Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 28
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the consequences of the dynamic technological development is the rapidly increasing amount of electro-waste (WEEE, e-waste). Because there are no uniform legal regulations regarding the ways of collecting such waste, the separate-collection systems used in various areas are not homogeneous, and they usually also differ in effectiveness. The aim of this study was to evaluate the electro-waste collection system implemented in Lublin (the largest city in Eastern Poland). Taking into account the fact that the reliability of a collection system depends on the degree of its adaptation to the functions it performs, the evaluation consisted in determining how big a problem improper electro-waste segregation was. The article presents the results of a study of the causes of citizens’ failure to properly manage e-waste and indicates what measures should be taken to amend the problem. During two research steps, 347 pieces of e-waste with a total weight of 77.218 kg were found in the analyzed waste samples (0.33% of all samples). This means that the mechanisms of selective e-waste collection still do not work correctly, despite the ten years of Poland’s membership in the EU and implementation of European legislation in this area. The fact that residents throw away electric waste into municipal mixed waste containers poses a serious problem for proper waste management – even if only a part of the e-waste is disposed in this illegal way. This indicates the necessity of improving waste collection (more frequent waste reception, convenient access to e-waste containers, raising public awareness, etc.).

Go to article

Authors and Affiliations

Andrzej Marczuk
Wojciech Misztal
Krzysztof Jóźwiakowski
Jacek Dach
Alina Kowalczyk-Juśko
Download PDF Download RIS Download Bibtex

Abstract

Waste disposal is imposed by the European Union under Treaty of Accession concerning waste management order. One of the waste disposal methods is thermal utilisation. The paper presents an investigation of sewage sludge briquettes used as a fuel in combustion process. The research study was carried out on samples taken from the Municipal Wastewater Treatment Plant in Bochnia. Briquettes with lime were formed. The analysis of the elementary chemical composition of municipal sewage sludge, the composition of the ash and thermogravimetric analysis were carried out. The results indicate that the prepared briquettes had sufficient fuel properties.

Go to article

Authors and Affiliations

Aneta Magdziarz
Małgorzata Wilk
Bogdan Kosturkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The very high need for personal protective equipment (PPE) impacts the waste generated after using these tools. Therefore, to deal with mask waste during the COVID-19 pandemic, this study was carried out on the processing of mask waste using a thermal process and studied how the potential of this process was for the effectiveness of mask waste processing during the pandemic. This research was conducted on Honeymoon Beach by collecting data on mask waste generated during the pandemic, then measuring the waste proximate, ultimate, and calorific value and testing the thermal process using TGA and Piro GC-MS measurements. Most waste masks found on Honeymoon Beach are non-reusable masks, 94.74%, while reusable masks are 5.26%. The waste is then subjected to thermal processing and analysis using TGA and Piro GC-MS. Based on the data obtained, the thermal process can reduce the mass of non-reusable and reusable mask samples by 99.236% and 88.401%, respectively.The results of the Piro GC-MS analysis show that the lit mask waste will produce fragments of compounds that can be reused as fuel. The process is simple and easy and produces residues that can be reused to reduce environmental pollution due to waste generation during the COVID-19 pandemic.
Go to article

Bibliography

  1. Akhbarizadeh, R., Dobaradaran, S., Nabipour, I., Tangestani, M., Abedi, D., Javanfekr, F., Jeddi, F. & Zendehboodi, A. (2021). Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Marine Pollution Bulletin, 168, 112386. DOI:10.1016/j.marpolbul.2021.112386
  2. Ammendolia, J., Saturno, J., Brooks, A. L., Jacobs, S. & Jambeck, J. R. (2021). An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environmental Pollution, 269, 116160. DOI:10.1016/j.envpol.2020.116160
  3. Ayse, L. A., Dempster, E., Aparsi, T. D., Bawan, M., Arredondo, M. C., Chau, C., Chandler, K. D., Dobri-jevic, Hailes, H., Lettieri, P., Liu, C., Medda, F., Michie, F., Michie, S., Miodownik, M., Purkiss, D. & Ward, J. (2020). The enviromnetal dangers of employing single-use face masks as parts of a COVID-19 exit strategy. UCL Open: Environment.
  4. Benson, N. U., Fred-Ahmadu, O. H., Bassey, D. E. & Atayero, A. A. (2021). COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. Journal of Environmental Chemical Engineering, 9(3), 105222. DOI:10.1016/j.jece.2021.105222
  5. Carter, E. A., Swarbrick, B., Harrison, T. M. & Ronai, L. (2020). Rapid identification of cellulose nitrate and cellulose acetate film in historic photograph collections. Heritage Science, 8(1), 1–13. DOI:10.1186/s40494-020-00395-y
  6. Cordova, M. R., Nurhati, I. S., Riani, E., Nurhasanah & Iswari, M. Y. (2021). Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere, 268, 129360. DOI:10.1016/J.CHEMOSPHERE.2020.129360
  7. Fadare, O. O. & Okoffo, E. D. (2020). Covid-19 face masks: A potential source of microplastic fibers in the environment. The Science of the Total Environment, 737, 140279. DOI:10.1016/j.scitotenv.2020.140279
  8. Fatimah, Y. A., Govindan, K., Murniningsih, R. & Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. Journal of Cleaner Production, 269, 122263. DOI:10.1016/j.jclepro.2020.122263
  9. Google Map. (2021). Google Map. https://www.google.com/maps/place/
  10. Jung, S.-H., Cho, M.-H., Kang, B.-S. & Kim, J.-S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. DOI:10.1016/j.fuproc.2009.10.009
  11. Marshall, R. E. & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), 988–1003. DOI:10.1016/j.wasman.2012.12.023
  12. Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A. & Nizami, A.-S. (2019). Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Frontiers in Energy Research, 7, 27. DOI:10.3389/fenrg.2019.00027
  13. Mutiara, M., Inoue, T., Harryes, R. K., Suryawan, W. K., Yokota, K., Notodarmojo, S., Priyambada, I. B. & Septiariva, I. Y. (2021). Potential of Waste to Energy Processing for Sustainable Tourism in Nusa Penida Island, Bali. Journal Bahan Alam Terbarukan, 10(200), 96–103. http://journal.unnes.ac.id/nju/index.php/jbat
  14. Neupane, B. B., Mainali, S., Sharma, A. & Giri, B. (2019). Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ, 7, e7142. DOI:10.7717/peerj.7142
  15. Rakib, M. R. J., De-la-Torre, G. E., Pizarro-Ortega, C. I., Dioses-Salinas, D. C. & Al-Nahian, S. (2021). Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in Cox’s Bazar, the longest natural beach in the world. Marine Pollution Bulletin, 169, 112497. DOI:10.1016/j.marpolbul.2021.112497
  16. Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052. DOI:org/10.1016/J.CSCEE.2020.100052
  17. Sari, G. L., Hilmi, I. L., Nurdiana, A., Azizah, A. N. & Kasasiah, A. (2021). Infectious Waste Management as the Effects of Covid-19 Pandemic in Indonesia. Asian Journal of Social Science and Management Technology, 3(2), 62–75.
  18. Selvaranjan, K., Navaratnam, S., Rajeev, P. & Ravintherakumaran, N. (2021). Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environmental Challenges, 3, 100039. DOI:10.1016/j.envc.2021.100039
  19. Septiariva, Sarwono, A., Suryawan, I. W. K. & Ramadan, B. S. (2022). Municipal Infectious Waste during COVID-19 Pandemic: Trends, Impacts, and Management. International Journal of Public Health Science (IJPHS), 11(2). DOI:10.11591/ijphs.v11i2.21292
  20. Sharma, H. B., Vanapalli, K. R., Cheela, V. R. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., Goel, S. & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. DOI:10.1016/j.resconrec.2020.105052
  21. Singh, E., Kumar, A., Mishra, R. & Kumar, S. (2022). Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere, 288, 132451. DOI:10.1016/j.chemosphere.2021.132451
  22. Suryawan, I. W. K., Rahman, A., Septiariva, I. Y., Suhardono, S. & Wijaya, I. M. W. (2021). Life Cycle Assessment of Solid Waste Generation During and Before Pandemic of Covid-19 in Bali Province. Journal of Sustainability Science and Management, 16(1), 11–21. DOI:10.46754/jssm.2021.01.002
  23. Suryawan, I. W. K., Septiariva, I. Y., Fauziah, E. N., Ramadan, B. S., Qonitan, F. D., Zahra, N. L., Sarwono, A., Sari, M. M., Ummatin, K. K. & Wei, L. J. (2022). Municipal Solid Waste to Energy: Palletization of Paper and Garden Waste into Refuse Derived Fuel. Journal of Ecological Engineering, 23(4), 64–74.
  24. Swennen, G. R. J., Pottel, L. & Haers, P. E. (2020). Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. International Journal of Oral and Maxillofacial Surgery, 49(5), 673–677. DOI:10.1016/j.ijom.2020.03.015
  25. Trinh, V. T., Van, H. T., Pham, Q. H., Trinh, M. V. & Bui, H. M. (2020). Treatment of medical solid waste using an Air Flow controlled incinerator. Polish Journal of Chemical Technology, 22(1), 29–34. DOI:10.2478/pjct-2020-0005
  26. Zahra, N. L., Septiariva, I. Y., Sarwono, A., Qonitan, F. D., Sari, M. M., Gaina, P. C., Ummatin, K. K., Arifianti, Q. A. M. O., Faria, N., Lim, J.-W., Suhardono, S. & Suryawan, I. W. K. (2022). Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). International Journal of Renewable Energy Development, 11(2), 523–532. DOI:10.14710/ijred.2022.44328
Go to article

