Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper relates to the problem of adaptation of V-block methods to waviness measurements of cylindrical surfaces. It presents the fundamentals of V-block methods and the principle of their application. The V-block methods can be successfully used to measure the roundness and waviness deviations of large cylinders used in paper industry, shipping industry, or in metallurgy. The concept of adaptation of the V-block method to waviness measurements of cylindrical surfaces was verified using computer simulations and experimental work. The computer simulation was carried out in order to check whether the proposed mathematical model and V-block method parameters are correct. Based on the simulation results, a model of measuring device ROL-2 for V-block waviness measurements was developed. Next, experimental research was carried out consisting in evaluation of waviness deviation, initially using a standard non-reference measuring device, and then using the tested device based on the V-block method. Finally, accuracy of the V-block experimental method was calculated.
Go to article

Authors and Affiliations

Stanisław Adamczak
Paweł Zmarzły
Dariusz Janecki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a spectral formulation of surface profile irregularity in a wideband frequency range for roughness, waviness and shape components along the measured length. A unique distribution of roughness and waviness components is proposed, according to the nature of their origination in the course of machining with tools of defined cutting edge, as distinct from standard filtration in measurements of surface irregularities. Differences resulting from both formulations are outlined as well as the method of determining the frequency of component separation for surface roughness and waviness.

Go to article

Authors and Affiliations

Adam Boryczko
Download PDF Download RIS Download Bibtex

Abstract

The application of 3D printers significantly improves the process of producing foundry patterns in comparison to traditional methods of their production. It should be noted that the quality of the surface texture of the foundry pattern is crucial because it affects the quality of the casting mold and eventually the finished casting. In most studies, the surface texture is examined by analyzing the 2D or 3D roughness parameters. This is a certain limitation because, in the case of 3D printing, the influence of technological parameters is more visible for irregularities of a longer range, such as surface waviness. In the paper, the influence of the 3D printing layer thickness on the formation of waviness of the surface of casting patterns was analyzed. Three 3D printers, differing in terms of printing technology and printing material, were tested: PJM (PolyJet Matrix), FDM (fused deposition modeling) and SLS (selective laser sintering). In addition, the surface waviness of patterns manufactured with traditional methods was analyzed. Surface waviness has been measured using the Form Talysurf PGI 1200 measuring system. Preliminary results of the research showed that the layer thickness significantly influences the values of waviness parameters of the surface in the casting patterns made with FDM, PJM and SLS additive technologies. The research results indicated that the smallest surface waviness as defined by parameters Wa, Wq and Wt was obtained for patterns printed using the PJM technology, while the highest was noted when using the FDM technology.
Go to article

Authors and Affiliations

Paweł Zmarzły
1
ORCID: ORCID
Damian Gogolewski
1
Tomasz Kozior
1

  1. Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Waviness is a parameter used to complete information on the machined surface state. There is little scientific and technical information on the influence exerted by the cutting conditions and the workpiece material hardness on the values of some parameters that define the waviness of milled surface. No works have been identified to present such information for dry high-speed face milling applied to hard steel workpieces. A factorial experiment with four independent variables at three variation levels was planned to model the influence of milling speed, feed, cutting depth, and steel hardness on the total heights of the profile and surface waviness for dry high-speed face milling. Mathematical processing of experimental results was used to identify the power type function and empirical mathematical models. These models highlight the direction of variation and the intensity of influence exerted by the considered input factors on the values of two waviness parameters in the case of dry high-speed face milling of samples made of four hard steels. It has been observed that the increase in steel hardness increases the total heights of the profile and surface waviness. In the case of two types of steel, a good correlation was identified between the values of the total profile waviness height and the total surface waviness height, respectively, using the Pearson correlation coefficient.
Go to article

