Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 37
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The explosive rise of wireless services necessitates a network connection with high bandwidth, high performance, low mistakes, and adequate channel capacity. Individual mobile users, as well as residential and business clusters are increasingly using the internet and multimedia services, resulting in massive increases in the internet traffic demand. Over the past decade, internet traffic has grown significantly faster than Moore’s law predicted. The current system is facing significant radio frequency spectrum congestion and is unable to successfully transmit growing amounts of (available) data to end users while keeping acceptable delay values in mind. Free space optics is a viable alternative to the current radio frequency technology. This technology has a few advantages, including fast data speeds, unrestricted bandwidth, and excellent security. Since free space optics is invisible to traffic type and data protocol, it may be quickly reliably and profitably integrated into an existing access network. Despite the undeniable benefits of free space optics technology under excellent channel conditions and its wide range of applications, its broad use is hampered by its low link dependability, especially over long distances, caused by atmospheric turbulence-induced decay and weather sensitivity. The best plausible solution is to establish a secondary channel link in the GHz frequency range that works in tandem with the primary free space optics link. A hybrid system that combines free space optics and millimeter wave technologies in this research is presented. The combined system offers a definitive backhaul maintenance, by drastically improving the link range and service availability.
Go to article

Bibliography

  1. Chowdhury, M. , Hasan, M. K., Shahjalal, M., Hossan, M. T. & Jang, Y. M. Optical wireless hybrid networks: trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 22, 930–966 (2020). https://doi.org10.1109/COMST.2020.2966855
  2. Liu, G. & Jiang, D. 5G : Vision and requirements for mobile communication system towards year 2020. Chinese J. Eng. 2016, 1–8 (2016). https://doi.org/10.1155/2016/5974586
  3. Ford, R. et al. Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun. Mag. 55, 196–203 (2017). https://org/10.1109/MCOM.2017.1600407CM
  4. Tunc, C., Ozkoc, M. , Fund, F. & Panwar, S. S. The blind side: latency challenges in millimeter wave networks for connected vehicle applications. IEEE Trans. Veh. Technol. 70, 529–542 (2021). https://doi.org/10.1109/TVT.2020.3046501
  5. Mikolajczyk, J. et al. Optical wireless communications operated at long-wave infrared radiation. J. Electron. Telecommun. 66, 383–387 (2020). https://doi.org/10.24425/ijet.2020.131889
  6. Mikołajczyk, J. et al. Analysis of free-space optics development. Meas. Syst. 24, 653–674 (2017). https://doi.org/10.1515/mms-2017-0060
  7. Son, I. & Mao, S. A survey of free space optical networks ☆. Digit. Commun. Netw. 3, 67–77 (2017). https://doi.org/10.1016/j.dcan.2016.11.002
  8. Khalighi, M. & Uysal, M. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014). https://doi.org/10.1109/COMST.2014.2329501
  9. Rockwell, D. & Mecherle, G. S. Wavelength selection for optical wireless communications systems. Proc. SPIE 4530, 26–35 (2001). https://doi.org/10.1117/12.449812
  10. Bloom, S., Korevaar, E., Schuster, J. & Willebrand, H. Under-standing the performance of free-space optics. Opt. Netw. 2, 178–200 (2003). https://doi.org/10.1364/JON.2.000178
  11. Willebrand, H. & Ghuman, B. Free Space Optics : Enabling Optical Connectivity In Today’s Networks. (Indianapolis, Indiana: SAMS, 2002).
  12. Jeyaseelan, J., Sriram Kumar, D. & Caroline, B. Disaster management using free space optical communication system. Photonic Netw. Commun. 39, 1–14 (2020). https://doi.org/10.1007/s11107-019-00865-9
  13. Anandkumar, D. & Sangeetha, R. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques. Opt. Quantum Electron. 53, 5 (2020). https://doi.org/10.1007/s11082-020-02629-6
  14. Siegel, T. & Chen, S.-P. Investigations of free space optical communications under real-world atmospheric conditions. Pers. Commun. 116, 475–490 (2021). https://doi.org/10.1007/s11277-020-07724-1
  15. Kaur, S. Analysis of inter-satellite free-space optical link perfor-mance considering different system parameters. Opto-Electron. Rev. 27, 10–13 (2019). https://doi.org/10.1016/j.opelre.2018.11.002
  16. Shah, D., Joshi, H. & Kothari, D. Comparative BER analysis of free space optical system using wavelength diversity over exponentiated weibull channel. J. Electron. Telecommun. 67, 665–672 (2021). https://doi.org/10.24425/ijet.2021.137860
  17. Ghassemlooy, Z. & Popoola, W. Terrestrial Free-Space Optical Communications. in Mobile and Wireless Communications (eds. Fares, S. A. & Adachi, F.) 355–392 (IntechOpen, 2010). https://doi.org/10.5772/7698
  18. Ricklin, J. , Hammel, S. M., Eaton, F. D. & Lachinova, S. L. Atmospheric Channel Effects on Free-Space Laser Communication. in Optical and Fiber Communication Reports: Free-Space Laser Communications (eds. Majumdar, A. K. & Ricklin, J. C.) 9–56 (Springer, 2006). https://doi.org/10.1007/978-0-387-28677-8_2
  19. Ghassemlooy, Z., Popoola, W. & Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®. (CRC press, 2019).
  20. Kim, I. , McArthur, B. & Korevaar, E. J. Comparison of Laser Beam Propagation at 785 Nm And 1550 Nm In Fog And Haze For Optical Wireless Communications. in Optical Wireless Communications, Proc. SPIE 4214, 26–37 (2001). https://doi.org/10.1117/12.417512
  21. Al Naboulsi, M. Sizun, H. & de Fornel, F. Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43, 319–329 (2004). https://doi.org/10.1117/1.1637611
  22. Brown, R. W. Optical channels. Fibres, clouds, water and the atmosphere. J. Mod. Opt. 36, 552 (1989). https://doi.org/10.1080/09500348914550651
  23. Sree Madhuri, A., Immadi, G. & Venkata Narayana, M. Estimation of effect of fog on terrestrial free space optical communication link. Pers. Commun. 112, 1229–1241 (2020). https:/doi.org/10.1007/s11277-020-07098-4
  24. Friedlander, S. & Topper, L. Turbulence: Classic Papers on Statistical Theory. (Interscience Publishers, 1961).
  25. Kolmogorov, A. The local structure of turbulence in incom-pressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. A 434, 9–13 (1991). https://doi.org/10.1098/rspa.1991.0075
  26. Zhu, X. & Kahn, J. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50, 1293–1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
  27. Dat, P. et al. A Study on Transmission of RF Signals over a Turbulent Free Space Optical Link. in 2008 IEEE Int. Topical Meeting on Microwave Photonics jointly held with 2008 Asia-Pacific Microwave Photonics Conf. 173–176 (2008) https://doi.org/10.1109/MWP.2008.4666664
  28. Makarov, D. , Tretyakov, M. Y. & Rosenkranz, P. W. Revision of the 60-GHz atmospheric oxygen absorption band models for practical use. J. Quant. Spectrosc. Radiat. Transf. 243, 106798 (2020). https://doi.org/10.1016/j.jqsrt.2019.106798
  29. He, Q., Li, J., Wang, Z. & Zhang, L. Comparative study of the 60 GHz and 118 GHz oxygen absorption bands for sounding sea surface barometric pressure. Remote Sens. 14, 2260 (2022). https://doi.org/10.3390/rs14092260
  30. Arvas, M. & Alsunaidi, M. Analysis of Oxygen Absorption at 60 GHz Frequency Band. in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Proc. 2127–2128 (2019) https://doi.org/10.1109/APUSNCURSINRSM.2019.8888884
  31. ITU-R Recomendation. Attenuation Due to Clouds and Fog https://www.itu.int/rec/R-REC-P.840-3-199910-S/en (1999).
  32. Crane, R. A Two-Component Rain Model For the Prediction of Attenuation and Diversity Improvement https://ntrs.nasa.gov/api/citations/19820025716/downloads/19820025716.pdf (1982).
  33. ITU-R Recomendation. Recommendation Itu-R P.838-1 Specific Attenuation Model for Rain for Use in Prediction Methods https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-1-199910-S!!PDF-E.pdf (1999).
  34. Amarasinghe, Y., Zhang, W., Zhang, R., Mittleman, D. & Ma, J. Scattering of terahertz waves by snow. J. Infrared Millim. Terahertz Waves 41, 215–224 (2020). https://doi.org/10.1007/s10762-019-00647-4
  35. Davis, C. , Smolyaninov, I. I. & Milner, S. D. Flexible optical wireless links and networks. IEEE Commun. Mag. 41, 51–57 (2003). https://doi.org/10.1109/MCOM.2003.1186545
Go to article