Authors and Affiliations

Mega Mutiara Sari
1
Takanobu Inoue
2
Iva Yenis Septiariva
3
I Wayan Koko Suryawan
1
ORCID: ORCID
Shigeru Kato
2
Regil Kentaurus Harryes
4
Kuriko Yokota
2
Suprihanto Notodarmojo
5
Sapta Suhardono
6
Bimastyaji Surya Ramadan
7

  1. Department of Environmental Engineering, Universitas Pertamina, Jakarta Selatan, Indonesia
  2. Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  3. Sanitary Engineering Laboratory, Study Program of Civil Engineering Universitas Sebelas Maret, Surakarta, Indonesia
  4. Faculty of Vocational Studies, Indonesia Defense University, Indonesia
  5. Department of Environmental Engineering, Institut Technologi Bandung, Indonesia
  6. Department of Environmental Science, Universitas Sebelas Maret., Surakarta Central Java, Indonesia
  7. Department of Environmental Engineering, Universitas Diponegoro, Semarang, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The problem of hazardous medical waste resulting from the provision of healthcare services by healthcare institutions is becoming increasingly relevant in the context of the need to ensure environmental protection and safety to human life and health. This requires efficient management of waste in order to minimise its level of hazard. The most common problems in this respect are found at the stage of the temporary storage of hazardous medical waste, as confirmed by irregulari-ties reported over the last six years at healthcare institutions in the 388 (16.4%) from the Great Poland Province voivodship, which is the third voivodship in terms of hazardous medical waste generation in Poland. Violations of sanitary and building regulations in the storage of hazardous medical waste could lead to widespread infection and infectious diseases in humans and to the environment. This should be prevented through the introduction of continuing education for the personnel having direct contact with waste and for the management staff of healthcare institutions with a view to fostering awareness and responsibility regarding sanitary security and environmen-tal protection.
Go to article

Authors and Affiliations

Marzena Furtak-Niczyporuk
Download PDF Download RIS Download Bibtex

Abstract

Lean is one of the systematic approach to achieve higher value for organizations through

eliminate non-value-added activities. It is an integrated set of tools, techniques, and principles

designed to optimize cost, quality and delivery while improving safety. In Vietnam,

industry waste management and treatment has become serious issue. The aim of this research

is to present the effective of Lean application for industrial wastes collecting and

delivery improvement. Through a case study, this paper showed the way of Lean tools and

principles applied for wastes management and treatment such as Value Stream Mapping,

Pull system, Visual Control, and Andon to get benefit on both economic and environment.

In addition, the results introduced a good experience for enterprises in Vietnam and other

countries have similar conditions to Vietnam in cost saving and sustainable development in

waste management.

Go to article

Authors and Affiliations

Nguyen Dat Minh
Nguyen Danh Nguyen
Phan Kien Cuong
Download PDF Download RIS Download Bibtex

Abstract

The energy strategy of Ukraine until 2035 forecasts that 12% of energy production will be from biomass. Currently, the share of biomass energy in the total structure of energy supplies in Ukraine is only 2%. After the Russian invasion of Ukraine, the diversification of the energy sector became extremely important. Rising fuels prices, problems with the fuel supply and the availability of agricultural biomass make biofuels an attractive alternative to fossil fuels. Ukraine has the potential to develop the production and use of all types of biofuels: solid, liquid and gaseous. Currently, the existing capacity and feedstock potential of biofuel production in Ukraine have not been fully realized. The experience of leading countries in the field of biofuel production shows that at the basis of the governments’ growing commitment to developing the biofuel sector is a desire to diversify the energy supply, create new jobs, improve energy security and reduce carbon dioxide emissions and other gases that contribute to global warming. The aim of the study is to construct the theoretical and practical principles of the implementation of the strategy for biofuel production from agrobiomass in Ukraine. We came to the conclusion that the trigger for the development of the bioenergy industry is the adoption at the state level of the strategy for the production of biofuels from agrobiomass. The implementation of the strategy for biofuel production will help to increase the production and use of biofuels that will strengthen Ukraine’s energy sector, help to stabilize fuel prices and will have a positive impact on the economic development of the country.
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Lyudmila Pronko
1
Kateryna Mazur
1
Yana Palamarenko
2
ORCID: ORCID

  1. Management and Law, Vinnytsia National Agrarian University, Ukraine
  2. Economy and Business, Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In the process of determining the content of impurities, including fossil fuels, crude oil, coke, pitch, plastics, glass, slag, rust, metals, and rock dust, in charcoal and wood briquettes via microscopic examination, the question of the use of ashes from the combustion of grill fuels (taking the scale of the new national sport into account, commonly referred to as „weekend grilling”) was raised. Another reason for addressing this issue was the question regarding the use of organic additives to acidified soil (mineral) fertilizers submitted by one of the clients of the bituminous coal and reservoir rocks analysis laboratory. In addition, the manufacturer of gardening soil has also expressed an interest in an unconventional deacidifying agent; the introduction of a new product with a unique ingredient is considered as a chance to stand out from the competition. A review of the literature shows that attempts to use ashes obtained from the biomass combustion in power boilers have been made. However, due to the biomass composition and additives and pollutants used in biomass for energy purposes, the production of such mixtures has been dropped. Based on the data from numerous samples of grill fuel, which meet the requirements regarding the content of impurities set out in the PN-EN 1860-2 standard, the question of the possible use of ash obtained from charcoal and wood briquette grilling as a component for use in the production of acidified soil (mineral) fertilizers was discussed. The article will present the amount of material obtained based on the statistical sales of barbecue fuels based on the experimentally calculated ash mass resulting from the combustion of 1 kg of starting material. In addition, a logistic proposal for obtaining ash from individual grill users will be developed. On the day of the submission of the present work, the results of the chemical analysis of charcoal and wood briquettes subjected to the gasification process have not yet been obtained. However, based on the microscopic analysis, it can be concluded that the content of impurities in the examined samples is highly unlikely to prevent the use of the mentioned ashes in agriculture.

Go to article

Authors and Affiliations

Zbigniew Jelonek
Download PDF Download RIS Download Bibtex

Abstract

Municipal waste management has been an area of special interest of the European Commission (EC) for many years. In 2018, the EC pointed out issues related to municipal waste management as an important element of the monitoring framework for the transition towards a circular economy (CE), which is currently a priority in the economic policy of the European Union (EU). In the presented monitoring framework, 10 CE indicators were identified, among which issues related to municipal waste appear directly in two areas of the CE – in the field of production and in the field of waste management, and indirectly – un two other areas – secondary raw materials, and competitiveness and innovation. The paper presents changes in the management of municipal waste in Poland in the context of the implementation of the CE assumptions, a discussion of the results of CE indicators in two areas of the CE monitoring framework in Poland (production and waste management), and a comparison of the results against other European countries.

In Poland, tasks related to the implementation of municipal waste management from July 1, 2013 are the responsibility of the municipality, which is obliged to ensure the conditions for the system of selective collection and collection of municipal waste from residents, as well as the construction, maintenance and operation of regional municipal waste treatment installations (RIPOK). The municipality is also committed to the proper management of municipal waste, in accordance with the European waste management hierarchy, whose overriding objective is to prevent waste formation and limiting its amount, then recycling and other forms of disposal, incineration and safe storage. The study analyzed changes in the value of two selected CE indicators, i.e. (1) the municipal waste generation indicator, in the area of production and (2) the municipal waste recycling indicator, in the area of waste management. For this purpose, statistical data of the Central Statistical Office (GUS) and Eurostat were used. Data has been presented since 2014, i.e. from the moment of initiating the need to move to the CE in the EU. In recent years, there has been an increase in the amount of municipal waste generated in Poland as well as in the EU. According to Eurostat, the amount of municipal waste generated per one inhabitant of Poland increased from 272 kg in 2014 to 315 kg in 2017. It should be noted that the average amount of municipal waste generated in Poland in 2017 was one of the lowest in EU, with a European average of 486 kg/person. Poland has achieved lower levels of municipal waste recycling (33.9%) than the European average (46%). The reason for Poland’s worse results in the recycling of municipal waste may be, among others, the lack of sufficiently developed waste processing infrastructure, operating in other countries such as Germany and Denmark, and definitely higher public awareness of the issue of municipal waste in developed countries. Municipal waste management in Poland faces a number of challenges in the implementation of GOZ, primarily in terms of achieving the recycling values imposed by the EC, up to a minimum of 55% by 2025.

Go to article

Authors and Affiliations

Marzena Smol
Joanna Kulczycka
Agnieszka Czaplicka-Kotas
Dariusz Włóka
Download PDF Download RIS Download Bibtex

Abstract

With the increase in the mass of municipal waste generated, the demand for facilities dealing with their development is increasing. The aim of the research was to determine environmental and anthropogenic factors affecting the location of waste management facilities and an attempt to indicate potential locations for selected waste management facilities in the communes of the Sądecko-Gorlicki region. The scope of work included: a review of existing waste management facilities in the studied region, acquisition of geodatabase for digital data, analysis of the distance between the waste management facilities and environmental or anthropogenic elements, and analysis of potential locations designated in the GIS based on the developed criteria.As a result of spatial analyzes, it was found that in the study area, there are 3 places of potentiallocations for installation of municipal solid waste treatment facilities.

