Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The global demand for water has been growing rapidly in the last decade with a global population growth rate of 1.1% p.a., which is equivalent to 81 million people per year. Southeast Asian countries are facing severe water scarcity challenge due to their location in the tropics. In 2018, the Sumba Island experienced the highest temperature of 36°C and lesser rain-fall of 911.1 mm3 per year and it was classified as a long dry island prone to drought due to dry winds from Australian des-serts. This paper focuses on the perceived effect of water scarcity on livelihoods in the Mandahu Village, Indonesia, due to climate change. Sampling and survey covered rural households and the findings showed that the average household of 4 to 8 people consumed around 250 dm3 of water per day. The community relied on two main sources of clean water from two main springs. However, the prolonged dry season from May until December every year results in major challenges to ac-cess water and eventually affect the agricultural productivity. Hence, the feasibility of the fog collection technology has been investigated from technological, economic and social points of view as a reliable and cost-effective source of water. The outcome of this work will produce a feasibility statement for fog-to-water as an alternative solution counteracting water scarcity in the Sumba Island, a solution which can be replicated in other climate change stricken hot spots in South-east Asia.
Go to article

Bibliography

ABDELKHALEQ R.A., ALHAJ AHMED I. 2007. Rainwater harvesting in ancient civilizations in Jordan. Water Science and Technology: Water Supply. Vol. 7(1) p. 85–93. DOI 10.2166/ws.2007.010.
ABDUL‐WAHAB S.A., LEA V. 2008. Reviewing fog water collection worldwide and in Oman. International Journal of Environmental Studies. Vol. 65(3) p. 487–500. DOI 10.1080/ 00207230802149983.
AHMED W., GARDNER T., TOZE S. 2011. Microbiological quality of roof-harvested rainwater and health risks: A review. Journal of Environmental Quality. Vol. 40(1) p. 13–21. DOI 10.2134/jeq2010.0345.
AL-FARUQ U., SAGALA S., RIANAWATI E., CURRIE E. 2016. Assessment of renewable energy impact to community resilience in Sumba Island [online]. Resilience Development Initiative. Working Paper Series. No. 9 pp. 14. [Access 12.04.2020]. Available at: https://www.preventionweb.net/go/51505
AMOATEY P., BANI R. 2011. Wastewater management. In: Waste water: Evaluation and management [online]. Ed. F.S.G. Einschlag p. 379–398. DOI 10.5772/16158. [Access: 17.03.2020]. Available at: https://www.intechopen.com/books/waste-water-evaluation-and-management/wastewater-management
ARIFFIN N., ABDULLAH M.M.A.B., ZAINOL M.R.R.M.A., MURSHED M.F., FARIS M.A., BAYUAJI R. 2017. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences. Vol. 97, 01023 pp. 8.
BAAWAIN M., CHOUDRI B.S., AHMED M., PURNAMA A. (eds.). 2015. Recent progress in desalination, environmental and marine outfall systems. Basel, Switzerland: Springer International Publishing.
BHUVANESWARI K., GEETHALAKSHMI V., LAKSHMANAN A., SRINIVASAN R., SEKHAR N.U. 2013. The impact of El Nino/ Southern oscillation on hydrology and rice productivity in the Cauvery Basin, India: Application of the soil and water assessment tool. Weather and Climate Extremes. Vol. 2 p. 39–47. DOI 10.1016/j.wace.2013.10.003.
BPS 2013. Sumba Timur Dalam Angka 2013. Katalog BPS 1102001.5302. Waingapu. Badan Pusat Statistik Kabupaten Sumba Timurp Rovinsi Nusa Tenggara Timur pp. 431.
BPS 2016. Provinsi Nusa Tenggara Timur Dalam Angka 2016 [Nusa Tenggara Timur Province in Figures 2016]. Badan Pusat Statistik Provinsi Nusa Tenggara Timur. ISSN 0215-2223 pp. 511.