Bibliography

[1] Vakondios, D., Kyratsis, P., Yaldiz, S., & Antoniadis, A. (2012). Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy Al7075-T6. Measurement, 45(6), 1480–1488. https://doi.org/10.1016/j.measurement.2012.03.001
[2] Raja, J., Muralikrishnan, B., Fu, S., & Liu, X., (2002). Recent advances in separation of roughness, waviness and form. Precision Engineering, 26(2), 222–235. https://doi.org/10.1016/S0141-6359 (02)00103-4
[3] Clarysse, F., & Vermeulen, M. (2004). Characterizing the surface waviness of steel sheet: reducing the assessment length by robust filtering. Wear, 257(12), 1219–1225. https://doi.org/10.1016/j.wear.2004.04.006
[4] Mezghani, S., & Zahouani, H. (2004). Characterization of the 3D waviness and roughness motifs. Wear, 257(12), 1250–1256. https://doi.org/10.1016/j.wear.2004.04.006
[5] Lingadurai, K., & Shunmugam, M. S. (2006). Metrological characteristics of wavelet filter used for engineering surfaces. Measurement, 39(7) 575–584. https://doi.org/10.1016/j.measurement.2006.02.003
[6] Gogolewski, D., & Makiela, W. (2018). Application of wavelet transform to determine surface texture constituents. In Durakbasa, N. M., Gencyilmaz, M. G. (Eds.). Proceedings of the International Symposium for Production Research 2018, (pp. 224–231). Springer. https://doi.org/10.1007/978-3-319-92267-6_19
[7] Gogolewski, D. (2020). Influence of the edge effect on the wavelet analysis process. Measurement, 152, 107314. https://doi.org/10.1016/j.measurement.2019.107314
[8] Toteva, P., & Koleva, K. (2019). Application of new generation geometrical product specifications in the practice in small and medium sized enterprises. MTeM 2019. MATEC Web of Conferences, 299, 04006. https://doi.org/10.1051/matecconf/201929904006
[9] Boryczko, A. (2010). Distribution of roughness and waviness components of turned surface profiles. Metrology and Measurement Systems, 17(4), 611–620. https://doi.org/10.2478/v10178-010-0050-4
[10] Boryczko, A. (2011). Profile irregularities of turned surfaces as a result of machine tool interactions. Metrology and Measurement Systems, 18(4) 691–700. https://doi.org/10.2478/v10178-011-0065-5
[11] Boryczko, A. (2013). Effect of waviness and roughness components on transverse profiles of turned surfaces. Measurement, 46(1), 688–696. https://doi.org/10.1016/j.measurement.2012.09.007
[12] Wieczorowski, M., Cellary, A., & Majchrowski, R. (2010). The analysis of credibility and reproducibility of surface roughness measurement results. Wear, 269(5-6), 480–484. https://doi.org/10.1016/j.wear.2010.05.003
[13] Jiang, L., Yahya, E., Ding, G., Hu, M., & Qin, S. (2013). The research of surface waviness control method for 5-axis flank milling. International Journal of Advanced Manufacturing Technology, 69, 835–847. https://doi.org/10.1007/s00170-013-5041-7
[14] Cai, C., Liang, X., An, Q., Tao, Z., Ming, W., & Ming Chen, M. (2021). Cooling/lubrication performance of dry and supercritical CO2-based minimum quantity lubrication in peripheral milling Ti-6Al-4V. International Journal of Precision Engineering and Manufacturing – Green Technology, 8(5), 405–421. https://doi.org/10.1007/s40684-020-00194-7
[15] Gusev, V. G., & Fomin, A. A. (2017). Multidimensional model of surface waviness treated by shaping cutter. Procedia Engineering, 206, 286–292. https://doi.org/10.1016/j.proeng.2017.10.475
[16] Nimel Sworna Ross, K., & Manimaran, G. (2019). Effect of cryogenic coolant on machinability of difficult to machine Ni-Cr alloy using PVD TiAlN coatedWC tool. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 44. https://doi.org/10.1007/s40430-018-1552-3
[17] Chen, B., Li, S., Deng, Z., Guo, B., & Zhao, Q. (2017). Grinding marks on ultra-precision grinding spherical and aspheric surfaces. International Journal of Precision Engineering and Manufacturing – Green Technology, 4, 419–429. https://doi.org/10.1007/s40684-017-0047-5
[18] Yan, G., You, K., & Fang, F. (2020). Three-linear-axis grinding of small aperture aspheric surfaces. International Journal of Precision Engineering and Manufacturing – Green Technology, 7, 997–1008. https://doi.org/10.1007/s40684-019-00103-7
[19] Legutko, S., Kluk, P., & Stoic, A. (2011). Research of the surface roughness created during pull broaching process. Metalurgija-Sisak then Zagreb, 50(4), 245–248.
[20] International Organization for Standardization. (1996). Geometrical Product Specifications (GPS) – Surface texture: Profile method – Motif parameters (ISO 12085:1996(en)). https://www.iso.org/obp/ui/#iso:std:iso:12085:ed-1:v1:en
[21] Stephenson, D. A, & Agapiou, J. S. (2016). Metal Cutting Theory and Practice. Third edition. CRC Press. https://doi.org/10.1201/978131537311
[22] Besliu, I. (2013). Contributions to the study of the high-speed milling process of some hard materials [Doctoral dissertation, Gheorghe Asachi Technical University]. (in Romanian)
[23] Pawlus, P., Reizer, R., Wieczorowski, M., & Krolczyk, G. (2020). Material ratio curve as information on the state of surface topography – A review. Precision Engineering, 65, 240-258. https://doi.org/ 10.1016/j.precisioneng.2020.05.008
[24] Miller, T., Adamczak, S., Swiderski, J., Wieczorowski, M., Łętocha, A., & Gapinski, B. (2017). Influence of temperature gradient on surface texture measurements with the use of profilometry. Bulletin of the Polish Academy of Sciences. Technical Sciences, 65(1), 53–61. https://doi.org/10.1515/bpasts-2017-0007
[25] Grochalski, K., Wieczorowski, M., Pawlus, P., & H’Roura, J. (2020). Thermal sources of errors in surface texture imaging. Materials, 13(10), 2337. https://doi.org/10.3390/ma13102337
[26] Klocke, F. (2011). Manufacturing processes 1. Cutting. Springer-Verlag. https://www.springer.com/gp/book/9783642119781
[27] Petruhi, P. G. (1974). Cutting the construction materials, cutting tools and machine tools. Mashinostroenie. (in Russian) https://www.studmed.ru/petruha-pg-rezanie-konstrukcionnyh-materialovrezhuschie-instrumenty-i-stanki_f9704450c66.html
Go to article