Authors and Affiliations

Isanaka Lakshmi Priya
1
ORCID: ORCID
Murugappa Meenakshi
1
ORCID: ORCID

  1. Department of Electronics and Communication, Anna University, Guindy, Chennai 600025, India
Download PDF Download RIS Download Bibtex

Abstract

Wireless endoscopic capsules can transmit the picture of the inside of the digestive tract to the external receiver for the purpose of gastrointestinal diseases diagnose. The localization of the capsule is needed to correlate the picture of detected anomalies with the particular fragment of intestine. For this purpose, the analysis of wireless transmission parameters can be applied. Such methods are affected by the impact of the human body on the electromagnetic wave propagation that is specific to the anatomy of individual person. The article presents the algorithm of localization of endoscopic capsules with wireless transmitter based on the detection of phase difference of received signals. The proposed algorithm uses simplified human body models that can change their dielectric properties in each iteration to improve the location of the capsule endoscope. Such approach allows to reduce localization error by around 12 mm (15%) and can by used for patients of different physique without the need of the numerical models of individual body.

Go to article

Authors and Affiliations

Paweł Oleksy
Łukasz Januszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

This study expands on prior studies on wireless telecommunication generations by examining the technological differences and evolutional triggers that characterise each Generation (from 1G to 5G). Based on a systematic literature review approach, this study examines fifty (50) articles to enhance our understanding of wireless generation evolution. Specifically, this study analyses i) the triggers that necessitated the evolution of wireless telecommunication generations and ii) makes a case regarding why it is imperative to look beyond the fifth Generation (5G) network technologies. The authors propose areas for future research.
Go to article

Authors and Affiliations

Godfred Yaw Koi-Akrofi
1
Marcellinus Kuuboore
1
Daniel Adjei Odai
2
Albert Neequaye Kotey
3

  1. IT Studies, University of Professional Studies Accra, Ghana
  2. Vodafone Ghana, Ghana
  3. Ericsson BGH, Ghana
Download PDF Download RIS Download Bibtex

Abstract

This work presents concepts of the use of algorithms inspired by the functions and properties of the nervous system in dense wireless networks. In particular, selected features of the brain consisting of a large number of nerve connections were analyzed, which is why they are a good model for a dense network. In addition, the action of a selected cells from the nervous system (such as neuron, microglia or astrocyte) as well as phenomena observed in it (e.g. neuroplasticity) are presented.

Go to article

Authors and Affiliations

Łukasz Kułacz
Adrian Kliks
Download PDF Download RIS Download Bibtex

Abstract

This article presents a consistent solution of Transmit Power Control in centralized (clustered) wireless network with and without jamming. Depending on the policy assumed, appropriate solutions are applied to minimize the power used in a system or to satisfy expected Quality of Service. Because of specific nature of the system there is no optimal solution which can be applied in practice. Correctness and effectiveness of four proposed Transmit Power Control algorithms was presented in the form of computer simulation results in which the system capacity, mean power used and the number of successful links were described.