Go to article

Authors and Affiliations

Mateusz Malinowski
ORCID: ORCID
Agnieszka Petryk
ORCID: ORCID
Jakub Rybiński
Download PDF Download RIS Download Bibtex

Abstract

The mining industry, including hard-coal mining, has a significant and multifaceted impact on all components of the environment. One of the factors is the production of various types of waste which, due to their physico-chemical and ecotoxic properties, do not always pose a threat to the environment and can be used in various ways. Such treatment of waste perfectly fits into the concept of the circular economy through the protection of natural resources and the maximum re-use of waste. One of the wastes generated by hard-coal mines is coal sludge from the purification of underground water in surface settling tanks. The article presents the results of research on the physico-chemical and phytotoxic properties of carbon sludges from two settling tanks with regard to assessing the possibility of their re-use in the reclamation of degraded areas. These sludges contain mainly sand fractions. An analysis of their chemical composition revealed the presence of heavy metals. Leachability studies have shown that despite the high concentrations of metals, a small quantity of these metals passes into the solution. In this respect, therefore, they do not pose a threat to the environment. However, a threat may result from the presence of chlorides and sulphates, the amounts of which are influenced by, among other factors, the time of waste storage in the settling tank. Phytotoxicity tests performed on garden cress ( Lepidium sativum) did not show a toxic effect at any concentration of the water extract. In addition, for one of the sludges, water extracts with concentrations starting from 12.5 and 50% stimulated the growth of the plant’s shoots and roots, respectively. The results show that the tested coal sludges may be used in appropriate doses for reclamation work, for example, when establishing a plant cover.
Go to article

Authors and Affiliations

Małgorzata Śliwka
1
ORCID: ORCID
Waldemar Kępys
1
ORCID: ORCID
Małgorzata Pawul
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Phosphogypsum (PG) – a waste material generated in enormous amounts, accumulates a wide range of pollutants and thus represents a major environmental problem. Among the proposed potential strategies for PG management, none has been implemented on a large scale up to date. At the same time, the rapid depletion of phosphorite resources, used to manufacture most commercial phosphorus (P) fertilizers, poses unprecedented challenges for future agriculture and environmental protection. The aim of this study was to assess the possibility of using PG as a source of P for fertilizing plants. The effect of PG fertilization on the dry mass accumulation, P and sulphur (S) contents in soil and in the above-ground parts of plants, as well as on the level of heavy metal contaminations, were studied in the experimental model consisted of 12 genotypes of three lupine species – Lupinus angustifolius, Lupinus albus and Lupinus luteus. The PG application increased the content of both the available and active P in the soil. The increased P bioavailability resulted in an elevated uptake and intracellular content of this nutrient in the studied plant species in a dose- and variety-dependent manner. The heavy metals present in the waste did not affect their accumulation in the plants. The results indicate the possibility of using P forms present in PG as an alternative source of this component in plant nutrition, at the same time allowing elimination of the waste deposited on huge areas, which will certainly contribute to improving the quality of the environment.
Go to article