BPS 2017. Jumlah UMK dan Jumlah Penduduk Menurut Pulau di Peovinsi NTT [Number of UMK and Total Population by Island in NTT Province] [online]. Badan Pusat Statistic Provinsi Nusa Tenggara Timur. [Access 10.05.2020]. Available at: https://ntt.bps.go.id/statictable/
CERECEDA P., SCHEMENAUER R.S., SUIT M. 1992. An alternative water supply for Chilean coastal desert villages. International Journal of Water Resources Development. Vol. 8(1) p. 53–59.
CHANDRAPPA R., GUPTA S., KULSHRESTHA U.C. 2011. Coping with climate change: principles and Asian context. Berlin–Heidelberg. Springer Verlag. ISBN 978-3-642-44745-7 pp. 370. DOI 10.1007/978-3-642-19674-4. CRAINE S. 2013. Final short fieldwork report for a village electrification options on Sumba Island. Hivos.
DAVTALAB R., SALAMAT A., OJI R. 2013. Water harvesting from fog and air humidity in the warm and coastal regions in the south of Iran. Irrigation and Drainage. Vol. 62(3) p. 281–288. DOI 10.1002/ird.1720.
DEVI R., DIBOCH B., SINGH V. 2012. Rainwater harvesting practices: A key concept of energy-water linkage for sustainable development. Scientific Research and Essays. Vol. 7(5) p. 538–543. DOI 10.5897/SRE09.487.
DHINGRA N., SINGH N.S., SHARMA R., PARWEEN T. 2020. Rainwater harvesting and current advancements. In: Modern age waste water problems. Solutions Using Applied Nanotechnology. Eds. M. Oves, M. Omaish Ansari, M. Zain Khan, M., Shahadat, I.M.I. Ismail. Springer Nature Switzerland p. 293–307.
DODSON L.L., BARGACH J. 2015. Harvesting fresh water from fog in rural Morocco: research and impact Dar Si Hmad’s Fogwater Project in Aït Baamrane’. Procedia Engineering. Vol. 107 p. 186–193. DOI 10.1016/j.proeng.2015.06.073.
DOMEN J.K., STRINGFELLOW W.T., CAMARILLO M.K., GULATI S. 2014. Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy. Vol. 16(2) p. 235–249. DOI 10.1007/s10098-013-0645-z.
FESSEHAYE M., ABDUL-WAHAB S.A., SAVAGE M.J., KOHLER T., GHEREZGHIHER T., HURNI H. 2017. Assessment of fog-water collection on the eastern escarpment of Eritrea. Water International. Vol. 42(8) p. 1022–1036. DOI 10.1080/02508060.2017.1393714.
FISHER R., BOBANUBA W.E., RAWAMBAKU A., HILL G.J., RUSSELL-SMITH J. 2006. Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: Current patterns, future prospects. International Journal of Wildland Fire. Vol. 15(3) p. 307–317. DOI 10.1071/WF05083.
FREDERIKS B. 2013. Sumba energy from waste. Desk study report. Sumba Iconic Island Reports [online]. [Access 20.05.2020]. Hivos pp. 20 + App.. Available at: https://sumbaiconicisland.org/wp-content/
GANDHIDASAN P., ABUALHAMAYEL H.I., PATEL F. 2018. Simplified modeling and analysis of the fog water harvesting system in the Asir Region of the Kingdom of Saudi Arabia. Aerosol and Air Quality Research. Vol. 18(1) p. 200–213. DOI 10.4209/aaqr.2016.11.0481.
GOKKON B. 2015. Sumba renewable energy: A bright future where the lights don’t go out [online]. [Access 10.04.2020]. Available at: http://jakartaglobe.id/news/sumba-renewable-energybright-future-lights-dont-go/
HAMILTON K., REYNEKE B., WASO M., CLEMENTS T., NDLOVU T., KHAN W., …, AHMED W. 2019. A global review of the microbiological quality and potential health risks associated with roof-harvested rainwater tanks. npj Clean Water. Vol. 2(1), 7 p. 1–18. DOI 10.1038/s41545-019-0030-5.
HELMREICH B., HORN H. 2009. Opportunities in rainwater harvesting. Desalination. Vol. 248(1–3) p. 118–124. DOI 10.1016/j.desal.2008.05.046. Hivos 2012. Sumba: An iconic island to demonstrate the potential of renewable energy. Poverty reduction, economic development and energy access combined [online]. [Access 20.05.2020]. Available at: https://sumbaiconicisland.org/wp-content/