Go to article

Authors and Affiliations

Jarosław Michalak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the regression analysis technique is applied to a large water quality dataset for the Sitnica River in Kosovo. It has been done to assess the correlation between water quality parameters. The data are generated by a wireless sensors network deployed in Sitnica. A regression analysis is applied to four water quality parameters: temperature, dissolved oxygen, pH, and electrical conductivity. The correlation between each pair of parameters has been assessed by using the WEKA software package, which is a popular time-saving tool for data analysis in distinct domains. The data are pre-processed to exclude out-of-range values and then the assessment of correlation for the pairs of parameters is applied. In comparison to other pairs of water quality parameters, the results show that dissolved oxygen and electrical conductivity correlate particularly closely with temperature. Regression equations of these two pairs of parameters may provide inferred information on dissolved oxygen and electrical conductivity about the Sitnica River. Such information may otherwise not be available to resource managers in Kosovo. Moreover, due to its easy to use and availability as an open-source software, WEKA may aid decision-makers on the management providing almost real-time information about surface water quality within the basin. This can be particularly useful especially in the case of continuous observation of water quality and a huge dataset gathered by using wireless sensors.
Go to article

Authors and Affiliations

Figene Ahmedi
1
ORCID: ORCID
Shkumbin Makolli
1
ORCID: ORCID

  1. The University of Prishtina, Faculty of Civil Engineering, Hydrotechnic Department, Rr. Agim Ramadani, ndërtesa e “Fakultetit Teknik”, 10000 Prishtina, Kosovo
Download PDF Download RIS Download Bibtex

Abstract

This paper aims at designing, building, and simulating a secured routing protocol to defend against packet dropping attacks in mobile WSNs (MWSNs). This research addresses the gap in the literature by proposing Configurable Secured Adaptive Routing Protocol (CSARP). CSARP has four levels of protection to allow suitability for different types of network applications. The protocol allows the network admin to configure the required protection level and the ratio of cluster heads to all nodes. The protocol has an adaptive feature, which allows for better protection and preventing the spread of the threats in the network. The conducted CSARP simulations with different conditions showed the ability of CSARP to identify all malicious nodes and remove them from the network. CSARP provided more than 99.97% packets delivery rate with 0% data packet loss in the existence of 3 malicious nodes in comparison with 3.17% data packet loss without using CSARP. When compared with LEACH, CSARP showed an improvement in extending the lifetime of the network by up to 39.5%. The proposed protocol has proven to be better than the available security solutions in terms of configurability, adaptability, optimization for MWSNs, energy consumption optimization, and the suitability for different MWSNs applications and conditions.
Go to article

Authors and Affiliations

Ahmed Alnaser
1
Hessa Al-Junaid
1
Reham Almesaeed
1

  1. University of Bahrain, College of Information Technology, Kingdom of Bahrain
Download PDF Download RIS Download Bibtex

Abstract

Wireless Sensor Networks (WSN) acquired a lot of attention due to their widespread use in monitoring hostile environments, critical surveillance and security applications. In these applications, usage of wireless terminals also has grown significantly. Grouping of Sensor Nodes (SN) is called clustering and these sensor nodes are burdened by the exchange of messages caused due to successive and recurring re-clustering, which results in power loss. Since most of the SNs are fitted with nonrechargeable batteries, currently researchers have been concentrating their efforts on enhancing the longevity of these nodes. For battery constrained WSN concerns, the clustering mechanism has emerged as a desirable subject since it is predominantly good at conserving the resources especially energy for network activities. This proposed work addresses the problem of load balancing and Cluster Head (CH) selection in cluster with minimum energy expenditure. So here, we propose hybrid method in which cluster formation is done using unsupervised machine learning based kmeans algorithm and Fuzzy-logic approach for CH selection.
Go to article

Authors and Affiliations

Basavaraj M. Angadi
1
Mahabaleshwar S. Kakkasageri
1

  1. Faculty of Electronics and Communication Engineering Department,Basaveshwar Engineering College, Bagalkote, Karnataka, INDIA
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a novel Substrate Integrated Waveguide (SIW) bandpass filter using Chebyshev approximation and Half Mode Substrate Integrated Waveguide (HMSIW) modeling technique. The developed 3rd order filter structure uses an inductive iris and an inductive post station in a way it resonates in Ka frequency band serving wireless applications. The paper presents in details steps of the filter design formed by specific analytical equations to extract its different synthesizable parameters including coupling matrix, quality factor and initial geometric dimensions. The ideal frequency response of the filter is determined from an equivalent circuit that uses localized elements developed by AWR Microwave Software. High Frequency Structure Simulator (HFSS) is then employed to model the proposed filter structure and optimize its initial parameters until meeting the target specifications initially fixed in order to provide a high frequency response for the proposed filter design. Finally, the obtained results display a good performance for the proposed filter design and demonstrate a high usefulness for the employed technology that allows a low design volume.
Go to article

Bibliography

[1] M. Bozzi, A. Georgiadis, and K.Wu, “Review of Substrate Integrated Waveguide (SIW) Circuits and Antennas,” IET Microwaves, Antennas and Propagation, Vol. 5, N 8,pp. 909-920, June 2011.
[2] W. Hong et al., "Structure Mode Substrate Integrated Waveguide (SIW): A New Guided Wave Structure for Microwave and Millimeter Wave Application,” Proc. Joint 31 st International Conference on Infrared Millimeter Waves and 14 th Intenational Conference on Terahertz Electronics, p.219, Shanghai, Chaina, Sept. 18-22, 2006.
[3] A. Coves, G. Torregrosa-Penalva, A. A. San-Blas, M. A. Sanchez-Soriano, A. Martellosio, E. Bronchalo, and M. Bozzi, “A Novel Band-Pass Filter Based on a Periodically Drilled SIW Structure,” Radio Science, vol. 51, No. 4, pp. 328–336, Apr. 2016.
[4] L. Silvestri, E. Massoni, C. Tomassoni, A. Coves, M. Bozzi, and L. Perregrini, “Modeling and Implementation of Perforated SIW Filters”, 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 209-210, Beijing, China, Jul. 2016.
[5] D. Dealandes, and K. Wu, Single-substrate integration techniques for planarcircuitsand waveguide filters, IEEE Trans. Microwave Theory Tech. 51(2), 2003, 593–596.
[6] S. Moscato, R. Moro, M. Pasian, M. Bozzi, and L. Perregrini, “Two-material ridge substrate integrated waveguide for ultra-wideband applications,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3175–3182, Oct. 2015.
[7] Y.-H.Chun, J.-S.Hong, P. Bao, T. J. Jackson, andM. J. Lancaster, Tunable slotted ground structured bandstop filter with BST varactors, IET Microwaves Antennas Propagation 3(5), 2009, 870–876.
[8] J.-S. Hong, Microstrip Filters for RF/Microwave Applications, New York, NY, USA: Wiley, 2011.
[9] Bouhmidi Rachid, Bouras Bouhafs, Chetioui Mohammed “ Multi-Ports Extraction Technique for Microwave Bandpass Filter Optimization”International Journal of Microwave and Optical Technology (IJMOT) Vol 14, N°06, Nouvember 2019, pp 431-439.
[10] X.-P. Chen and K. Wu, “Substrate integrated waveguide filter: Basic design rules and fundamental structure features,” IEEE Microw. Mag., vol. 15, no. 5, pp. 108–116, Jul./Aug. 2014.
[11] Damou Mehdi, Nouri Keltouma, Chetioui Mohammed, Boudkhil Abdelhakim and Feham Mohamed “A New Technique of Optimization of HMSIW Bandpass Filter with CAR Cells Using Coupling Matrix”, IJMOT Intenational Journal Microwave Optical Technology, Vol.14, No.2, pp. 66-73, March 2019.
[12] F. Parment, A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, “Air-filled substrate integrated waveguide for low-loss and high power handling millimeter-wave substrate integrated circuits,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1228–1238, Apr. 2015.