Bibliography

  1. Abdolzadeh, A., Wang, X., Veneklaas, E.J & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Annals of Botany, 105, pp. 365–374. DOI:10.1093/aob/mcp297
  2. Abraham, E. M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., Parissi, Z., Polidoros, A., Tani, E. & Vlachostergios D. (2019). The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci., 20, 851, pp. 1-27. DOI:10.3390/ijms20040851
  3. Al- Karaki, G.N. & Al-Omoush, M. (2002). Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. J. Plant Nutr, 25(4), pp. 873–883. DOI:10.1081/PLN-120002966
  4. Al-Hwaiti M. & Al-Khashman O. (2015). Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health, 37, pp. 287–304. DOI:10.1007/s10653-014-9646-z
  5. Ammar, R., El Samrani, A.G., Kazpard, V., Bassil, J., Lartiges, B., Saad, Z. & Chou L. (2013) Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment. Environ Sci Pollut Res, 20, pp. 9014–9025. DOI:10.1007/s11356-013-1875-7.
  6. Aslam, M.M., Karanja, J.K., Yuan, W., Zhang, Q., Zhang, J. & Xu, W. (2021). Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiology and Biochemistry, 166, pp. 531–539. DOI:10.1016/j.plaphy.2021.06.022
  7. Bielecki, K. & Kulczycki G. (2012). Modyfikacja metody Buttersa i Chenery'ego oznaczania siarki ogólnej w roślinach i glebie, Przem. Chem., 91/5, pp. 688-691. (in Polish)
  8. Blum, S.C., Caires, E.F. & Alleoni, L.R.F. (2013). Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system, J. Soil Sci. Plant Nutr., 13(2), pp. 279-300. DOI:10.4067/S0718-95162013005000024
  9. Blum, S.C., Garbuio, F.J., Joris, H.A.W. & Caires E.F. (2014). Assessing available soil sulphur fromphosphogypsum applications in a no-till cropping system. Experimental Agriculture, 50(04), pp. 516-532. DOI:10.1017/S0014479714000015
  10. Bolland, M.D.A. (1997). Comparative phosphorus requirement of four lupin species. J Plant Nutr, 20, pp. 1239–1253. DOI:10.1080/01904169709365332
  11. Bouray, M., Moir, J., Condron, L. & Lehto N. (2020). Impacts of Phosphogypsum, Soluble Fertilizer and Lime Amendment of Acid Soils on the Bioavailability of Phosphorus and Sulphur under Lucerne (Medicago sativa). Plants, 9(7), pp. 883. DOI:10.3390/plants9070883
  12. Brennan, R.F. & Bolland, M.D.A. (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant and Soil, 248, pp. 167–185.
  13. Caires, E.F., Kusman, M.T., Barth, G., Garbuio, F.J. & Padilha, J.M. (2004). Changes in soil chemical properties and corn response to lime and gypsum applications. Revista Brasileira de Ciência do Solo, 28, pp.125–136.
  14. Campbell, C.G., Garrido, F., Illera, V. & García-González, M.T. (2006). Transport of Cd, Cu and Pb in an acid soil amended with phosphogypsum, sugar foam and phosphoric rock. Applied Geochemistry, 21, pp. 1030–1043. DOI:10.1016/j.apgeochem.2006.02.023
  15. Carmeis Filho, A.C.A., Crusciol, C.A.C., Guimarães, T.M., Calonego, J.C. & Mooney, S.J. (2016). Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions. PLOS One, 11(12), pp. 1-21. DOI:10.1371/journal.pone.0167564
  16. Chabchoubi, I.B., Bouguerra, S., Ksibi, M. & Hentati O. (2021) Health risk assessment of heavy metals exposure via consumption of crops grown in phosphogypsum contaminated soils. Environ Geochem Health, 43, pp. 1953–1981. DOI:10.1007/s10653-020-00777-y
  17. Chen, Y.L., Dunbabin, V.M., Diggle, A.J., Siddique, K.H.M & Rengel, Z. (2013). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science, 64, pp. 588–599. DOI:10.1071/CP13012
  18. Cheng, L., Tang, X., Vance, C.P., White, P.J., Zhang, F. & Shen, J. (2014). Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot, 65 (12), pp. 2995–3003. DOI:10.1093/jxb/eru135
  19. Chernysh, Y., Yakhnenko, O., Chubur, V. & Roubik, H. (2021). Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci., 11, 1575. DOI:10.3390/app11041575
  20. Chuan, L.M., Zheng, H.G., Zhao, J.J., Wang, A.L. & Sun, S.F. (2017). Policies, standards and managements associated with PG utilization. IOP Conf. Ser. Earth Environ. Sci., 81,pp. 1-4.
  21. Cordell, D., & White, S. (2013) Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security. Agronomy 3, pp. 86-116. DOI:10.3390/agronomy3010086
  22. Crusciol, C.A.C., Artigiani, A.C.C.A., Arf, O., Carmeis Filho, A.C.A., Soratto, R.P., Nascente, A.S. & Alvarez, R.C.F. (2016). Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena, 137, pp. 87–99. DOI:10.1016/j.catena.2015.09.009
  23. Delgado, A., Uceda, I., Andreu, L., Kassem, S. & Del Campbillo, C. (2002) Fertilizer Phosphorus Recovery from Gypsum-Amended, Reclaimed Calcareous Marsh Soils. Reclaimed Calcareous Marsh Soils, Arid Land Research and Management, 16:4, pp. 319-334. DOI:10.1080/15324980290000421
  24. Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & Raun, W. (2017) World Phosphorus Use Efficiency in Cereal Crops. Agronomy Journal, vol. 109, issue 4, pp. 1670-1677. DOI:10.2134/agronj2016.08.0483
  25. Ding, W., Cong, W. & Lambers, H. (2021). Plant phosphorus-acquisition and –use strategies affect soil carbon cycling. Trends in Ecology & Evolution, vol. 36, no. 10, pp. 899-906. DOI:10.1016/j.tree.2021.06.005
  26. Dissanayaka, D.M.S.B., Wickramasinghe, W.M.K.R., Marambe B. & Wasaki J. (2017). Phosphorus-mobilization strategy based on carboxylate exudation in lupins (lupinus, Fabaceae): a mechanism facilitating the growth and phosphorus acquisition of neighbouring plants under phosphorus-limited conditions. Experimental Agriculture, 53(2), pp. 308-319. DOI:10.1017/S0014479716000351
  27. Egle, K., Römer, W. & Keller, H. (2003). Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie, 23, pp. 511–518. DOI:10.1051/agro:2003025
  28. Ekholm, P., Jaakkola, E., Kiirikki, M., Lahti, K., Lehtoranta, J., Mäkelä, V., Näykki, T., Pietola, L., Tattari, S., Valkama, P., Vesikko, L. & Väisänen S. (2011). The effect of gypsum on phosphorus losses at the catchment scale. The Finnish Environment 33, Finnish Environment Institute, Helsinki.
  29. Elloumi, N., Zouari, M., Chaari, L., Abdallah, F.B., Woodward, S. & Kallel, M. (2015). Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res, 22, pp. 14829–14840. DOI: 10.1007/s11356-015-4716-z
  30. Elrashidi, M.A., West, L.A., Seybold, C.A., Benham, E.C., Schoeneberger, P.J. & Ferguson, R. (2010). Effects of Gypsum Addition on Solubility of Nutrients in Soil Amended With Peat. Soil Science, v. 175, n. 4, pp. 162-172. DOI:10.1097/SS.0b013e3181dd51d0
  31. Elser, J.J. & Bennett, E.M. (2011). A broken biogeochemical cycle. Nature, 478, pp. 29–31. DOI:10.1038/478029a
  32. Enamorado, S., Abril, J.M., Mas, J.L., Periáñez, R., Polvillo, O., Delgado, A. & Quintero, J.M. (2009). Transfer of Cd, Pb, Ra and U from Phosphogypsum Amended Soils to Tomato Plants. Water Air Soil Pollut, 203,pp. 65–77. DOI:10.1007/s11270-009-9992-0
  33. Fotyma, M., Fotyma, E., Gosek, S., Iłowiecka, E., Pietrasz-Kęsik, G., Kęsik, K., Ostrokólski, I., Szewczyk, M., Wilkos, G. & Faber, A. (1991) Szybkie metody określania potrzeb nawozowych roślin oraz zagrożenia środowiska w wyniku nawożenia, Instrukcja wdrożeniowa 34/91, Puławy. (in Polish)
  34. Funayama-Noguchi, S., Noguchi, K. & Terashima, I. (2015). Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell and Environment, 38, pp. 399–410.
  35. Grabas, K., Pawełczyk, A., Stręk W., Szełęg, E. & Stręk S. (2018). Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste and Biomass Valorization, 10, pp. 3143–3155. DOI:10.1007/s12649-018-0316-8
  36. Gresta, F., Wink, M., Prins, U. Abberton, M., Capraro, J., Scarafoni, A. & Hill, G. (2017). Lupins in European cropping systems, in: Legumes in cropping systems, Murphy-Bokern, D., Stoddard, F., & Watson, C. (Eds.), Wallingford: CABI Publishing, pp. 88-108. DOI:10.1079/9781780644981.0088
  37. Hentati, O., Nelson, A., Caetano, A. L., Bouguerra, S., Gonçalves, F., Römbke, J. & Pereira, R. (2015). Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. Journal of Hazardous Materials, 294, pp. 80–89. DOI:10.1016/j.jhazmat.2015.03.034
  38. Hilton, J. (2006). Phosphogypsum – management and opportunities for use, in: The International Fertiliser Society Cambridge, Proceedings 587, London.
  39. Kabata-Pendias, A., Pendias, H. (2001). Trace elements in soils and plants, Third edition, CRC Press LLC, 408 p.
  40. Kassir, L.N., Darwish, T., Shaban, A., Lartiges, B. & Ouiani, N. (2012). Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study. Environ Monit Assess, 184, pp. 4397–4412. DOI:10.1007/s10661-011-2272-7
  41. Lambers, H., Clements, J.C. & Nelson, M.N. (2013). How a phosphorus-acquisition strategy based on Carboxylate exudation powers the success and Agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot., 100(2), pp. 263–288. DOI:10.3732/ajb.1200474
  42. Lambers, H. & Plaxton, W.C. (2015). Phosphorus: Back to the Roots, in: Phosphorus Metabolism in Plants, Annual Plant Reviews, vol. 48, Plaxton W. C., Lambers H. (Eds.). JohnWiley & Sons, pp. 3-24. DOI: 10.1002/9781118958841.ch1
  43. Manzoor, H., Bukhat, S., Rasul, S., Rehmani, M.I.A., Noreen, S., Athar, H.R. , Zafar, Z.U., Skalicky, M., Soufan, W., Brestic, M., Habib-ur-Rahman, M., Ogbaga, C.C. & Sabagh, A. (2022). Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance. Front. Plant Sci. 13, 860664. DOI:10.3389/fpls.2022.860664
  44. Monei, N., Hitch, M., Heim, J., Pourret, O.,Heilmeier, H. & Wiche O. (2022) Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius. Environmental Science and Pollution Research, 29, pp. 57172–57189. DOI:10.1007/s11356-022-19775-x
  45. Nayak, S., Mishra, C.S.K., Guru, B. & Rath, M. (2011). Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. J. Environ. Biol., 32, pp. 613-617.
  46. Ochmian, I., Kozos, K., Jaroszewska, A. & Malinowski, R. (2021). Chemical and Enzymatic Changes of Different Soils during Their Acidification to Adapt Them to the Cultivation of Highbush Blueberry. Agronomy, vol.11(1), 44. DOI: 10.3390/agronomy11010044
  47. Ogbaga, C.C., Athar, H.-u.-R., Amir, M., Bano, H., Chater, C.C.C. & Jellason, N.P. (2020). Clarity on frequently asked questions about drought measurements in plant physiology. Scientific African, 8, e00405. DOI:10.1111/ppl.13327
  48. Ouyang, X., Ma, Zhang, R., Li, P., Gao, M., Sun, C., Weng, L., Chen, Y., Yan, S. & Li, Y. (2022). Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. Journal of Hazardous Materials, 431: 128624. DOI:10.1016/j.jhazmat.2022.128624
  49. Pearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D.A & Lambers, H. (2006). Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil, 288, pp. 127–139. DOI:10.1007/s11104-006-9099-y
  50. Piszcz U. (2013). Ocena przydatności testów do opisu stanu fosforowego gleb uprawnych, Monografie CLXVI, Wyd. UP we Wrocławiu, Wrocław. (in Polish)
  51. Pliaka, M. & Gaidajis, G. (2022) Potential uses of phosphogypsum: A review. J. Environ. Sci. Health, Part A, 57:9, pp. 746-763, DOI:10.1080/10934529.2022.2105632
  52. PN-R-04023. (1996). Chemical and agricultural analysis-determination of the content available phosphorus in mineral soil. Warszawa: Polish Standards Committee.
  53. Quintero, J.M., Enamorado, S., Mas, J.L., Abril J.M., Polvillo, O. & Delgado, A. (2014). Phosphogypsum amendments and irrigation with acidulated water affect tomato nutrition in reclaimed marsh soils from SW Spain. Span J Agric Res, 12(3), pp. 809-819. DOI:10.5424/sjar/2014123-5273
  54. Rajković, M.B., Blagojević, S.D., Jakovljević, M.D. & Todorović, M.M. (2000). The Application of Atomic Absorption Spectrophotometry (AAS) for Determining the Content of Heavy Metals in Phosphogypsum. Journal of Agricultural Sciences, vol. 45, no 2, pp. 155-164.
  55. Roberts, T.L. & Johnston, A.E. (2015). Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl, vol. 105, pp. 275-281. DOI: 10.1016/j.resconrec.2015.09.013
  56. Römer, W., Dong-Kyu, K., Egle, K., Gerke, J. & Keller, H. (2000). The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L. and Lolium multiflorum. Lam. J. Plant Nutr. Soil Sci., 163, pp. 623–628. DOI:10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.3.CO;2-3
  57. Rothwell, S.A., Doody, D.G., Johnston, C., Forber K.J., Cencic O., Rechberger, H. & Withers, P.J.A (2020) Phosphorus stocks and flows in an intensive livestock dominated food system. Resources, Conservation and Recycling, vol. 163,105065. DOI:10.1016/j.resconrec.2020.105065
  58. Saadaoui, E., Ghazel, N., Ben Romdhane, C. & Massoudi, N. (2017). Phosphogypsum: Potential uses and problems – A review. Int. J. Environ. Stud., 74, pp. 558–567. DOI:10.1080/00207233.2017.1330582
  59. Shahid, S.A. & Rehman, K. (2011). Soil salinity development, classification, assessment and management in irrigated agriculture, in: Handbook of plant and crop stress Passarakli M. (Eds.), CRC Press/Taylor & Francis Group, Boca Raton, pp. 23–39.
  60. Smaling, E., Toure, M., Ridder, N.D., Sanginga, N. & Breman, H. (2006). Fertilizer Use and the Environment in Africa: Friends or Foes? Background Paper Prepared for the African Fertilizer Summit, Abuja, Nigeria.
  61. Smaoui-Jardak, M., Kriaa, W., Maalej, M., Zouari, M., Kamoun, L., Trabelsi, W., Abdallah, F.B. & Elloumi, N. (2017). Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). Ecotoxicology, 26, pp. 1089-1104. DOI:10.1007/s10646-017-1836-x
  62. Syers, J.K., Johnston, A.E. & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin, FAO. Rome.
  63. Takasu, E., Yamada, F., Shimada, N., Kumagai, N., Hirabayashi, T. & Saigusa, M. (2006). Effect of phosphogypsum application on the chemical properties of Andosols, and the growth and Ca uptake of melon seedlings. Soil Science and Plant Nutrition, 52, pp. 760–768. DOI:10.1111/j.1747-0765.2006.00093.x
  64. Tian, D., Xia, J., Zhou, N., Xu, M., Li, X., Zhang, L., Du S. & Gao H. (2022) The Utilization of Phosphogypsum as a Sustainable Phosphate-Based Fertilizer by Aspergillus niger. Agronomy, 12, 646. DOI:10.3390/agronomy12030646
  65. Trejo, N., Matus, I., Del Pozo, A., Walter, I. & Hirzel, J. (2016). Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in Tyree contrasting agroclimatic conditions of Chile. Chilean Journal of Agricultural Research, 76(2), pp. 228-235.
  66. Verheijen, F.G.A, Zhuravel, A., Silva, F.C., Amaro, A., Ben-Hur, M. & Keizer, J.J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, vol. 347, pp. 194-202. DOI:10.1016/j.geoderma.2019.03.044
  67. Vyshpolsky, F., Bekbaev, U., Mukhamedjanov, Kh., Ibatullin, S., Paroda, R., Yuldashev, T., Karimov, A., Aw-Hassan, A., Noble, A. & Qadir, M. (2008). Enhancing the Productivity of High-Magnesium Soil and Water Resources. LDD, vol. 19, issue 1, pp. 45-56. DOI:10.1002/ldr.814
  68. Watanabe, F.S. & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Am. Proc., 29 (6), pp. 677–678.
  69. Xu, W., Zhang, Q., Yuan, W., Xu, F., Aslam, M.M., Miao, R., Li, Y., Wang, Q., Li, X., Zhang, X., Xia, T. & Cheng F. (2020) The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications, vol. 11, 1069. DOI:10.1038/s41467-020-14891-z
  70. Yakovlev, A.S., Kaniskin, M.A. & Terekhova, V.A. (2013). Ecological Evaluation of Artificial Soils Treated with Phosphogypsum. Eurasian Soil Science, vol. 46, no. 6, pp. 697–703. DOI:10.1134/S1064229313060124
  71. Yanai, M., Uwasawa, M. & Shimizu, Y. (2000). Development of a New Multinutrient Extraction Method for Macro- and Micro- Nutrients in Arable Land Soil. Soil Sci. Plant Nutr., 46 (2), pp. 299–313. DOI:10.1080/00380768.2000.10408786
Go to article