KHAWAJI A.D., KUTUBKHANAH I.K., WIE J. M. 2008. Advances in seawater desalination technologies. Desalination. Vol. 221(1–3) p. 47–69. DOI 10.1016/j.desal.2007.01.067.
LATTEMANN S., HÖPNER T. 2008. Environmental impact and impact assessment of seawater desalination. Desalination. Vol. 220(1–3) p. 1–15. DOI 10.1016/j.desal.2007.03.009.
MAYERHOFER M., LOSTER T. 2015. Fog nets. Available at: https://www.munichre-foundation.org/content/dam/munichre/
MBILINYI B.P., TUMBO S.D., MAHOO H.F., SENKONDO E.M., HATIBU N. 2005. Indigenous knowledge as decision support tool in rainwater harvesting. Physics and Chemistry of the Earth. P. A/B/C. Vol. 30(11–16) p. 792–798. DOI 10.1016/ j.pce.2005.08.022.
MCSWEENEY C., NEW M., LIZCANO G., LU X. 2010. The UNDP Climate Change Country Profiles Improving the Accessibility of Observed and Projected Climate Information for Studies of Climate Change in Developing Countries. Bulletin of the American Meteorological Society. Vol. 91 p. 157–166. DOI 10.1175/2009BAMS2826.1.
METER K.J.V., BASU N.B., TATE E., WYCKOFF J. 2014. Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environmental Science & Technology. Vol. 48(8) p. 4217–4225. DOI 10.1021/es4040182.
MILLER J. 2019. Aqualonis: Converting fog into drinking water. Obtaining drinking water from fog [online]. [Access 12.04.2020]. Available at: https://www.european-business.com/aqualonis-gmbh/aqualonis-converting-fog-into-drinking-water
MONK K.A., DE FRETES Y., REKSODIHARDJO-LILLEY G. 1997. The ecology of Nusa Tenggara and Maluku. Vol. V. The Ecology of Indonesia Series. Hong Kong: Periplus Editions pp. 966.
OKTAVIANI R., AMALIAH S., RINGLER C., ROSEGRANT M.W., SULSER T.B. 2011. The impact of global climate change on the Indonesian economy [online]. International Food Policy Research Institute Discussion paper, 01148. [Access 17.05.2020]. Available at: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/126762
OLIVIER J. 2008. Anyone for a glass of fresh fog? Alternative water sources for South Africa [online]. Research Report. Cape Town. UNISA p. 30–31. [Access 30.05.2020]. Available at: https://www.yumpu.com/en/document/view/27593719/unisa-2008-research-report-university-of-south-africa
PEREIRA D. 2008. Atacama [online]. flickr. [Access 20.05.2020]. Available at: https://www.flickr.com/photos/galeria_miradas/5816252302/in/photostream/
PIRNIA A., GOLSHAN M., DARABI H., ADAMOWSKI J., ROZBEH S. 2019. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change. Vol. 10(4) p. 725–742. DOI 10.2166/wcc.2018.162.
QADIR M., JIMÉNEZ G.C., FARNUM R.L., DODSON L.L., SMAKHTIN V. 2018. Fog water collection: Challenges beyond technology. Water. Vol. 10(4), 372 p. 1–10. DOI 10.3390/w10040372.
QDAIS H.A. 2008. Environmental impacts of the mega desalination project: the Red–Dead Sea conveyor. Desalination. Vol. 220(1–3) p. 16–23. DOI 10.1016/j.desal.2007.01.019.
RAHMAN A. 2017. Recent advances in modelling and implementation of rainwater harvesting systems towards sustainable development. Water. Vol. 9(12), 959. DOI 10.3390/ w9120959.
REARDON C., DOWNTON P., MCGEE C. 2013. Construction systems [online]. Your Home Australia’s guide to environmentally sustainable homes. [Access 17.05.2020]. Available at: https://www.yourhome.gov.au/materials/construction-systems
SASSEN K., WANG Z., LIU D. 2009. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. Journal of Geophysical Research: Atmospheres. Vol. 114. Iss. D4, ID D00H06. DOI 10.1029/2009JD011916.
SCHEMENAUER R.S., CERECEDA P. 1994. Fog collection's role in water planning for developing countries. Natural Resources Forum. Vol. 18. No. 2 p. 91–100. DOI 10.1111/j.1477-8947.1994.tb00879.x.
SCHEMENAUER R.S., OSSES P., LEIBBRAND M. 2004. Fog collection evaluation and operational projects in the Hajja Governorate, Yemen. In: Proceedings of the 3rd International Conference on Fog, Fog Collection and Dew. 11–15.10.2004. Cape Town, South Africa.