Go to article

Authors and Affiliations

Mehdi Damou
1
Yassine Benallou
1
Boualem Mansouri
1
Keltouma Nouri
1
Mohammed Chetioui
2
Abdelhakim Boudkhil
2

  1. Laboratory of Technology of Communication, Faculty of Technology, University of Dr. Tahar Moulay of Saida, Algeria
  2. Laboratory of Telecommunications, Faculty of Technology, University of Abu Bakr Belkaid of Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

A novel compact Ultra-Wide-Band Planar Inverted- L antenna is presented and investigated in this paper. The proposed antenna consists of a square planar radiating element with a U-shaped slot. The radiating element is supported by a shorting wall, and fed by a single 50 Ohms characteristic impedance microstripe line, printed on the top of the FR-4 substrate. The ground plane of the antenna is printed on the other side of the substrate. The entire antenna occupies only a small volume of 20mm × 35mm × 4mm, and is capable of operating from 4.2GHz to 8.6GHz (68.75%) and offers a maximum gain of 5.24dB. Therefore, it is suitable for UWB systems and other wireless and mobile technologies and, thus, can be integrated into smartwatch, mobile phones, tablets and laptops. The design of this antenna was carried out using 3D software such as CST studio and Ansoft HFSS to compare and validate the results.
Go to article

Authors and Affiliations

Iman Ben Issa
1
Mohamed Essaaidi
2

  1. Department of Physics, Abdelmalek Essaadi University, Faculty of Science, Tetuan, Morocco
  2. High National School for Computer Scienceand Systems Analysis- Rabat, Mohammed V University, Rabat, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The emerging potentials in the electronics field, which facilitate the creation of complex projects with innovative functionalities, while maintaining low costs, are becoming even more appreciated by designers and engineers. In this manuscript, a telemetry system was designed and realized for monitoring main parameters of a racing vehicle. A STM32 Nucleo board acquires data from sensors installed on vehicle and transmits them to a base station. Acquired data are both stored on a SD card and wirelessly transmitted, for ensuring robustness/reliability of operation. The carried out tests confirm the truthfulness and compatibility of acquired data related to the vehicle parameters.

Go to article

Authors and Affiliations

P. Visconti
B. Sbarro
P. Primiceri
R. de Fazio
A. Lay-Ekuakille
Download PDF Download RIS Download Bibtex

Abstract

The recent decades have seen the growth in the fields of wireless communication technologies, which has made it possible to produce components with a rational cost of a few cubic millimeters of volume, called sensors. The collaboration of many of these wireless sensors with a basic base station gives birth to a network of wireless sensors. The latter faces numerous problems related to application requirements and the inadequate abilities of sensor nodes, particularly in terms of energy. In order to integrate the different models describing the characteristics of the nodes of a WSN, this paper presents the topological organization strategies to structure its communication. For large networks, partitioning into sub-networks (clusters) is a technique used to reduce consumption, improve network stability and facilitate scalability.
Go to article

Authors and Affiliations

Sarang Dagajirao Patil
1
Pravin Sahebrao Patil
2

  1. NES Gangamai College of Engineering, Nagaon, Dhule, Maharashta, India
  2. Dept. of E&C Engineering SSVPSBSD College of Engineering Dhule, Maharashtra, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a circuit structure that can be used for powering an IoT (Internet of Things) sensor node and that can use energy just from its surroundings. The main advantage of the presented solution is its very low cost that allows mass applicability e.g. in the IoT smart grids and ubiquitous sensors. It is intended for energy sources that can provide enough voltage but that can provide only low currents such as piezoelectric transducers or small photovoltaic panels (PV) under indoor light conditions. The circuit is able to accumulate energy in a capacitor until a certain level and then to pass it to the load. The presented circuit exhibits similar functionality to a commercially available EH300 energy harvester (EH). The paper compares electrical properties of the presented circuit and the EH300 device, their form factors and costs. The EH circuit’s performance is tested together with an LTC3531 buck-boost DC/DC converter which can provide constant voltage for the following electronics. The paper provides guidelines for selecting an optimal capacity of the storage capacitor. The functionality of the solution presented is demonstrated in a sensor node that periodically transmits measured data to the base station using just the power from the PV panel or the piezoelectric generator. The presented harvester and powering circuit are compact part of the sensor node’s electronics but they can be also realized as an external powering module to be added to existing solutions.

Go to article

Authors and Affiliations

Adam Bouřa
Download PDF Download RIS Download Bibtex

Abstract

In paper we present a case study of the radio dispatching communications for providing the voice service during mass events of the “Lednica 2000” Youth Meetings. The presentation is supported by over 20-year experience in organization of this event every year. We also describe a FM radio system deployed during this meeting for broadcasting the English translation.