Authors and Affiliations

Kamila Stępień
1
Piotr Stępień
1
Urszula Piszcz
1
Zofia Spiak
1

  1. Wroclaw University of Environmental and Life Sciences, Department of Plant Nutrition, Poland
Download PDF Download RIS Download Bibtex

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc especially in 2020 and the first half of 2021 and has left severe after-effects affecting not only the health sector but also all aspects of human life. The aim of this study is to inspect the current trends of the quantities of household waste produced during the first four waves of the pandemic. The study was carried out in Guelma city, northeastern of Algeria, where the first containment was registered on February 25, 2020, it concerns an Italian national (Mohamed et al. 2021). An increase in the production of household waste of approximately 14% during the first containment was recorded in the study area, with the interruption of recycling, which caused an enormous pressure on the technical landfill center of Guelma. The results showed that the trend of waste production decreased at the following averages: 205.80; 198.92; 196.69 and 192.43 tons, for the first four waves of COVID-19 respectively. Therefore, a return to the pre-pandemic state would be close, which dampens the impact and pressure on the landfill and the environment. This research allows for perceiving the waste management status in Algeria, between the pandemic and post-pandemic period.
Go to article

Bibliography

  1. Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T.R. & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of The Total Environment, 730, 138996. DOI:10.1016/j. scitotenv.2020.138996
  2. Adyel, T.M. (2020). Accumulation of plastic waste during COVID-19. Science, 369(6509), pp. 1314–1315. DOI:10.1126/science. abd9925
  3. AND (2020). Report on the State of Waste Management in Algeria https://and.dz/site/wp-content/uploads/rapport%20DMA2.pdf (Assessed 03 july 2022).
  4. Anderson, R.M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T.D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), pp. 931–934. DOI:10.1016/S0140-6736(20)30567-5
  5. Andi (2020). National Agency for the Development of Investments (Andi). The borough of Guelma. Volumes 1–19. Presentation of the wilaya (borough) 2015. Assessed on Sep 09, 2020. http:// www.andi.dz/PDF/monographies/Guelma.pdf. Journal of Environmental Engineering.
  6. Aouissi, H.A., Kechebar, M.S.A., Ababsa, M., Roufayel, R., Neji, B., Petrisor, A.-I. Ohmagari, N. (2022). The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare, 10(7), 1341. DOI:10.3390/healthcare10071341
  7. Boroujeni, M., Saberian, M. & Li, J. (2021). Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus. Environmental Science and Pollution Research, 28(11), pp. 14182–14191. DOI:10.1007/s11356-021-12556-y
  8. Chen, D.M.-C., Bodirsky, B.L., Krueger, T., Mishra, A. & Popp, A. (2020). The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7), 074021. DOI:10.1088/1748-9326/ab8659
  9. Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L.& Li, X. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15-e16. DOI:10.1016/ S2215-0366(20)30078-X
  10. Chen, W., Zhang, N., Wei, J., Yen, H.-L. & Li, Y. (2020). Short- -range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 176, 106859. DOI:10.1101/2020.03.16.20037291
  11. Contributors, V. (2021). Economic Crisis and Mentality of Youth in Post-Pandemic Period edited by Sagar Simlandy: PS Opus Publications.
  12. DGPPS, M. (2020). Plan de préparation et de riposte à la menace de l’infection coronavirus Covid-19. Disponible sur: http://www. sante. gov. dz/images/Prevention/cornavirus/Plan-de-prparation. PDF.
  13. Ebner, N. & Iacovidou, E. (2021). The challenges of Covid-19 pandemic on improving plastic waste recycling rates. Sustainable Production and Consumption, 28, pp. 726–735. DOI:10.1016/j. spc.2021.07.001
  14. Ghennam, N. (2020). Waste Recycling Business in Algeria – Opportunities and Challenges for SME. Al-Riyada Bus. Econ. J., 6, pp. 10–22.
  15. Hyun, M. (2020). Korea sees steep rise in online shopping during COVID-19 pandemic. ZD Net. Assessed on April 12, 2020. https://www.zdnet.com/article/justice-department-seizes-fakecovid- 19-vaccine-website-stealing-info-from-visitors/
  16. Iyer, M., Tiwari, S., Renu, K., Pasha, M. Y., Pandit, S., Singh, B. & Balasubramanian, V. (2021). Environmental survival of SARSCoV- 2 – a solid waste perspective. Environmental Research, 197, 111015. DOI:10.1016/j.envres.2021.111015
  17. Jribi, S., Ben Ismail, H., Doggui, D. & Debbabi, H. (2020). COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environment, Development and Sustainability, 22(5). DOI:10668-020-00740-y
  18. Kampf, G., Todt, D., Pfaender, S. & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3), pp. 246–251. DOI:10.1016/j.jhin.2020.01.022
  19. Kandel, N., Chungong, S., Omaar, A. & Xing, J. (2020). Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. The Lancet, 395(10229), pp. 1047–1053. DOI:10.1016/S0140-6736(20)30553-5
  20. Kebaili, F. K., Baziz-Berkani, A., Aouissi, H.A., Mihai, F.-C., Houda, M., Ababsa, M. & Fürst, C. (2022). Characterization and Planning of Household Waste Management: A Case Study from the MENA Region. Sustainability, 14(9), 5461. DOI:10.3390/su14095461
  21. Klemeš, J.J., Van Fan, Y., Tan, R.R. & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127, 109883. DOI:10.1016/j.rser.2020.109883
  22. Leveau, C.M., Aouissi, H.A. & Kebaili, F.K. (2022). Spatial diffusion of COVID-19 in Algeria during the third wave. GeoJournal, 1–6. DOI:10.1007/s10708-022-10608-5
  23. Lounis, M., Rais, M.A., Bencherit, D., Aouissi, H.A., Oudjedi, A., Klugarová, J. & Riad, A. (2022). Side Effects of COVID-19 Inactivated Virus vs. Adenoviral Vector Vaccines: Experience of Algerian Healthcare Workers. Frontiers in Public Health, 10, 896343-896343. DOI:10.3389/fpubh.2022.896343
  24. Low, D., & Koh, A. (2020). Singapore’s Food Delivery Surge during Lockdown Highlights Waste Problems. Bloomberg News, (Accessed 18 July2020).
  25. Mohamed, K., Amina, M.-S., Mouaz, M.B.E., Zihad, B. & Wafa, R. (2021). The impact of the coronavirus pandemic on the household waste flow during the containment period. Environmental Analysis Health and Toxicology, 36(2), e2021011. DOI:10.5620/ eaht.2021011
  26. Mol, M.P.G. & Caldas, S. (2020). Can the human coronavirus epidemic also spread through solid waste? Waste Management & Research, 38(5), pp. 485–486. DOI:10.1177/0734242X20918312
  27. Nzediegwu, C. & Chang, S. (2020). Developing Countries For Submission to: Resources Conservation y Recycling Type of Paper: Perspective. Resources, Conservation. Recycling, 104947.
  28. Paleologos, E.K., Elhakeem, M. & Amrousi, M.E. (2018). Bayesian analysis of air emission violations from waste incineration and coincineration plants. Risk Analysis, 38(11), pp. 2368–2378. DOI:10.1111/risa.13130
  29. Ranney, M.L., Griffeth, V. & Jha, A.K. (2020). Critical supply shortages – the need for ventilators and personal protective equipment during the Covid-19 pandemic. New England Journal of Medicine, 382(18), e41. DOI:10.1056/NEJMp2006141
  30. Remuzzi, A. & Remuzzi, G. (2020). COVID-19 and Italy: what next? The Lancet, 395(10231), pp. 1225–1228. DOI:10.1016/S0140- 6736(20)30627-9
  31. Roy, P., Mohanty, A.K., Wagner, A., Sharif, S., Khalil, H., & Misra, M. (2021). Impacts of COVID-19 outbreak on the municipal solid waste management: Now and beyond the pandemic. ACS Environmental Au, 1(1), pp. 32–45. DOI:10.1021/ acsenvironau.1c00005
  32. SNGID. (2019). National Waste Management Strategy https://www. nascrc.com/wp-content/uploads/2019/11/la-strat%C3%A9gienationale- pour-la-gestion- int%C3%A9gr%C3%A9e-desd% C3%A9chets-SNGID-2035-cas-des-POPs.pdf (accessed on 15 June 202)
  33. Van Fan, Y., Jiang, P., Hemzal, M. & Klemeš, J.J. (2021). An update of COVID-19 influence on waste management. Science of the Total Environment, 754, 142014. DOI:10.1016/j. scitotenv.2020.142014
  34. Vaverková, M.D., Paleologos, E.K., Dominijanni, A., Koda, E., Tang, C.S., Wdowska, M., Li, Q., Guarena, N., Abdel- Mohsen, O.M., Vieira, C.S., Manassero, M., O’Kelly, B.C., Xie, Q., Bo, MV., Adamcová, D.,. Podlasek, A., Anand, U.M., Arif, M., Venkata Siva Naga Sai Goli, Kuntikana, G., Palmeira, E.M., Pathak, S. & Singh, D.N. (2020). Municipal solid waste management under COVID-19: challenges and recommendations. Environmental Geotechnics, 8(3), pp. 217–232. DOI:10.1680/jenge.20.00082
  35. WHO (2020). COVID-19 2020 situation summary – updated 19 April 2020. Available at. https://www.cdc.gov/coronavirus/2019-ncov/ cases-updates/summary. html#covid19-pandemic (Accessed 20 june 2021 ).
  36. WHO (2022). The COVID-19 weekly epidemiological Update – updated 12 October 2022. Available. https://www.who.int/ publications/m/item/weekly-epidemiological-update-on-covid- 19-12-october-2022 (Accessed 18 /10/ 2022).
  37. World Health Organization. Worldmeter (2015). Worldmeter 2015. Available online: https:// www.worldometers.info/population/largest-cities-in-the-world/ (accessed on 12 March 2022).
  38. Yang, Y., Li, W., Zhang, Q., Zhang, L., Cheung, T. & Xiang, Y.-T. (2020). Mental health services for older adults in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e19. DOI:10.1016/S2215-0366 (20)30079-1
  39. Zandifar, A. & Badrfam, R. (2020). Iranian mental health during the COVID-19 epidemic. Asian Journal of Psychiatry, 51. DOI:10.1016/j.ajp.2020.101
Go to article