SHANYENGANA E.S., SANDERSON R.D., SEELY M.K., SCHEMENAUER R.S. 2003. Testing greenhouse shade nets in collection of fog for water supply. Journal of Water Supply: Research and Technology – AQUA. Vol. 52(3) p. 237–241.
SIDDIQUE M.N.I., MUNAIM M.S.A., ZULARISAM A.W. 2015. Feas¬ibility analysis of anaerobic co-digestion of activated manure and petrochemical wastewater in Kuantan (Malaysia). Journal of Cleaner Production. Vol. 106 p. 380–388. DOI 10.1016/j.jclepro.2014.08.003.
SII 2016. The iconic island for renewable energy. Sumba Iconic Island [online]. [Access 07.05.2020]. Available at: https://sumbaiconicisland.org/
SIPAYUNG S.B., SUSANTI I., MARYADI E., NURLATIFAH A., SISWANTO B., NAFAYEST M., PUTRI F.A., HERMAWAN E. 2019. Analysis of drought potential in Sumba Island until 2040 caused by climate change. Journal of Physics: Conference Series. Vol. 1373, 012004. DOI 10.1088/1742-6596/1373/1/012004.
SYAUKAT Y. 2011. The impact of climate change on food production and security and its adaptation programs in Indonesia. Journal of the International Society for Southeast Asian Agricultural Sciences. Vol. 17(1) p. 40–51. The Guardian 2016. Cloud fishing' reels in precious water for villagers in rural Morocco [online]. [Access 26.5.2020]. Available at: https://www.theguardian.com/global-development/2016/dec/26/cloud-fishing-reels-in-precious-water-villagers-rural-morocco-dar-si-hmad
TIEDEMANN K.J., LUMMERICH A. 2010. Fog harvesting on the verge of economic competitiveness [online]. 5th International Conference on Fog, Fog Collection and Dew. 25–30.07.2010. Münster, Germany. id.FOGDEW2010-93. [Access 07.05.2020]. Available at: http://meetings.copernicus.org/fog2010
TORTAJADA C. 2006. Water management in Singapore. Water Resources Development. Vol. 22(2) p. 227–240. DOI 10.1080/07900620600691944.
UNDP 2017. Sisi lain perubahan iklim: Mengapa Indonesia harus beradaptasi untuk melindungi rakyat iskinnya. United Nations Development Programme Indonesia. ISBN 978-979-17069-0-2 pp. 20.
USAID 2017. Climate risk profile: Indonesia [online]. Fact sheet pp. 5. [Access 30.05.2020]. Available at: https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID_ATLAS_Climate%20Risk%20Profile_Indonesia.pdf
VINKE K., SCHELLNHUBER H.J., COUMOU D., GEIGER T., GLANEMANN N., HUBER V., KNAUS M., KROPP J., KRIEWALD S., LAPLANTE B., LEHMANN J. 2017. A region at risk: The human dimensions of climate change in Asia and the Pacific [online]. Mandaluyong City, Metro Manila: Asian Development Bank. [Access 30.04.2020]. Available at: https://www.adb.org/sites/default/files/publication/325251/region-risk-climate-change.pdf
WINQVIST G., DAHLBERG E., SMITH B., BERLEKOM M. 2008. Indonesia environmental and climate change policy brief. Gothenburg. Sida Helpdesk for Environmental Economics, University of Gothenburg pp. 24. WV 2016. World vision’s response to El Niño in Asia-Pacific. Snapshot of interventions in priority countries and funding available per response [online]. World Vision Asia Pacific, OCHA, US National Oceanic & Atmospheric Administration, World Meteorological Organization [Access 30.04.2020]. Available at: http://www.wvi.org/sites/default/files/ElNino_AsiaPacific_April2016.pdf
YOUNOS T. 2005. Environmental issues of desalination. Journal of Contemporary Water Research and Education. Vol. 132(1) p. 11–18. DOI 10.1111/j.1936-704X.2005.mp132001003.x.
ZHANG S.X., BABOVIC V. 2012. A real options approach to the design and architecture of water supply systems using innov-ative water technologies under uncertainty. Journal of Hydroinformatics. Vol. 14(1) p. 13–29. DOI 10.2166/hydro.2011.078.

