact on human health. Acta Alimentaria 42 (2): 158−172. DOI: https://doi.org/10.1556/AAlim.42.2013.2.4
Javanmardi J., Zarei M., Saei M. 2001. Influence of arbuscular mycorrhizal fungi on physiology and fruit quality of pepino (Solanum muricatum Ait.) in vermicompost amended medium. Advances in Horticultural Science 28 (1): 35−42. Available on: https://core.ac.uk/download/pdf/228571948.pdf. [Accessed: 15 May 2021]
Jiang Y., Wang W., Xie Q. Liu N., Liu L., Wang D., Zhang X., Yang C., Chen X., Tang D., Wang E. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 16: 356 (6343): 1172−1175. DOI: https://doi.org/10.1126/science.aam9970
Johansson J.F., Paul L.R.R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48 (1): 1−13. DOI: https://doi.org/10.1016/j.femsec.2003.11.012
Kamayestani A., Rezaei M., Sarkhosh A., Asghari H. 2019. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth enhancement and nutrient (NPK) uptake of three grape (Vitis vinifera L.) cultivars under three different water deficit levels. Australian Journal of Crop Science: 1401−1408. DOI: https://doi.org/10.21475/ajcs.19.13.09.p1174
Koide R.T., Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14 (3): 145−163. DOI: https://doi. org/10.1007/s00572-004-0307-4
Li Y., Chen Y.L., Lin X.J., Liu R.J. 2012. Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere 22 (1): 79−87. DOI: https://doi.org/10.1016/S1002-0160(11)60193-8
Liu G., Bollier D., Gübeli C., Peter N., Arnold P., Egli M., Borghi L. 2018. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 4 (1): 1−10. DOI: https:// doi.org/10.1038/s41526-018-0054-z
Luciani E., Frioni T., Tombesi S., Farinelli D., Gardi T., Ricci A., Sabbatini P., Palliotti A. 2019. Effects of a new arbuscular mycorrhizal fungus (Glomus iranicum) on grapevine development. BIO Web Conference 13, Vineyard Management and Adaptation to Climate Change Section: 04018 (5 p.). DOI: https://doi.org/10.1051/bioconf/20191304018
Meddich A., Jaiti F., Bourzik W., El Asli A., Hafidi M. 2015. Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae 192: 468−474. DOI: https://doi.org/10.1016/j.scienta.2015.06.024
Neuenkamp L., Moora M., Öpik M., Davison J., Gerz M., Männistö M., Jairus T., Vasar M., Zobel M. 2018. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. Hempel 220: 952−953. DOI: https://doi.org/10.1111/nph.14995
Ozdemir G., Akpinar C., Sabir A., Bilir H., Tangolar S., Ortas I. 2010. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science 75 (3): 103−110. JSTOR: https://www.jstor.org/stable/24126418
Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H. 2018. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23 (2): 470. DOI: https://doi.org/10.3390/molecules23020470
Reuter D.J. 2008. Soil analysis. An interpretation manual. CSIRO Publishing. Collingwood, Victoria, Australia, 387 pp. Rodriguez-Echeverria S., Costa S.R., Freitas H. 2007. Biodiversité et interactions dans la rhizosphère. p. 581−600. In: “Functional Plant Ecology”, 2nd ed. (F.I. Pugnaire, F. Valladares, eds.). CRC Press, New York, USA, 724 pp.
Ronga D., Caradonia F., Francia E., Morcia C., Rizza F., Badeck F.W., Ghizzoni R., Terzi V. 2019. Interaction of tomato genotypes and arbuscular mycorrhizal fungi under reduced irrigation. Horticulturae 5 (4): 79. DOI: https://doi.org/10.3390/horticulturae5040079
Riah W., Laval K., Laroche-Ajzenberg E., Mougin C., Latour X., Trinsoutrot-Gattin I. 2014. Effets des pesticides sur les enzymes du sol. Environmental Chemistry Letters 12: 257−273. DOI: https://doi.org/10.1007/s10311-014-0458-2
Schubert R., Werner S., Cirka H., Rödel P., Moya Y.T., Mock H.P., Hutter I., Kunze G. Hause B. 2020. Effects of arbuscular mycorrhization on fruit quality in industrialized tomato production. International Journal of Molecular Sciences 21: 7029. DOI: https://doi.org/10.3390/ijms21197029
Shaver G.R., Chapin F.S. 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arctic and Alpine Research 18 (3): 261−268. DOI: https://doi.org/10.2307/1550883
Singh R., Soni S.K., Kalra A. 2013. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23 (1): 35−44. DOI: https://doi.org/10.1007/s00572-012-0447-x
Soares C., Siqueira J. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils 44: 833−841. DOI: https://doi.org/10.1007/s00374-007-0265-z
Trouvelot S., Bonneau L., Redecker D., Van Tuinen D., Adrian M. Wipf D. 2015. Arbuscular mycorrhiza symbiosis in viticulture: A Review. Agronomy for Sustainable Development 35 (4): 1449−1467. DOI: https://doi.org/10.1007/s00374-007-0265-z
Ye L., Zhao X., Bao E., Li J., Zou Z., Cao K. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10 (1): 1−11. DOI: https://doi.org/10.1038/s41598-019-56954-2
Yousaf M., Li J., Lu J. 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Report 7: 1270−1279. DOI: https://doi.org/10.1038/s41598-017-01412-0
Go to article