Go to article

Authors and Affiliations

Henryk Gierszal
Jacek Jarzina
Sławomir Fryska
Sylwia Fryska
Download PDF Download RIS Download Bibtex

Abstract

The subject of the article is the design and practical implementation of the wireless mesh network. IQRF radio modules were used for the network design. The IQRF® technique has enabled the construction of a mesh network with the possibility of reconfiguration. The theoretical part contains a description of the IQRF® hardware solutions used. The practical scope includes the design part, where the configuration of the radio modules was carried out and the parameters of the radio network were set to allow its implementation in various topologies. Then, a wireless network consisting of 10 IQRF modules was launched in the P3 building of the Opole University of Technology. At this stage, configured radio modules were placed in selected rooms on all five floors of the building in order to carry out tests of the radio network constructed in this way. The tests included measuring the packet transmission delay time as well as the received signal strength. Research was carried out for several network topologies.

Go to article

Authors and Affiliations

Sławomir Pluta
Patryk Roszkowski
Download PDF Download RIS Download Bibtex

Abstract

With the development of wireless power transfer technology, more and more attention has been paid to its electromagnetic safety. In this paper, a novel hybrid shielding structure composed of the innermost fan-shaped ferrite, the interlayer nanocrystalline strip and the outermost aluminum foil is proposed to shield the electromagnetic field of the inductive power transfer system. Eight structure parameters of the proposed shielding are optimized by finite element simulation, in order to reduce the magnetic leakage of the system and improve the utilization rate of shielding materials. In addition, the proposed structure is compared with two types of typical double-layer hybrid shielding from the perspectives of the weight, the coupling coefficient and the magnetic flux leakage. Both simulation and experiment results show that the cost and weight of the proposed shield are about 60% lower than the traditional disk shield. Moreover, the shielding layer proposed in this paper can not only effectively reduce the magnetic flux leakage of the system, but also maintain a high coupling coefficient.
Go to article

Bibliography

[1] Zhang Z., Pang H., Georgiadis A., Cecati C., Wireless Power Transfer—An Overview, IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1044–1058 (2019).
[2] Kalwar K.A., Aamir M., Mekhilef S., Inductively coupled power transfer (ICPT) for electric vehicle charging – A review, Renewable and Sustainable Energy Reviews, vol. 47, pp. 462–475 (2015).
[3] Machura P., Li Q., A critical review on wireless charging for electric vehicles, Renewable and Sustainable Energy Reviews, vol. 104, pp. 209–234 (2019).
[4] Li H., Wang C., Liu Y., Yue R., Research on Single-Switch Wireless Power Transfer System Based on SiC MOSFET, IEEE Access, vol. 7, pp. 163796–163805 (2019).
[5] Zheng J., Wang C., Xia D., Design and analysis of the ferrite air-gapped cores for a resonant inductor[ J], Archives of Electrical Engineering, vol. 67, pp. 579–589 (2018).
[6] Xu H., Wang C., Xia D., Liu Y., Design of Magnetic Coupler for Wireless Power Transfer, Energies, vol. 12, no. 15 (2019).
[7] Christ A., Douglas M.,Nadakuduti J.,Kuster N., Assessing Human Exposure to Electromagnetic Fields from Wireless Power Transmission Systems, Proceedings of the IEEE, vol. 101, no. 6, pp. 1482–1493 (2013).
[8] Ding P., Bernard L., Pichon L., Razek A., Evaluation of Electromagnetic Fields in Human Body Exposed to Wireless Inductive Charging System, IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 1037–1040 (2014).
[9] International Commission on Non-Ionizing Radiation Protection Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Health Phys., vol. 99, pp. 818–836 (2010).
[10] Tan L., Elnail K.E.I., Ju M., Huang X., Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs, Energies, vol. 12, no. 11 (2019).
[11] Choi S.Y., Gu B.W., Lee S.W., Lee W.Y., Huh J., Rim C.T., Generalized Active EMF Cancel Methods forWireless Electric Vehicles, IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 5770–5783 (2014).
[12] Zhu Q., Zhang Y., Guo Y., Liao C.,Wang L.,Wang L., Null-Coupled Electromagnetic Field Canceling Coil for Wireless Power Transfer System, IEEE Transactions on Transportation Electrification, vol. 3, no. 2, pp. 464–473 (2017).
[13] Zeng H., Liu Z., Hou Y., Hei T., Zhou B., Optimization of Magnetic Core Structure for Wireless Charging Coupler, IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1–4 (2017).
[14] Houji L., Chunfang W., Zhihao W., Dan L., Research of shield structure for wireless power transfer system, Advanced Technology of Electrical Engineering and Energy, vol. 38, no. 5, pp. 74–83 (2019).
[15] Stergiou C.A., Zaspalis V., Impact of Ferrite Shield Properties on the Low-Power Inductive Power Transfer, IEEE Transactions on Magnetics, vol. 52, no. 8, pp. 1–9 (2016).
[16] Wen F., Huang X., Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System, Energies, vol. 9, no. 9 (2016).
[17] Li J., Huang X., Chen C., Tan L., Wang W., Guo J., Effect of metal shielding on a wireless power transfer system, AIP Advances, vol. 7, no. 5 (2017).
[18] Park H.H.,Kwon J.H.,Kwak S.I., Ahn S., Magnetic Shielding Analysis of a Ferrite Plate with a Periodic Metal Strip, IEEE Transactions on Magnetics, vol. 51, no. 8, pp. 18 (2015).
[19] Park H.H., Kwon J.H., Kwak S.I., Ahn S., Effect of Air-Gap Between a Ferrite Plate and Metal Strips on Magnetic Shielding, IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–4 (2015).
[20] Kim H., Song C., Kim D., Jung D.H., Kim I., Kim Y., Kim J., Ahn S., Kim J., Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage, IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 1–18 (2016).
[21] Kim S., Covic G.A., Boys J.T., Tripolar Pad for Inductive Power Transfer Systems for EV Charging, Transactions on Power Electronics, vol. 32, no. 7, pp. 5045–5057 (2017).
[22] Kim M., Byun J., Lee B.K., Performance Analysis of Magnetic Power Pads for Inductive Power Transfer Systems with Ferrite Structure Variation, Journal of Electrical Engineering and Technology, vol. 12, pp. 1211–1218 (2017).
[23] Budhia M., Boys J.T., Covic G.A., Huang C., Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems, IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318–328 (2013).
Go to article