Go to article

Authors and Affiliations

Zaitizila Ismail
1
ORCID: ORCID
Yun Ii Go
1
ORCID: ORCID
Mahawan Karuniasa
2
ORCID: ORCID

  1. Heriot-Watt University Malaysia, School of Engineering and Physical Science, 62200 Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia
  2. Universitas Indonesia, School of Environmental Science, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Today’s agriculture is facing a range of challenges, the most important of which is the adjustment to the changing climate. In this context, water management is particularly vital. Droughts in Poland are becoming more and more frequent. That fact adds to the significance of irrigation and drainage systems.
This paper is an attempt at diagnosing the condition of (in 2016) and changes in (over the period of 2006–2016) irrigation and drainage systems in the Kujawsko-Pomorskie Voivodship (analysed by communes, until 2016 – according to Local Administrative Units – LAU level 2). The multidirectional analysis involves a comprehensive description of ameliorated lands, including the allocation of the EU funds dedicated for the support of flood protection and land improvement ventures.
It has been demonstrated that the present condition of land improvement does not reflect the needs of the agriculture in the studied area and that the changes implemented on the ongoing basis fail to make the situation better. In 2016, slightly over 40% of agricultural acreage was ameliorated, while the level at which land improvement needs would be satisfied approximated 70%. In over 1/5 of the ameliorated area, facilities needed reconstruction or modernisation. Drainage systems were in the majority, which indicates that the current needs, i.e. water scarcity, are not addressed.
Go to article

Bibliography

FAO 2017. The future of food and agriculture. Trends and challenges. Rome. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-109551-5 pp. 163.

IMGW undated. Prognostyczno-operacyjny System Udostępniania Charakterystyk Suszy POSUCH@ [A prognostic and operational system for sharing the characteristics of drought POSUCH@] [online]. Warszawa. Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy. [Access 08.01.2021]. Available at: http://posucha.imgw.pl

JÓŹWIAK W., ZIELIŃSKI M., ZIĘTARA W. 2016. Susze a sytuacja polskich gospodarstw rolnych osób fizycznych [Droughts and the situa-tion of Polish farms of natural persons]. Zagadnienia Ekonomiki Rolnej. Z. 1(346) p. 42–56. DOI 10.30858/zer/83041.

KACA E., DEMBEK W., ŁABĘDZKI L., MIODUSZEWSKI W., OSTROWSKI J., LIZIŃSKI T., ..., KASPERSKA-WOŁOWICZ W. 2014a. Średnio- i długookresowe programy rozwoju melioracji w skali kraju i województw, z uwzględnieniem potrzeb rolnictwa, możliwości realizacyjnych i skutków środowiskowych [Medium and long-term programs for the development of melioration on a national and voivodeship scale, taking into account the needs of agriculture, implementation possibilities and environmental effects]. Falenty. ITP pp. 140.

KACA E. (ed.). 2014b. Uwarunkowania rozwoju melioracji wodnych w Polsce [Conditions for the development of water drainage in Poland]. Woda-Środowisko-Obszary Wiejskie. Rozprawy naukowe i monografie. Nr 37. ISBN 978-83-62416-84-4 pp. 195.

KACA E. (ed.) 2015. Program rozwoju melioracji wodnych w perspektywie średnio- i długookresowej. Województwo kujawsko-pomorskie [Development program for water drainage in the medium and long term. Kuyavian-Pomeranian Voivodeship]. Falenty. Wydaw. ITP. Materiały Informacyjne. Nr 48. ISSN-0860-1410 pp. 44.

KACZAŁA M. 2014. Susza rolnicza – skutki dla gospodarstwa rolnego i możliwość ich finansowania przez ubezpieczenie [Agricultural drought – consequences for the farm and the possibility of financing them by insurance]. Prace i Studia Geograficzne. Vol. 55 p. 53–65.

KAPUSTA T. 1987. Melioracje rolnicze w Polsce [Agricultural drainage in Poland]. Wieś Współczesna. Nr 4 p. 137.

KIDA-KOWALCZYK J. 1978. Gospodarowanie wodą w rolnictwie dla potrzeb produkcji roślinnej [Water management in agriculture for plant production]. Wiadomości Statystyczne. Nr 12 p. 17–21.

KIRYLUK A. 2019. The influence of drainage devices and post-bog soil changes on water retention in drained Lower Supraśl River. Journal of Ecological Engineering. Vol. 20(8) p. 120–128. DOI 10.12911/22998993/110788.

KŁOS L. 2013. Stan i funkcjonowanie urządzeń melioracji wodnych na obszarach wiejskich [The condition and functioning of water drainage facilities in rural areas]. Ekonomia i Środowisko. Nr 3 (46) p. 196–206.

KPODR 2017. Diagnoza sytuacji społeczno-gospodarczej rolnictwa, obszarów wiejskich i przetwórstwa województwa kujawsko- pomorskiego z określeniem analizy SWOT [Diagnosis of socio- economic situation in agriculture, rural areas and food processing industry in the Kujawsko-Pomorskie Voivodship, including SWOT analysis]. Minikowo. Kujawsko-Pomorski Ośrodek Doradztwa Rolniczego pp. 195.

LIPIŃSKI J. 2006. Zarys rozwoju oraz produkcyjne i środowiskowe znaczenie melioracji w świetle badań [Outline of development as well as production and environmental significance of melioration in the light of research]. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 5(1) p. 3–15.