Authors and Affiliations

Salah Ed-dine Samri
1
ORCID: ORCID
Kamal Aberkani
1
ORCID: ORCID
Mourad Said
1
Khadija Haboubi
2
ORCID: ORCID
Hassan Ghazal
3
ORCID: ORCID

  1. Biology and Geology, Plolydisciplinary Faculty of Nador, University Mohammed Fisrt, Selonane, Morocco
  2. Environment, National School of Applied Sciences, University Abdelmalek Essaadi, Al Hoceima, Morocco
  3. Bioinformatics, National Center for Scientific and Technical Research, Rabat, Morocco
Download PDF Download RIS Download Bibtex

Abstract

This study was conducted to predict the yield and biomass of lentil (Lens culinaris L.) affected by weeds using artificial neural network and multiple regression models. Systematic sampling was done at 184 sampling points at the 8-leaf to early-flowering and at lentil maturity. The weed density and height as well as canopy cover of the weeds and lentil were measured in the first sampling stage. In addition, weed species richness, diversity and evenness were calculated. The measured variables in the first sampling stage were considered as predictive variables. In the second sampling stage, lentil yield and biomass dry weight were recorded at the same sampling points as the first sampling stage. The lentil yield and biomass were considered as dependent variables. The model input data included the total raw and standardized variables of the first sampling stage, as well as the raw and standardized variables with a significant relationship to the lentil yield and biomass extracted from stepwise regression and correlation methods. The results showed that neural network prediction accuracy was significantly more than multiple regression. The best network in predicting yield of lentil was the principal component analysis network (PCA), made from total standardized data, with a correlation coefficient of 80% and normalized root mean square error of 5.85%. These values in the best network (a PCA neural network made from standardized data with significant relationship to lentil biomass) were 79% and 11.36% for lentil biomass prediction, respectively. Our results generally showed that the neural network approach could be used effectively in lentil yield prediction under weed interference conditions.

Go to article

Authors and Affiliations

Alireza Bagheri
Negin Zargarian
Farzad Mondani
Iraj Nosratti
Download PDF Download RIS Download Bibtex

Abstract

The olive psyllid Euphyllura straminea Loginova (Hemiptera: Aphalaridae) is one of the most important pests of olive trees in Iran. To determine this pest’s economic injury level (EIL) and to evaluate the relationship between density of nymphs (DON) and yield loss, different densities of olive psyllid nymphs were maintained on olive trees by different insecticide concentrations. Counting nymphs on olive terminal shoots was done to determine nymph abundance at the end of nymphal stage. Different densities of olive psyllid nymphs resulted in significantly different yield losses of olive trees. Regression analysis was used to determine the relationship between nymph density and yield loss. Considering pest management costs, the market value of olive, and insecticide efficiency, economic injury levels were evaluated from 4.08 to 7.14 nymphal days. The olive psyllid EIL values could be used to plan a pest control program in Zanjan and Guilan provinces.
Go to article

Authors and Affiliations

Aref Marouf
1
Mohammadreza Abbasi Mojdehi
2
Shamsollah Najafi
1

  1. Plant Protection Department, Agricultural and Natural Resources Research Center of Zanjan Province (AREEO), Iran
  2. Plant Protection Department, Agricultural and Natural Resources Research Center of Guilan Province, Rasht, Iran
Download PDF Download RIS Download Bibtex

Abstract

Plant parasites of the genera Longidorus Micoletzky, 1922 and Paralongidorus Siddiqi, Hooper and Khan, 1963 comprise a group of plant root ectoparasites, some of which are known as pests of economic importance. Their importance is further augmented by the fact that several species are known to be vectors of nepoviruses. To date 16 species from the genus Longidorus and two from Paralongidorus have been recorded in Poland. Despite their economic importance in agriculture currently there is no regional key for species identification. This paper presents such a key. The key has many illustrations and is based mainly on traits which are easily observable even by less experienced users. Thus, it should provide a useful tool for both scientists and specialists working in the field of plant protection, soil ecology and zoology as well as for teaching purposes.
Go to article

Authors and Affiliations

Franciszek Kornobis
1
ORCID: ORCID

  1. Department of Entomology and Agricultural Pests, Institute of Plant Protection – National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fall armyworm ( Spodoptera frugiperda) (FAW) is an important invasive pest of maize. The young FAW larva disrupts the photosynthetic system by feeding on the leaves. The older caterpillar interferes with pollination and fertilization processes, destroying the tassel and silks, or it bores into the maize cob, reducing harvest quality and predisposing the cob to secondary infections. The infested plant responds by channeling or converting the primary metabolites into secondary metabolites for plant defense, further reducing crop yield. The devastating feeding effect on maize becomes even more severe when maize plants are exposed to prolonged drought, during which the production of secondary metabolites is optimum. These secondary metabolites are food for herbivorous insects like the fall armyworm. Naturally, plants possess several adaptive features which enable them to cope and survive herbivorous insect attacks without compensating yield for plant defense. Such features include: thickening of the leaf cuticle of the epidermal cell walls, production of certain allelochemicals, defense proteins and the toxic chemical compound, favone glycoside (silk maysin). This review attempts to critically appraise the physiological implications of fall armyworm damage on developmental processes and maize yield. Understanding the mechanisms of various adaptive traits that confer resistance to maize against herbivorous insect damage would assist greatly in crop improvement processes.
Go to article