Authors and Affiliations

Yun Rui Liu
1
Chunfang Wang
1
Dongwei Xia
1
Rui Yue
1

  1. Qingdao University, China
Download PDF Download RIS Download Bibtex

Abstract

Non-orthogonal multiple access (NOMA) has received tremendous attention for the development of 5G and beyond wireless networks. Power-domain NOMA works on the concept of assigning varying power levels to users within the same frequency and time block. In this paper we propose a novel power allocation approach that uses the Zipf distribution law that satisfies the basic condition of a NOMA system. The Zipf PA is characterized by the simplicity and ease of implementation that allows to extend the capacity of the system to support a large number of users. The numerical results show that the system achieves high throughput and energy efficiency without any parameter optimization constraints as well as improved capacity by increasing the number of users compared to the NOMA system with existing power allocation techniques.
Go to article

Authors and Affiliations

Hanane Himeur
1
Sidi Mohammed Meriah
1
Fouad Derraz
1

  1. Faculty of Technology, University of Abou Bekr Belkaid, Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This study proposes the LoRa-Based Mesh Sensor Network without relying on LoRaWAN connection sending the communication data in the form of Star-to-Star, it can be sends the data in the form of peer-to-peer without the gateway. In the case that a longer distance is needed, the system is connected by a means of multi-hop presenting the hardware and software model through the use of low voltage power. Then, the testing is done using point to point and the received signal is measured by a gauge and compared with the model in accordance with the theoretical principle.
Go to article

Authors and Affiliations

Jarun Khonrang
1
Mingkwan Somphruek
1
Pairoj Duangnakhorn
1
Atikhom Siri
1
Kamol Boonlom
2

  1. Chiang Rai Rajabhat University, Thailand
  2. University of Leeds, United of Kingdom
Download PDF Download RIS Download Bibtex

Abstract

We designed, fabricated, and evaluated a monopole water antenna (WA) filled with pure water. A 2.4 GHz patch antenna (PA) was used for measurement comparison, and the current density distribution and 3D field strength radiation distribution and reflection coefficient of the PA had a fundamental mode and a higher-order mode at 3.5 GHz, whose polarization was 90 degrees different. The 2.4 GHz monopole WA could receive only the fundamental mode of the PA. The 3.5 GHz WA could receive the higher-order mode of the PA by rotating the WA by 90 degrees. The transmission coefficient of the 2.4 GHz WA decreased with the square of the spacing, similar to the spatial propagation characteristics of electromagnetic waves. Almost the same results could be expected if planar or three-dimensional antennas were used instead of monopole electrodes.
Go to article

Authors and Affiliations

Koyu Chinen
1
Ichiko Kinjo
2

  1. GLEX, Yokohama, Japan
  2. Information and Communication System Engineering, Dept., National Institute of Technology, Okinawa College, Nago, Japan
Download PDF Download RIS Download Bibtex

Abstract

One of the ways to improve calculations related to determining the position of a node in the IoT measurement system is to use artificial neural networks (ANN) to calculate coordinates. The method described in the article is based on the measurement of the RSSI (Received Signal Strength Indicator), which value is then processed by the neural network. Hence, the proposed system works in two stages. In the first stage, RSSI coefficient samples are taken, and then the node location is determined on an ongoing basis. Coordinates anchor nodes (i.e. sensors with fixed and previously known positions) and the matrix of RSSI coefficients are used in the learning process of the neural network. Then the RSSI matrix determined for the system in which the nodes with unknown positions are located is fed into the neural network inputs. The result of the work is a system and algorithm that allows determining the location of the object without processing data separately in nodes with low computational performance.

Go to article

Authors and Affiliations

Beata Krupanek
Ryszard Bogacz
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the development of a method for increasing the efficiency of communication channels of unmanned aerial vehicles (UAVs) in the conditions of electronic warfare (EW). The author analyses the threats that may be caused by the use of electronic warfare against autonomous UAVs. A review of some technologies that can be used to create original algorithms for countering electronic warfare and increasing the autonomy of UAVs on the battlefield is carried out. The structure of modern digital communication systems is considered. The requirements of unmanned aerial vehicle manufacturers for onboard electronic equipment are analyzed, and the choice of the hardware platform of the target radio system is justified. The main idea and novelty of the proposed method are highlighted. The creation of a model of a cognitive radio channel for UAVs is considered step by step. The main steps of modelling the spectral activity of electronic warfare equipment are proposed. The main criteria for choosing a free spectral range are determined. The type of neural network for use in the target cognitive radio system is substantiated. The idea of applying adaptive coding in UAV communication channels using multicomponent turbo codes in combination with neural networks, which are simultaneously used for cognitive radio, has been further developed.
Go to article

Authors and Affiliations

Serhii Semendiai
1
Yuliіa Tkach
1
Mykhailo Shelest
1
Oleksandr Korchenko
2
Ruslana Ziubina
3
Olga Veselska
3

  1. Chernihiv Polytechnic NationalUniversity, Chernihiv, Ukraine
  2. Department of Information Technology Security of National Aviation University, Kyiv, Ukraine
  3. Department of Computer Science andAutomatics of the University of Bielsko-Biala, Bielsko-Biala, Poland
Download PDF Download RIS Download Bibtex

Abstract

The ergodic channel capacity of wireless optical multiple-input multiple-output (MIMO) system with pulse position modulation (PPM) is investigated. The combined effects of atmospheric turbulence, atmospheric attenuation, pointing error and channel spatial correlation are taken into consideration. The expression of ergodic channel capacity is derived, and is further performed by Wilkinson approximation method for simplicity. The simulation results indicated that the strong spatial correlation has the greatest influence on the ergodic channel capacity, followed by pointing errors and atmospheric turbulence. Moreover, the ergodic channel capacity growth brought by space diversity only performs well under independent and weakly correlated channels. Properly increasing the size and spacing of the receiving apertures is an effective means of effectively increasing the ergodic channel capacity.
Go to article