ŁABĘDZKI L. 2009. Przewidywane zmiany klimatyczne a rozwój nawodnień w Polsce [Predicted climate changes and the development of irrigation in Poland]. Infrastruktura i Ekologia Terenów Wiejskich. Nr 3 p. 7–18.

ŁABĘDZKI L. 2017. Potrzeby i stan nawodnień w województwie kujawsko-pomorskim [Irrigation needs and condition in the Kuyavian-Pomeranian Voivodeship]. Warsztaty dla interesariuszy projektu OPERA [Workshops for the stakeholders of the OPERA project]. [27.11.2017 Minikowo].

MICHNA W. 1987. Węzłowe problemy ochrony środowiska i zasobów naturalnych w rolnictwie i na wsi [Key problems of environ-mental and natural resources protection in agriculture and rural areas]. Zagadnienia Ekonomiki Rolnej. Nr 4 p. 5–15.

MR 2017. Strategia na rzecz Odpowiedzialnego Rozwoju do roku 2020 (z perspektywą do 2030 r.). Dokument przyjęty uchwałą Rady Ministrów w dniu 14 lutego 2017 r. [Strategy for Responsible Development until 2020 (with a perspective until 2030). Document adopted by a resolution of the Council of Ministers on February 14, 2017]. Warszawa. Ministerstwo Rozwoju pp. 416.

MRiRW 2019. Strategia zrównoważonego rozwoju wsi, rolnictwa i rybactwa 2030. Załącznik do uchwały nr 123 Rady Ministrów z dnia 15 października 2019 r. (poz. 1150) [Strategy for the sustainable development of rural areas, agriculture and fisheries 2030. Annex to Resolution No. 123 of the Council of Ministers of October 15, 2019 (item 1150)]. Warszawa. Ministerstwo Rolnictwa i Rozwoju Wsi p. 3–172.

PEÑA-GALLARDO M., VICENTE-SERRANO S.M., DOMÍNGUEZ-CASTRO F., BEGUERÍA S. 2019. The impact of drought on the productivity of two rainfed crops in Spain. Natural Hazards and Earth System Sciences. Vol. 19 p. 1215–1234. DOI 10.5194/nhess-19-1215-2019.

PGW Wody Polskie 2020. Projekt planu przeciwdziałania skutkom suszy [online]. Warszawa. Państwowe Gospodarstwo Wodne Wody Polskie. Krajowy Zarząd Gospodarki Wodnej. [Access 04.10.2020]. Available at: http://stopsuszy.pl/projekt-planu-przeciwdzialania-skutkom-suszy/

RAY R.L., FARES A., RISCH E. 2018. Effects of drought on crop production and cropping areas in Texas. Agricultural & Environmental Letters. Vol. 3, 170037 p. 1–5. DOI 10.2134/ael2017.11.0037.

RUDNICKI R. 2016. Rolnictwo Polski. Studium statystyczno-przestrzenne lata 2002–2010 [Polish agriculture. Statistical and spatial study 2002–2010]. Toruń. Wydaw. Nauk. UMK. ISBN 978-83-231- 3555-5 pp. 486.

RUDNICKI R., WIŚNIEWSKI Ł., KLUBA M. 2015. Poziom i struktura przestrzenna rolnictwa polskiego w świetle wyników Powszech-nego Spisu Rolnego 2010 [The level and spatial structure of Polish agriculture in the light of the results of the 2010 General Agricultural Census]. Roczniki Naukowe SERiA. T. 17. Z. 3 p. 337–343.

STACHOWSKI P., OLISKIEWICZ-KRZYWICKA A., KRACZKOWSKA K. 2017. Koszty prac melioracyjnych w powiecie poznańskim [Costs of drainage works in the Poznań district]. Studia i Prace WNEIZ US. Nr 47/3. DOI 10.18276/SIP.2017.47/3-31.

STANKIEWICZ D. 2007. Skutki suszy w rolnictwie polskim [The effects of drought in Polish agriculture]. Infos. Nr 6 p. 1–4.

SZPIKOWSKI J., SZPIKOWSKA G., DOMAŃSKA M. 2015. Old melioration systems: The influence onto functioning of geoecosystems of river valleys in the Parsęta basin (NW Poland). Quaestiones Geographicae. Vol. 34(3) p. 129–140. DOI 10.1515/quageo-2015-0024.