Authors and Affiliations

Amina Mesbahi-Salhi
1
Mohamed Kaizouri
1
Bachir El Mouaz Madoui
1
Wafa Rezaiguia
2
ORCID: ORCID
Zihad Bouslama
1
ORCID: ORCID

  1. Laboratory of Ecology of Earth and Aquatic Systems, University of Badji Mokhtar,Annaba, 23052, Algeria
  2. University of Mohamed Cherif Messaadia, Souk-Ahras, 41043, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Mining wastes are by-products generated during search, excavation and processing, both physical and chemical, of ores and other minerals. In 2017, wastes from group 01 constituted 60% of total wastes produced in Poland. According to the statistical data, approximately 92% of the waste generated during the excavation and processing of hard coal is economically reused. 30% of this waste used in industry and nearly 70% is used for the reclamation of the degraded industrial areas. At present, there is a tendency in the E uropean Union to shift from a linear economy to the Circular E conomy. The goal is to maintain economical value of the resources, among others, by their reuse in a productive way, which at the same time eliminates waste. One of the industrial branch where the ideals of a Circular E conomy can be implemented is the mining industry. Mining wastes may form one of the sources of anthropogenic minerals, as they belong to alternative aggregates. Deposits of anthropogenic minerals are considered sources of valuable raw materials which guarantee that the products made on their basis will be of high quality. The article presents the results of physico-chemical tests, the leachability of contaminations and phytotoxicity tests carried out on the basis of the selected mining waste in light of a Circular E conomy.

Go to article

Authors and Affiliations

Monika Czop
Amanda Kościelna
Karolina Żydek
Download PDF Download RIS Download Bibtex

Abstract

In these times of the climate crisis surrounding us, the improvement of technologies responsible for the emission of the largest amounts of greenhouse gases is necessary and increasingly required by top-down regulations. As the sector responsible to a large extent for global logistics and supply chains, the fuel sector is one of the most studied in terms of reducing its harmful impact. The development of the next generations of fuels and biofuels, produced by companies using increasingly modern, cleaner and sustainable technologies, is able to significantly reduce the amount of greenhouse gases released into the atmosphere. In this case, the most effective solution seems to be the use of closed loops. Due to their low, often zero emission balance and the possibility of using waste to produce materials that can be reused, a circular economy is used in many sectors of the economy, while ensuring the emission purity of technological processes. One of the innovative solutions proposed in recent years is the installation created as part of the BioRen project, implemented under the Horizon 2020 program. The cooperation of European institutes with companies from the SME sector has resulted in the creation of an experimental cycle of modern technologies for the production of second-generation biofuels. The project involves the processing of municipal solid waste into second-generation drop-in biofuels. The entire process scheme assumes, in addition to the production of biofuels, the processing of inorganic fractions, the production of carbon material for the production of thermal energy, and the simultaneous treatment of wastewater.
Go to article

Authors and Affiliations

Piotr Jan Plata
1
ORCID: ORCID
Agnieszka Nowaczek
2
ORCID: ORCID

  1. Chemistry Department, Warsaw University of Technology, Warsaw, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

To test the potential harmfulness of soils fertilized with sludge-based products to plant organisms, a biotest method using the physiological/biochemical reaction of the organisms to assess their toxicity was chosen. This paper presents the results of a preliminary ecotoxicological study of different products: a sludge-based fertilizer, a plant growth promoter, and a reclamation blend. The study was conducted using Sinapis alba L., a plant used in agriculture for intercropping and recommended for toxicological testing. Toxicity tests were performed in a gradient of concentrations of the indicated products (2.5%, 5%, and 10%). For comparison purposes, a trial containing a commercial fertilizer was used alongside the control soil (without additives). The fertilizer and the crop support agent were of low toxicity, but data analysis indicated toxicity of the so-called reclamation blend, which contained heavy metals among other things. The test products showed an increase in toxicity with the increasing dose used. This research represents an important step in assessing the usefulness of products created from sewage sludge and may help overcome the „psychological barrier” that prevents potential investors from investing capital that would allow production to spread.
Go to article

Bibliography

  1. Borgulat, J. (2020). Zróżnicowanie zawartości metali ciężkich i wielopierścieniowych węglowodorów aromatycznych (WWA) w igłach Picea abies oraz Abies alba w Beskidzie Śląskim i Żywieckim. [Unpublished doctoral dissertation]. University of Silesia
  2. Borgulat, J., Mętrak, M., Staszewski, T., Wiłkomirski, B., Suska-Malawska, M. (2018). Heavy Metals Accumulation in Soil and Plants of Polish Peat Bogs. Polish Journal of Environmental Studies, 27(2). DOI: 10.15244/pjoes/75823
  3. Breda, C.C., Bortolanza, M., Renan, S., Tavantic, F.R., Viana, D., Freddia, O., Piedade, A.R., Mahle, D.,Traballi, R.C., Guerrinig, I. (2020). Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Management, 109, pp. 38-50. DOI:10.1016/j.wasman.2020.04.045
  4. Ciesielczuk, T., Rosik-Dulewska, C., Poluszyńska, J., Miłek, D., Szewczyk, A., & Sławińska, I. (2018). Acute toxicity of experimental fertilizers made of spent coffee grounds. Waste Biomass Valori, 9(11), pp. 2157-2164. DOI:10.1007/s12649-017-9980-3
  5. Food and Agriculture Organization of United Nations: Worlds Fertilizer trends and Outlook to 2022. FAO 2019.
  6. Grobelak, A., Stępień, W., & Kacprzak, M. (2016). Sewage sludge as a component of fertilizers and soil substitutes. Inż. Ekol. (in Polish). DOI: 10.12912/23920629/63289
  7. GUS, 2019. Ochrona Środowiska. (http://stat.gov.pl, 10.11.2020)
  8. Harasimowicz-Hermann, G., Hermann J. (2006). The function of catch crops in the protection of mineral resources and soil organic matter. Zesz. Probl. Post. Nauk Rol., I(512), pp. 147–155. (in Polish)
  9. Hase, T., Kawamura, K. (2012). Germination test on Komatsuna (Brassica rapa var. peruviridis) seed using water extract from compost for evaluating compost maturity: evaluating criteria for germination and effects of cultivars on germination rate. J. Mater. Cycles Waste Manage., 14(4), pp. 334–340. DOI:10.1007/s10163-012-0073-x
  10. Jakubus, M. (2012). Evaluation of compost by selected chemical and biological methods. Fresen. Environ. Bull., 21(11a), pp. 3464–3472.
  11. Journal of Laws. 2016 item 1395. Regulation of the Minister of the Environment of 1 September 2016 on the manner of conducting the assessment of pollution of the earth surface.
  12. Kaszycki, P., Głodniok, M., Petryszak, P (2021), Towards a bio-based circular economy in organic waste management and wastewater treatment – the Polish perspective. N Biotechnol, 61, pp. 80–89. DOI:10.1016/j.nbt.2020.11.005
  13. Ko, H., Kim, K., Kim, H., Kim, Ch., & Umeda, M. (2008). Evaluation of compost parameters and heavy metals contents in composts made from Animals mature. Waste. Manage., 28, pp. 813–820. DOI: 10.1016/j.wasman.2007.05.010
  14. Krzyżak, J., Pogrzeba, M., Rusinowski, S., Clifton-Brown, J., McCALMONT, J. P., Kiesel, A., & Mos, M. (2017). Heavy metal uptake by novel Miscanthus seed-based hybrids cultivated in heavy metal contaminated soil. CEER, 26(3), pp. 121–132. DOI: 10.1515/ceer-2017-0040
  15. Miaomiao, H., Wenhong, L., Xinqiang, L., Donglei, W., & Guangming, T. (2009). Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Manage., 29, pp. 590–597. DOI:10.1016/j.wasman.2008.07.005
  16. Obidoska, G., Hadam, A. (2008). Phytotoxicity of composts produced from various urban wastes. Ann. Warsaw Univ. Life Sci. – SGGW, Horticult. Landsc. Architect., 29, pp. 65–70.
  17. OECD/ OCDE 208 ¬¬– Guidelines for the testing of chemicals. Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test.
  18. PN-EN ISO 11269-1:2013-06 Soil quality. Determination of the effect of pollutants on soil flora - Method for measuring root growth inhibition. PN-EN ISO 11269-2:2013-06 Soil quality. Determination of the effect of pollutants on soil flora - Effect of chemical compounds on the emergence and growth of higher plants.
  19. Pogrzeba, M., Rusinowski, S., & Krzyżak, J. (2018). Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ Sci Pollut Res., 25(12), pp. 12096–12106. DOI: 10.1007/s11356-018-1490-8
  20. Preite, V., Sailer, C., Syllwasschy, L., Bray, S., Ahmadi, H., Krämer, U., & Yant, L. (2019). Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B, 374, pp. 20180243. DOI:10.1098/rstb.2018.0243
  21. Ren, Y., Lin, M., Liu, Q., Zhang, Z., Fei X., Xiao R., Lv X. (2021). Contamination assessment, health risk evaluation, and source identification of heavy metals in the soil-rice system of typical agricultural regions on the southeast coast of China. Environmental Science and Pollution Research, 28(10), 12870–12880. DOI:10.1007/s11356-020-11229-6
  22. Rosik-Dulewska, C., Głowala, K., Karwaczyńska, U., & Szydło, E (2006). The mobility of chosen pollutants from ash-sludge mixtures. Polish J. Environ. Stud., 15(6), pp. 895–904.
  23. Rosik-Dulewska, Cz., Karwaczyńska, U., & Głowala, K. (2007). Natural use of municipal sewage sludge and compost from municipal waste - fertilization value and environmental hazards. Zesz. Nauk. Wydz. Bud. i Inż. Środ., 23, pp. 137–153. (in Polish)
  24. Sarkheil, H., & Azimi, Y. (2020). Evaluation of Plant Roots Ability to Remove Lead and Zink Mining Drainage Contamination by Geoelectric Surveys. In NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, 2020(1), pp. 1–4. European Association of Geoscientists & Engineers. DOI:10.3997/2214-4609.202020020
  25. Sawicka, B., Kotiuk, E. (2006). Evaluation of health safety of mustards in the obligatory norms. Acta Sci. Pol., Technol. Alim., 5(2), pp. 165–177.
  26. Skubała, K. (2011). Vascular Flora of Sites Contaminated with Heavy Metals on the Expample of Two Post-Industrial Spoil Heaps Connected with Manufacturing of Zinc and Lead Products in Upper Silesia. Archives of Environmental Protection, 37(1), pp. 57–74.
  27. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K., & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2). DOI: 10.24425/aep.2020.133473
  28. Tran, K. Q., Werle, S., Trinh, T. T., Magdziarz, A., Sobek, S., & Pogrzeba, M. (2020). Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass and Bioenergy, 134, 105469. DOI:10.1016/j.biombioe.2020.105469
  29. Vimala, T., & Poonghuzhali, T. (2015). Estimation of pigments from seaweeds by using acetone and DMSO. IJSR, 4(10), pp. 1850–1854.
  30. Wójcik, M., Gonnelli, C., Selvi, F., Dresler, S., Rostański, A., & Vangronsveld, J. (2017). Metallophytes of serpentine and calamine soils–their unique ecophysiology and potential for phytoremediation. Adv. Bot. Res, 83, pp. 1–42. DOI:10.1016/bs.abr.2016.12.002
  31. Zawadzki, P., Głodniok, M. (2021), Environmental Safety Assessment of Fertilizer Products, Pol. J. Environ. Stud. 30(1):11–22. DOI:10.15244/pjoes/120519
  32. Zeynep, G. D. (2019). Role of EDDS and ZnO-nanoparticles in wheat exposed to TiO2Ag-nanoparticles. Archives of Environmental Protection, 45(4), pp. 78–83. DOI: 10.24425/aep.2019.130244
  33. Zhang, Z., Wu, X., Wu, Q., Huang, X., Zhang, J., Fang, H. (2020). Speciation and accumulation pattern of heavy metals from soil to rice at different growth stages in farmland of southwestern China. Environmental Science and Pollution Research, 27(28), 35675–35691. DOI:10.1007/s11356-020-09711-2
Go to article