Bibliography

[1] N. Joshi and P. K. Sharma, “Performance of wireless optical communication in S-distributed turbulence,” IEEE Photonic Technology Letters, vol. 28, no. 2, pp. 151-154, Oct. 2016. DOI: 10.1109/LPT.2015.2487605
[2] J. Anshul, and M. R. Bhatnagar, “Free-space optical communication: a diversity-multiplexing trade-off perspective,” IEEE Transactions on Information Theory, vol. 65, no. 2, pp. 1113-1125, 2019. DOI: 10.1109/TIT.2018.2856116.
[3] P. Kaur, V. K. Jain, and S. Kar, “Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions,” Communications Iet, vol. 9, no. 8, pp. 1104-1109, May. 2015. DOI: 10.1049/iet-com.2014.0926
[4] Y. Zhang, H. Yu, J. Zhang, and Y. Zhu, “Space codes for MIMO optical wireless communications: Error performance criterion and code construction,” IEEE Transcation on Wireless Communication, vol. 16, no. 5, pp. 3072-3085, 2017. DOI: 10.1109/TWC.2017.2675398
[5] D. A. Luong, T. C. Thang, and A. T. Pham, “Average capacity of MIMO/FSO systems with equal gain combining over log-normal channels,” International Conference on Ubiquitous & Future Networks. IEEE, pp. 306-309, Jul. 2013. DOI: 10.1109/ICUFN.2013.6614831
[6] H. S. Khallaf, and H. M. H. Shalaby, “Closed form expressions for SER and capacity of shot noise limited MIMO-FSO system adopting MPPM over gamma-gamma atmospheric turbulence channels,” IEEE Photonics Conference, CA, USA, Oct. 2014, pp. 619-620. DOI: 10.1109/IPCon.2014.6995292
[7] L. Han and Y. You, “Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation,” Chinese Journal of Lasers, vol. 43, no. 7, pp. 0706004, July 2016. DOI: 10.3788/CJL201643.0706004
[8] I. A. Alimi, A. M. Abdalla, J. Rodriguez, P. P. Monteiro, and A. L. Teixeira, “Spatial interpolated lookup tables (LUTs) models for ergodic capacity of MIMO FSO systems,” IEEE Photonics Technology Letters, vol. 29, no. 7, pp. 583-586, Apr. 2017. DOI: 10.1109/LPT.2017.2669337
[9] G. Yang, M. A. Khalighi, Z. Gassemlooy, and S. Bourennane, “Performance analysis of space-diversity free-space optical systems over the correlated Gamma-Gamma fading channel using Padé approximation method,” IET Communications, vol. 8, no. 13, pp. 2246- 2255, Sept. 2014. DOI: 10.1049/iet-com.2013.0962
[10] H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and Seiichi Sampei, “SER analysis of MPPM-Coded MIMO-FSO system over uncorrelated and correlated Gamma-Gamma atmospheric turbulence channels,” Optics Communications, vol. 356, pp. 530-535, Aug. 2015. DOI: 10.1016/j.optcom.2015.08.060 [11] M. Petkovic, J. Anastasov, G.T. Djordjevic, and P. Ivanis, “Impact of correlation on outage performance of FSO system with switch-and-stay diversity receiver,” 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 2756–2761, DOI: 10.1109/ICC.2015.7248743. [12] T. Ozbilgin, and M. Koca, “Inter-aperture correlation in MIMO free space optical systems,” Optics Communications, vol. 353, pp. 139–146, May. 2015. DOI: 10.1016/j.optcom.2015.05.025. [13] A. Garacia-Zambrana, B. Castillo-Vazquez, and C. Castillo-Vazquez, “Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors,” Optics Express, vol. 20, no. 3, pp. 2096-2109, Jan. 2012. DOI: 10.1364/OE.20.002096 [14] M. R. Bhatnagar, and Z. Ghssemlooy, “Performance analysis of Gamma–Gamma fading FSO MIMO links with pointing errors,” Journal of Lightwave Technology, vol. 34, no. 9, pp. 2158-2169, May 2016. DOI: 10.1109/JLT.2016.2526053 [15] I. E. Lee, Z. Ghassemlooy, W. P. Ng, M. A. Khalighi, and S. K. Liaw, “Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors,” Applied Optics, vol. 55, no. 1, pp. 1-9, Feb. 2016. DOI: 10.1364/AO.55.000001 [16] H. Zhang, H. Li, D. Xiao, and S. Ning, “Performance analysis of spatial-diversity reception over combined effects of atmospheric turbulence,” Chinese Journal of Lasers, vol. 43, no. 4, pp. 0405002, Apr. 2016. DOI: 10.3788/CJL201643.0405002 [17] C. Martin and B. Ottersten, “Asymptotic eigenvalue distributions and capacity for MIMO channels under correlated fading,” IEEE Transcations on Wireless Communications, vol. 3, no. 4, pp. 1350-1359, Aug. 2004. DOI: 10.1109/TWC.2004.830856 [18] H. Moradi, M. Falahpour, H.Refai, and P. Lopresti, “BER analysis of optical wireless signals through lognormal fading channels with perfect CSI,” IEEE 17th International Conference on Telecommunications (ICT ‘10), Doha, pp. 493-497, 2010. DOI: 10.1109/ICTEL.2010.5478870 [19] S. L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation matrix,” IEEE Communications Letters, vol. 5, no. 9, pp. 369-371, Oct. 2001. DOI: 10.1109/4234.951380
Go to article

Authors and Affiliations

Minghua Cao
1
Yue Zhang
1
Zhongjiang Kang
1
Huiqin Wang
1

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
Download PDF Download RIS Download Bibtex

Abstract

Compared with traditional cellular networks, wireless ad hoc networks do not have trusted entities such as routers, since every node in the network is expected to participate in the routing function. Therefore, routing protocols need to be specifically designed for wireless ad hoc networks. In this work, we propose an authenticated routing protocol based on small world model (ARSW). With the idea originating from the small world theory, the operation of the protocol we proposed is simple and flexible. Our simulation results show the proposed ARSW not only increases packet delivery ratio, but also reduces packet delivery delay. In particularly, Using authentication theory, the proposed ARSW improves communication security.
Go to article