VALIPOUR M., KRASILNIKOF J., YANNOPOULOS S., KUMAR R., DENG J., ROCCARO P., MAYS L., GRISMER M.E., ANGELAKIS A.N. 2020. The evolution of agricultural drainage from the earliest times to the present. Sustainability. Vol. 12(1), 416. DOI 10.3390/su12010416.

WANG CH., LINDERHOLM H.W., SONG Y., WANG F., LIU Y., TIAN J., XU J., SONG Y. REN G. 2020. Impacts of drought on maize and soybean production in northeast china during the past five decades. International Journal of Environmental Research and Public Health. Vol. 17, 2459. DOI 10.3390/ijerph17072459.

WARD F. 2010. Financing irrigation water management and infra-structure: A review. International Journal of Water Resources Development. Vol. 26. No. 3 p. 321–349. DOI 10.1080/07900627.2010.489308.

Województwo Kujawsko-Pomorskie 2013. Strategia rozwoju województwa kujawsko-pomorskiego do roku 2020 – Plan modernizacji 2020+. Załącznik do uchwały Nr XLI/693/13 Sejmiku Województwa Kujawsko-Pomorskiego z dnia 21 października 2013 r. [Development strategy of the Kuyavian-Pomeranian Voivodeship until 2020 – Modernization Plan 2020+. Annex to Resolution no. XLI/693/13 of the Kujawsko-Pomorskie Voivod-ship Council of 21 October 2013]. Toruń pp. 146.

ZEGAR J. 2012. Współczesne wyzwania rolnictwa. Paradygmaty – globalizacja – polityka [Contemporary agricultural challenges. Paradigms – globalization – politics]. Warszawa. Wydaw. Nauk. PWN. ISBN 9788301168247 pp. 384.

ZIELIŃSKI M., SOBIERAJEWSKA J. 2019. Rolnictwo w obliczu suszy a bezpieczeństwo żywnościowe. Susze oraz ich wpływ na funkcjonowanie gospodarstw rolnych w Polsce, a także ocena WPR 2014–2020 i po 2020 pod kątem lepszej adaptacji krajowych gospodarstw rolnych do skutków zmian klimatu, w tym do susz [Agriculture in the face of drought and food security. Droughts and their impact on the functioning of farms in Poland, as well as the evaluation of the CAP 2014–2020 and after 2020 in terms of better adaptation of domestic farms to the effects of climate change, including droughts]. Warszawa. Polski Klub Ekologiczny Okręg Mazowiecki pp. 22.

Go to article

Authors and Affiliations

Roman Rudnicki
1
ORCID: ORCID
Łukasz Wiśniewski
1
ORCID: ORCID

  1. Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Management, ul. Gagarina 11, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

Water is an essential commodity which affects life and livelihoods in the universe. This study examined perceived ef-fect of water scarcity on livelihoods in Iwoye-Ketu, Ogun State. Random sampling was used to select 80 rural households and water samples for the study. Data collected were analysed using descriptive, inferential and laboratory analyses. Find-ings showed that the mean age of respondents was 38 years with an average household size of four persons. The major sources of water were boreholes (97.5%) and rainwater (90.0%), the average trekking time to the water source was 24 minutes and the households requires an average of 162 litres of water per day. Water analysis’ result showed that the water has pH (6.87), total dissolved solids (0.175 mg∙dm–3), temperature (29.9°C) and turbidity (0.6 FTU). The major causes of water scarcity include insufficient rainfall (97.5%), increased sunlight intensity (97.5%), pollution of water sources (95.0%)and increased population (93.8%). About 60% of them perceived water scarcity to have a negative effect on their liveli-hoods. Correlation analysis shows that there is a significant relationship between usage of water (r = 0.370, p < 0.01) and perceived effect of water scarcity. It was concluded that water available for household use is not sufficient, although it is safe but contain some elements which are not of World Health Organization standard for good potable water. It is recom-mended that the community should build a hub for water collection and distribution close to the village centre and the gov-ernment should provide water infrastructures to increase the supply of potable water.