Authors and Affiliations

Anna Borgulat
1
Aleksandra Zagórska
1
Marcin Głodniok
1

  1. Central Mining Institute, Department of Water Protection, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Waste management is a challenging problem for most of the countries. The current waste segregation and the collection method are not efficient and cost-effective. In this paper, a prototype is presented for smart waste management. It is also capable of waste segregation at the ground level and providing real-time data to the administrator. Impact and cost analysis of the deployment of smartbin is also presented considering one ward of Ahmedabad Municipal Corporation. It is clear from that deployment of this smartbin will save about 40% of the current expenditure for that ward.

Go to article

Authors and Affiliations

Bhupendra Fataniya
Aayush Sood
Deepti Poddar
Dhaval Shah
Download PDF Download RIS Download Bibtex

Abstract

In this research, the effect of sodium silicate (Na2SiO3) on the geopolymerization of fly ash type F (low calcium) has been studied. The variations of Na2SiO3 used in the synthesized geopolymers were 19, 32, and 41wt%. The fly ash from three different power plant sources was characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analyzer (PSA), and Scanning Electron Microscopy (SEM). Fly ash-based geopolymers were tested for mechanical strength and setting time. The best geopolymer was obtained by adding 32% Na2SiO3, produced a compressive strength of 21.62 MPa with a setting time of 30 hours. Additions of 19wt% Na2SiO3 failed to form geopolymer paste while the addition of 41wt% Na2SiO3 decreased the mechanical strength of the geopolymer. Higher calcium content in low calcium fly ash produces stronger geopolymer and faster setting time.
Go to article

Bibliography

[1] Y . Zhang, R. Xiao, X. Jiang, W. Li, X. Zhu, B. Huang, J. Cleaner. Prod. 273, 122970 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122970
[2] İ.İ. Atabey, O. Karahan, C. Bilim, C.D. Atiş, Constr. Build. Mater. 264 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2020.120268
[3] C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 101655 (2020). DOI : https://doi.org/10.1016/j.jobe.2020.101655
[4] A. Abdullah, K. Hussin, M.M.A.B. Abdullah, Z. Yahya, W. Sochacki, R.A. Razak, K. Błoch, H. Fansuri, Materials 14, 1111 (2021). DOI: https://doi.org/10.3390/ma14051111
[5] Y .S. Wang, Y. Alrefaei, J.G. Dai, Cem. Concr. Res. 127, 105932 (2020). DOI : https://doi.org/10.1016/j.cemconres.2019.105932
[6] F. Demir, E. Moroydor Derun, J. Non-Cryst. Solids. 524, 119649 (2019). DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119649
[7] S. Top, H. Vapur, M. Altiner, D. Kaya, A. Ekicibil, J. Mol. Struct. 1202, 127236 (2020). DOI : https://doi.org/10.1016/j.molstruc.2019.127236
[8] O .H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021). DOI : https://doi.org/10.3390/magnetochemistry7010009
[9] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021). DOI : https://doi.org/10.3390/ma14010056
[10] M .A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021). DOI : https://doi.org/10.3390/ma14051310
[11] P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling, J. Cleaner Prod. 270 122389 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122389
[12] K .U. Ambikakumari Sanalkumar, M. Lahoti, E.H. Yang, Constr. Build. Mater. 225, 283-291 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.07.140
[13] D . Panias, I.P. Giannopoulou, T. Perraki, Colloids Surf. A. 301, 246-254 (2007). DOI : https://doi.org/10.1016/j.colsurfa.2006.12.064
[14] A .M. Kaja, A. Lazaro, Q.L. Yu, Constr. Build. Mater. 189, 1113- 1123 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.09.065
[15] M .N.S. Hadi, M. Al-Azzawi, T. Yu, Constr. Build. Mater. 175, 41-54 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.092
[16] X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, J. Cleaner Prod. 125, 253-267 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.03.019.
[17] T . Hemalatha, A. Ramaswamy, J. Cleaner Prod. 147, 546-559 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.01.114
[18] C. Belviso, Prog. Energy Combust. Sci. 65, 109-135 (2018). DOI : https://doi.org/10.1016/j.pecs.2017.10.004
[19] R.E. Hidayati, G.R. Anindika, F.S. Faradila, C.I.B. Pamungkas, I. Hidayati, D. Prasetyoko, H. Fansuri, IOP Conf. Ser. Mater. Sci. Eng. Sci. Eng. 864 (2020). DOI : https://doi.org/10.1088/1757-899X/864/1/012017.
[20] J .G. Jang, H.K. Lee, Constr. Build. Mater. 102, 260-269 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.172
[21] H. Fansuri, N. Swastika, L. Atmaja, Akta Kimindo 3, 61-66 (2008).
[22] P. Rożek, M. Król, W. Mozgawa, Spectrochim. Acta – Part A. 198, 283-289 (2018). DOI: https://doi.org/10.1016/j.saa.2018.03.034
[23] V . Gupta, D.K. Pathak, S. Siddique, R. Kumar, S. Chaudhary, Constr. Build. Mater. 235, 117413 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2019.117413
[24] A . Mehta, R. Siddique, Constr. Build. Mater. 150, 792-807 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.067.
[25] S.K. Nath, S. Kumar, Constr. Build. Mater. 233, 117294 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117294
[26] A . De Rossi, M.J. Ribeiro, J.A. Labrincha, R.M. Novais, D. Hotza, R.F.P.M. Moreira, Process Saf. Environ. Prot. 129, 130-137 (2019). DOI: https://doi.org/10.1016/j.psep.2019.06.026
[27] L .N. Assi, E. Eddie Deaver, P. Ziehl, Constr. Build. Mater. 167, 372-380 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.01.193
[28] D .-W. Zhang, D. Wang, Z. Liu, F. Xie, Constr. Build. Mater. 187, 674-680 (2018). DOI: https://doi.org/10.1016/j.conbuildmat. 2018.07.205
[29] P. Risdanareni, P. Puspitasari, E. Januarti Jaya, MAT EC Web Conf. 97 (2017). DOI : https://doi.org/10.1051/matecconf/20179701031
[30] B .G. Kutchko, A.G. Kim, Fuel. 85, 2537-2544 (2006). DOI : https://doi.org/10.1016/j.fuel.2006.05.016
[31] W.W.A. Zailani, A. Bouaissi, M.M. Al Bakri Abdullah, R. Abd Razak, S. Yoriya, M.A.A. Mohd Salleh, M.A.Z. Mohd Remy Rozainy, H. Fansuri, Appl. Sci. 10, 1-14 (2020). DOI : https://doi.org/10.3390/app10093321
[32] D .D. Burduhos Nergis, P. Vizureanu, L. Andrusca, D. Achitei, IOP Conference Series: Materials Science and Engineering. 572, 012026 (2019). DOI : https://doi.org/10.1088/1757-899X/572/1/012026
[33] D .D. Burduhos Nergis, P. Vizureanu, I. Ardelean, A.V. Sandu, O. Corbu, E. Matei, Materials 13, 3211 (2020). DOI : https://doi.org/10.3390/ma13020343
[34] D .W. Zhang, D.M. Wang, F.Z. Xie, Constr. Build. Mater. 207, 284-290 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.02.149
[35] L .H. Buruberri, D.M. Tobaldi, A. Caetano, M.P. Seabra, J.A. Labrincha, Elsevier Ltd, 2019. DOI : https://doi.org/10.1016/j.jobe.2018.11.017
[36] H. Fansuri, D. Prasetyoko, Z. Zhang, D. Zhang, Asia-Pac. J. Chem. Eng. 7 (1), 73-79 (2012). DOI: https://doi.org/10.1002/apj.493
Go to article