Authors and Affiliations

Folake Bosede Anjorin
1
Oluwaseyi Oluwakemi Odeyemi
1
Olufolake Adenike Akinbode
1
Kehinde Tolulope Kareem
1

  1. Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

Satellite-based irrigation performance is a valuable tool for improving yields in irrigated areas across the world and requires adequate land for long-term development. This study aimed to increase irrigation performance and yield gap variation of rainfed crops using the database of FAO’s Water Productivity Open Access Portal (WaPOR) and the Global Yield Gap Atlas. The evapotranspiration ( ET) performance of irrigation is expressed in equity ( CV of ET), reliability, adequacy ( CV of ET), and water productivity (kg∙m<sup>-3</sup></p>). The rainfed crops are interpreted in terms of metric tonnes/ha. Specifically, 20,325 km<sup>2</sup></p> of suitable pastoral land across eight sub-classes was converted to rainfed rice, sugarcane, maize, and vegetable crops. Results showed that the R<sup>2</sup></p> value was 0.97 at Baro Itang and –0.99 at Sor Metu, with the Baro Gambella sub-catchment having the largest yield gap of 4.435.2, 8.870.4, and 10.080∙106 kg when the yield increased by 1/3, 2/3, and 3/4. On the other hand, Gumero Gore had the smallest yield gap of 10,690, 29,700, and 33,750 kg, respectively. The management regime was 2.87, 0.87, and 0.35 kg∙m<sup>-3</sup></p> for growers in the estate, farmer association, and individual, respectively. The study concludes that no single irrigation technique can be considered the best, and a thorough analysis of spatiotemporal variation of the irrigation performance indicators and the yield gap in the water-scarce lower Baro watershed is required.

Go to article

Authors and Affiliations

Fiseha Befikadu Deneke
1
ORCID: ORCID
Amba Shetty
2
ORCID: ORCID
Fekadu Fufa
3
ORCID: ORCID

  1. National Institute of Technology Karnataka, Department of Water Resources and Ocean Engineering, 575025, Surathkal, India
  2. National Institute of Technology Karnataka, Surathkal, India
  3. Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma University, Jimma, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

Scarcity of fresh water resources is the major constraint for agricultural development in Iran as in many other regions with arid and semi-arid climate. With the pressure on fresh water resources, the use of un-conventional water resources including brackish, saline and sewage water has received greater attentions in recent years. The objective of this study was to assess the impact of farmers' practices using saline groundwater on wheat yield and soil salinity in a Mediterranean cli-mate of Fars province in southern Iran. The study was carried out in several commercial wheat production regions for two years. Chemical analysis of irrigation waters, volume of applied irrigation water, electrical conductivity of soil saturation extract (ECe) and yield were measured in each field. General information on agronomic practices was also collected using a questionnaire. Results demonstrate that waters with salinities higher than what has been classified as “suitable for irriga-tion” are being used for the production of wheat crop. Analysis of wheat yield response to saline irrigation water showed that for water salinities up to 10.7 mS∙cm–1 (threshold value) variation in yield was relatively minor, above which wheat yield decreased at a greater rate. Root zone salinity profiles showed the effect of winter rainfall in reducing soil salinity. It is concluded that although acceptable yields are obtained with some of the highly brackish waters, over application of these waters would threaten the sustainability of crop production in the region.

Go to article

Authors and Affiliations

Seyed A.M. Cheraghi
Download PDF Download RIS Download Bibtex

Abstract

The study deals with the assessment of the solid transport in the wadi Mouillah watershed (Tafna, Algeria). Sediment transport is a complex phenomenon. The quantity of sediment transported is very important, and it fills in the reservoirs. The scale is out of proportion in semiarid areas. Algeria is one of the most affected countries by this phenomenon. A simple method, based on average discharges, easy to implement, has been developed for estimating the sediment yield using dou-ble correlation method (a first one between liquid discharge – solid concentration and a second one between solid flow – concentration). It is based on hydrometric data (liquid flow, concentrations and sediment discharges) with applications analysis on seasonal and annual scales for data’s of Sidi Belkheir station at the outlet of the wadi Mouillah watershed (North-West of Algeria). The obtained results by the application of this method are very encouraging because of the quite significant correlation coefficients found (≥59% for the first correlation and ≥88% for the second correlation). The water-shed of Mouillah produces between 43 730 and 56 410 Mg·y–1 as suspended sediment load against 48.56∙103 to 53.3∙103 m3·y–1 of liquid intake.

Go to article

Authors and Affiliations

Fadila Belarbi
ORCID: ORCID
Hamid Boulchelkia
Boualem Remini

This page uses 'cookies'. Learn more