Bibliography

[1] Elizabeth M. Royer, Chai-Keong Toh. A review of current routing protocols for ad-hoc mobile wireless networks. IEEE Personal Communications, 6(2): 46-55, 1999.
[2] Jorge E. O. T., Molina J. L. B., Miguel A. S. L. Simulation and evaluation of ad hoc networks under different mobility models. Ingeniería E Investigación, 23(3): 44-50, 2003.
[3] Tianbo L., Hao C. Anonymous routing protocols for mobile ad-hoc networks. International Journal of Security and its Applications, 10(4): 229-240, 2016.
[4] Banala R., Sakthivel M. A review on delay-minimized routing protocol in mobile cognitive ad hoc networks. International Journal of Computer Sciences & Engineering, 6(7): 991-996, 2018.
[5] Prabhavat S. , Narongkhachavana W. , Thongthavorn T. , et al. Low Overhead Localized Routing in Mobile Ad Hoc Networks. Wireless Communications & Mobile Computing, 2019, 6(4): 1-15.
[6] Shanmugasundaram D. , Shanavas A. R. M. Avoidance Cosmic Dust implementing in Ad Hoc on-demand Distance Vector (CDA AODV) Routing Protocol [J]. International Journal of Computer Sciences & Engineering, 2019, 7(4): 995-1005.
[7] Kothandaraman D., Chellappan C., . Energy Efficient Node Rank-Based Routing Algorithm in Mobile Ad-Hoc Networks. International Journal of Computer Networks & Communications, 2019, 11(1):45-61.
[8] Shanmugasundaram D., Shanavas A. R. M. . Avoidance Cosmic Dust implementing in Ad Hoc on-demand Distance Vector (CDA AODV) Routing Protocol. International Journal of Computer Sciences & Engineering, 2019, 7(4):995-1005.
[9] Kim, C., Talipov, E., & Ahn, B. A reverse aodv routing protocol in ad hoc mobile networks. Lecture Notes in Computer Science, pp. 522-531. 2016.
[10] Navjot K., Ashok K., & Daviet J. (2011). Comparison and analysis of RREQ and RREP for dynamic wireless network. Indian Journal of Computer Science & Engineering, 2(3), 73-78, 2011.
[11] Kargl F., Schlott S. & Weber M. (2004). Securing ad hoc routing protocols, Proceedings. 30th Euromicro Conference, 2004., Rennes, France, pp. 514-519.
[12] Kumar S., Dhull K., Sharma D., et al. Evaluation of AODV and DYMO Routing Protocol using Generic, Micaz and Micamotes Energy Conservation Models in AWSN with Static and Mobile Scenario [J]. Scalable Computing, 2019, 20(4):653-661.
[13] Watts D.J. & Strogatz S.H. (1998), Collective dynamics of ‘small-world’ networks, Nature, 1998, 393(6684): 440–442.
[14] Qin Y , Guo D , Luo L , et al. Design and optimization of VLC based small-world data centers [J]. Frontiers of Computer Science in China, 2019, 13(5):1034-1047.
[15] Qiu T.p, Liu X., Li K., et al. Community-Aware Data Propagation with Small World Feature for Internet of Vehicles [J]. IEEE Communications Magazine, 2018, 56(1):86-91.
[16] Reka A., Hawoong J., & Albert-Laszlo B. Error and attack tolerance of complex networks. Nature. 406(6794):378-382, 2004.
[17] Guidoni, D. L. , Mini, R. A. F. , & Loureiro, A. A. F. On the design of resilient heterogeneous wireless sensor networks based on small world concepts. Computer Networks, 54(8):1266-1281, 2009.
[18] Zhang, J. & Elkashlan M., A small world network model for energy efficient wireless networks, IEEE Communication. Lett., 17(10): 1928–1931, 2013.
[19] Zarepour, M., Universal and non-universal neural dynamics on small world connectomes: A finite-size scaling analysis. Physical Review E. 100 (5): 52138, 2019.
[20] Tefan G. Small directed strongly regular graphs. Algebra Colloquium, 27(1), 11-30, 2020.
[21] Zhang L. & Tang Y. Research on the method of improving network security based on small world model. 40(13):136-139, 2005.
[22] Oscar P. Sarmiento, F. G. Guerrero, D. R.(2008) Basic security measures for IEEE 802.11 wireless networks. Ingenieria E Investigación, 28(2):89-96. 2008.
[23] Wu J. &Yang S. Logarithmic Store-Carry-Forward Routing in Mobile Ad Hoc Networks. IEEE Trans. on Parallel and Distributed Systems, 18(6): 735-748, 2007.
[24] Anhong Zhong. Research on Mobile Ad Hoc Network Routing Protocol Based on Small World Theory [D]. Xidian University, 2011.
[25] Li Yong, Li Wei, Zhao Weiquan, Optimization for Dynamic Source Routing Based on the Small-world Theory [J], Computer Engineering, 2005 (9):102-104.
Go to article

Authors and Affiliations

Daxing Wang
1
Leying Xu
1

  1. College of Mathematics and Finance, Chuzhou University
Download PDF Download RIS Download Bibtex

Abstract

This paper presents some construction analysis and test results of a Free Space Optics system operating at the wavelength of 9.35 μm. In the system, a quantum cascade laser and a photoreceiver with mercury cadmium telluride photodetectors were used. The main parameters of these elements were discussed taking into account a data link operation. It also provides to determine a data range for various weather conditions related to scattering and scintillation. The results of numerical analyses defined the properties of currently available FSO technologies working in the near infrared or in the short infrared range of spectrum versus the performances of the developed system. The operation of this system was verified in three different test environments. The obtained results may also contain important issues related to the practical application of any FSO system.

Go to article

Authors and Affiliations

Janusz Mikolajczyk
Dariusz Szabra
Artur Prokopiuk
Krzysztof Achtenberg
ORCID: ORCID
Jacek Wojtas
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID

This page uses 'cookies'. Learn more