Authors and Affiliations

Ririn Eva Hidayati
1
Fitria Sandi Faradilla
1
Dadang Dadang
1
Lia Harmelia
1
Nurlina Nurlina
2
Didik Prasetyoko
1
Hamzah Fansuri
1

  1. Institut Teknologi Sepuluh Nopember, Department of Chemistry, Faculty of Science and Data Anlytics , Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  2. Universitas Tanjungpura, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Pontianak 78111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

One of the factors that contribute to the development of foundry moulding technology is environmental protection. The related challenges are effectively satisfied by a new inorganic binder that has been designed for castings made of non-ferrous metal alloys. This article presents in a concise way the test results, showing the ecological character of the new binder at the stage of making moulds, pouring them with metal and cooling of castings, indicating the possibilities for an economic re-use of waste materials formed during practical application of this technology. The results were compared with the results obtained on the sands with organic binders. Studies were carried out under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies."
Go to article

Authors and Affiliations

I. Izdebska-Szanda
M. Angrecki
A. Palma
M. Żmudzińska
Download PDF Download RIS Download Bibtex

Abstract

The phase composition of the cement paste phase of concrete containing fly ash from circulating fluidized bed combustion (CFBC) was studied. The motivation was to broaden the knowledge concerning the microstructure and the durability of concrete containing new by-products from the power industry. Several air-entrained concrete mixes were designed with constant water to binder ratio and with substitution of a part of the cement by CFBC fly ash (20%, 30% or 40% by weight). X-ray diffraction tests and thermal analysis (DTG, DTA and TG) were performed on cement paste specimens taken from concrete either stored in water at 18° C or subjected to aggressive freeze-thaw cyclic action. The evaluation of the phase composition as a function of CFBC fly ash content revealed significant changes in portlandite content and only slight changes in the content of ettringite. The cyclic freeze-thaw exposure did not have any significant influence on the phase composition of concrete with and without the CFBC fly ash.

Go to article

Authors and Affiliations

M.A. Glinicki
M. Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The transition to circular economy requires diversifying material sources, improving secondary raw materials management, including recycling, and finally finding sustainable alternative materials. Both recycled and bio-based plastics are often regarded as promising

alternatives to conventional fossil-based plastics. Their broad application instead of fossilbased plastics is, however, frequently the subject of criticism because of offering limited

environmental benefits. The study presents a comparative life cycle assessment (LCA) of

fossil-based polyethylene terephthalate (PET) versus its recycled and bio-based counterparts. The system boundary covers the plastics manufacturing and end-of-life plastic management stages (cradle-to-cradle/grave variant). Based on the data and assumptions set

out in the research, recycled PET (rPET) demonstrates the best environmental profile out

of the evaluated plastics in all impact categories. The study contributes to circular economy in plastics by providing transparent and consistent knowledge on their environmental

portfolio.

Go to article

Authors and Affiliations

Magdalena Rybaczewska-Błażejowska
Angel Mena-Nieto
Download PDF Download RIS Download Bibtex

Abstract

The new legislative provisions, regulating the trade in solid fuels in our country, draw attention to the need to develop and improve methods and methods of managing hard coal sludge. The aim of the work was to show whether filtration parameters (mainly the permeability coefficient) of hard coal sludge are sufficient for construction of insulating layers in landfills at the stage of their closing and what is the demand for material in the case of such a procedure. The analysis was carried out for landfills for municipal waste in the Opolskie, Śląskie and Małopolskie provinces. For hard coal sludge, the permeability coefficient values are in the range of 10–8–10–11 m/s, with the average value of 3.16 × 10–9 m/s. It can be concluded that this material generally meets the criteria of tightness for horizontal and often vertical flows. When compaction, increasing load or mixing with fly ash from hard coal combustion and clays, the achieved permeability coefficient often lowers its values. Based on the analysis, it can be assumed that hard coal sludge can be used to build mineral insulating barriers. At the end of 2016, 50 municipal landfills were open in the Opolskie, Śląskie and Małopolskie Provinces. Only 36 of them have obtained the status of a regional installation, close to 1/3 of the municipal landfill are within the Major Groundwater Basin (MGB) range. The remaining storage sites will be designated for closure. Assuming the necessity to close all currently active municipal waste landfills, the demand for hard coal sludge amounts to a total of 1,779,000 m3 which, given the assumptions, gives a mass of 2,704,080 Mg. The total amount of hard coal sludge production is very high in Poland. Only two basic mining groups annually produce a total of about 1,500,000 Mg of coal sludge. The construction of insulating layers in landfills of inert, hazardous and non-hazardous and inert wastes is an interesting solution. Such an application is prospective, but it will not solve the problem related to the production and management of this waste material as a whole. It is important to look for further solutions.

Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
Jarosław Staszczak
Download PDF Download RIS Download Bibtex

Abstract

Waste management faces more and more serious challenges, especially given the growing amount of municipal waste generated in Poland and the resulting environmental impact. One of the significant environmental aspects of waste management is the emission of odorants and odors. Taking into account the odor problem, the majority of municipal waste generated is being collected as mixed waste (62% of municipal waste), which by weight contains approximately 32.7% of kitchen and garden waste. These organic fractions are mainly responsible for the emission of odor and odorants. Those substances can be emitted at every stage: from the waste collection at residential waste bins, through transport, waste storage, and transfer stations, up to various respective treatment facilities, i.e., mechanical-biological waste treatment plants, landfills, or waste incineration plants. The gathered data during the study showed that it is necessary to increase the share of different waste management methods, i.e., recycling, composting, or fermentation processes rather than landfilling to meet all necessary regulations and to fulfill provisions of the waste hierarchy. One of the actions indicated in the legal solutions is expansion, retrofitting, and construction of new sorting plants, anaerobic digestion plants, composting plants, and increase in thermal treatment capacity. Variety of different processes that could emit odors and a diversity of different odor-generating substances released from particular waste management steps should be taken into consideration when building new facilities which are suitable for waste treatment. The overall aim of the work was to characterize and summarize available knowledge about waste management system in Poland and to gather information about odor-generating substances emitted from different waste management steps and facilities, which could be a potential source of information for preparing legal solutions to reduce possible odor nuisance form broadly understood waste management.
Go to article

Bibliography

  1. Aatamila, M., Verkasalo, P.K., Korhonen, M.J., Viluksela, M.K., Pasanen, K., Tiittanen, P. & Nevalainen, A. (2010). Odor annoyance near waste treatment centers: A population-based study in Finland. J. Air Waste Manag. Assoc., 60, pp. 412–418. DOI:10.3155/1047-3289.60.4.412.
  2. Almarcha, D., Almarcha, M., Nadal, S. & Caixach, J. (2012). Comparison of the depuration efficiency for voc and other odoriferous compounds in conventional and advanced biofilters in the abatement of odour emissions from municipal waste treatment plants. Chem. Eng. Trans., 30, pp. 259–264. DOI:10.3303/CET1230044.
  3. Alwaeli, M. (2015). An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng., 41, pp. 181–193. DOI:10.5277/epel50414.
  4. Bax, C., Sironi, S. & Capelli, L. (2020). How can odors be measured? An overview of methods and their applications. Atmosphere (Basel)., 11. DOI:10.3390/atmos11010092.
  5. Beylot, A., Hochar, A., Michel, P., Descat, M., Ménard, Y. & Villeneuve, J. (2018). Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency. J. Ind. Ecol., 22, pp. 1016–1026. DOI:10.1111/jiec.12701.
  6. den Boer, E. Banaszkiewicz, K. & Sebastian M. (2018). Badania ilości i składu odpadów komunalnych w cyklu rocznym pochodzących z terenu gminy Wrocław. Raporty Wydziału Inżynierii Środowiska Politechniki Wrocławskiej. Ser. SPR nr 30, 226 (in Polish).
  7. den Boer, E., Jedrczak, A., Kowalski, Z., Kulczycka, J. & Szpadt, R. (2010). A review of municipal solid waste composition and quantities in Poland. Waste Manag., 30, pp. 369–377. DOI:10.1016/j.wasman.2009.09.018.
  8. Brattoli, M., de Gennaro, G., de Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: Olfactometry and chemical sensors. Sensors, 11, pp. 5290–5322. DOI:10.3390/s110505290.
  9. Bruno, P., