Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A novelty dual-stator brushless doubly-fed generator (DSBDFG) with magneticbarrier rotor structure is put forward for application in wind power. Compared with a doublyfed induction generator, the DSBDFG has virtues of high reliability and low maintenance costs because of elimination of brush and sliprings components. Therefore, the proposed structure has tremendous potential as a wind power generator to apply in wind power. According to the operating principle of electric machine, the DSBDFG is studied in wind power application. At first, the topology, the winding connecting, the rotor structure, the power flow chart of different operating models and the variable speed capability of electric machine are discussed and analyzed. Then, a 50 kW DSBDFG is designed. Based on the principal dimension of the design electric machine, the electromagnetic characteristics of the DSBDFG with different running modes are analyzed and calculated to adopt the numerical method. From the result, it meets the requests of electromagnetic consistency and winding connecting in the design electric machine. Meanwhile, it confirms the proposed DSBDFG has the strong ability of speed regulation.
Go to article

Authors and Affiliations

Hao Liu
1
Yakai Song
1
Chunlan Bai
2
Guofeng He
1
Xiaoju Yin
3

  1. School of Electrical and Control Engineering, Henan University of Urban Construction, Longxiang Avenue, Xincheng District, Pingdingshan, China
  2. School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Longxiang Avenue, Xincheng District, Pingdingshan, China
  3. Department of Renewable Energy, Shenyang Institute of Engineering, No. 18 Puchang Road, Shenbei New District, Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the research into the design and performance analysis of a novel five-phase doubly-fed induction generator (DFIG). The designed DFIG is developed based on standard induction motor components and equipped with a five-phase rotor winding supplied from the five-phase inverter. This approach allows the machine to be both efficient and reliable due to the ability of the five-phase rotor winding to operate during single or dual-phase failure. The paper presents the newly designed DFIG validation and verification based on the finite element analysis (FEA) and laboratory tests.
Go to article

Authors and Affiliations

Roland Ryndzionek
1
ORCID: ORCID
Krzysztof Blecharz
1
ORCID: ORCID
Filip Kutt
1
ORCID: ORCID
Michał Michna
1
ORCID: ORCID
Grzegorz Kostro
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Electrical and Control Engineering, Gabriela Narutowicza str. 11/12, 80-233 Gdansk, Poland

This page uses 'cookies'. Learn more