Go to article

Authors and Affiliations

Adetayo K. Aromolaran
Ibiyinka O. Ademiluyi
Abiodun E. Sotola
Felicia I. Wole-Alo
Oluwadamilola A. Aromiwura
Olubukola E. Ogunsuyi
Download PDF Download RIS Download Bibtex

Abstract

Strengthening the functioning of existing rural piped water supply systems is a critical strategy for ensuring household water security, particularly in water-scarce contexts. Improving operation and maintenance (O&M) of the systems is an important area of focus, commonly plagued by poor reliability and functionality over time. From an economic perspective, there is an opportunity to optimise O&M input efficiencies as a foundation for improved management. This paper presented challenges and opportunities to optimise O&M input efficiencies based on an analysis of water supply systems in Vietnam’s highland areas characterised by mountainous terrain and water scarcity. The analysis focused on state-based agencies for O&M given their mandate for restoring the inefficient systems and identified input norms for guidance on how to optimise O&M activities. We applied an input-oriented data envelopment analysis (DEA) model under constant returns to scale assumption to estimate technical, economic and allocative efficiencies. The results identified efficiency levels of 90%, 30% and 33% respectively. The study suggests a 10% reduction in general input amounts and identified efficient input target values reveal potential reduction rates for technical labour (12%), electricity (12%), as well as the technical and economic norms of technical labour (0.86 person- day∙(100 m3)–1 water sold) and electricity (0.53 kWh∙m–3 water sold). The policy implications for O&M state-based agencies include the adoption of input-based contracting mechanisms, while the government is encouraged to approve water tariffs and provide compensation based on input items to promote water service supply as a public good in water- scarce and challenging areas.
Go to article

Authors and Affiliations

Dao Van Dinh
1
ORCID: ORCID
Phong Tung Nguyen
2
ORCID: ORCID
Tan Tiep Nguyen
3
ORCID: ORCID
Naomi Carrard
4
ORCID: ORCID
Ngoc Minh Nguyen
5
ORCID: ORCID
Ton Nu Hai Au
6
ORCID: ORCID

  1. Institute for Water Resources Economics and Management, No 131, Chua Boc, 10000, Dong Da, Hanoi, Vietnam
  2. Ministry of Agriculture and Rural Development, Department of Water Resources, No 2, Ngoc Ha, 10000, Ba Dinh, Hanoi, Vietnam
  3. Vietnam Academy of Water Resources, No 17, Tay Son, Dong Da, 10000, Hanoi, Vietnam
  4. University of Technology Sydney-Institute for Sustainable Futures, Broadway 15-73, Ultimo, 2007, Sydney, Australia
  5. Hanoi Architectural University, km 10, Nguyen Trai, Thanh Xuan, 10000, Hanoi, Vietnam
  6. University of Economics, Hue University, 99 Ho Dac Di, 49000, Hue City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Exploring the drivers of changes in ecosystem services is crucial to maintain ecosystem functionality, especially in the diverse Central Citarum watershed. This study utilises the integrated valuation of ecosystem service and trade-offs (InVEST) model and multiscale geographically weighted regression (MGWR) model to examine ecosystem services patterns from 2006 to 2018. The InVEST is a hydrological model to calculate water availability and evaluate benefits provided by nature through simulating alterations in the amount of water yields driven by land use/cover changes. Economic, topographic, climate, and vegetation factors are considered, with an emphasis on their essential components. The presence of a geographical link between dependent and explanatory variables was investigated using a multiscale geographic weighted regression model. The MGWR model is employed to analyse spatial impacts. The integration of both models simplified the process and enhanced its understanding. The findings reveal the following patterns: 1) decreasing land cover and increasing ecosystem services demand in the watershed, along with a decline in water yield, e.g. certain sub-districts encounter water scarcity, while others have abundant water resources; 2) the impact of natural factors on water yield shifts along vegetation > climate > topography (2006) changes to climate > vegetation > topography (2018).
Go to article

Authors and Affiliations

Jaka Suryanta
1
ORCID: ORCID
Irmadi Nahib
1
ORCID: ORCID
Fadhlullah Ramadhani
2
ORCID: ORCID
Farid Rifaie
2
ORCID: ORCID
Nawa Suwedi
1
ORCID: ORCID
Vicca Karolinoerita
2
ORCID: ORCID
Destika Cahyana
3
ORCID: ORCID
Fahmi Amhar
2
ORCID: ORCID
Suprajaka Suprajaka
4
ORCID: ORCID

  1. Research Center for Limnology and Water Resources, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta Bogor Km. 47 Cibinong, Bogor, West Java 16911, Indonesia
  2. Research Center for Geoinformatics, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, West Java 16911, Indonesia
  3. Research Center for Food Crops, National Research and Innovation Agency of Indonesia (BRIN), Jalan Raya Jakarta Bogor Km. 47, Cibinong, Bogor, West Java 16911, Indonesia
  4. Center for Research, Promotion and Cooperation, Geospatial Information Agency, Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, West Java 16911, Indonesia

This page uses 'cookies'. Learn more