Authors and Affiliations

Irina Beşliu-Băncescu
1
Laurenţiu Slătineanu
2
Margareta Coteaţă
2

  1. Stefan cel Mare University of Suceava, Department of Mechanics and Technology, Universitatii Street, 13, 720229 Suceava, Romania
  2. Gheorghe Asachi Technical University of Iasi, Department of Machine Manufacturing Technology, D. Mangeron Blvd, 59A, 700050 Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Vacoflux-49 (Fe-49% Co-49% V-2%) is used in torque, sonar and gyroscopic sensors applications due to excellent magnetic properties (high saturation magnetisation, low coercivity and high Curie temperature). In this study, the shape, size and characteristics of different thermal zones and the microstructural evolution during electron beam melting and welding of Vacoflux-49 material are studied. The experimental studies on melting have been carried out with under-focussed, focussed and over focussed electron beam. In the case of the under-focussed and over-focused beam, no evaporated zone is found. In the case of focussed beam, a shallow conical-shaped evaporated zone, a choked funnel-shaped fusion zone, a conical shaped partially melted zone and the heat-affected zone are observed. The solidified melt pool in terms of shape, size and microstructure of different zones are investigated for the focussed beam. The grains in the fusion zone appear wavy having crest and trough. The fusion zone microstructure also shows the formation of solidification rings. From the electron beam welding experiments performed for joining two Vacoflux-49 plates (continuous welding), it is found that the weldment shape is similar to the spot melting and re-solidification experiments. The grain growth in different zones in the welding sample is also examined.

Go to article

Authors and Affiliations

Pawan Kumar
Anshul Yadav
Arvind Kumar

This page uses 'cookies'. Learn more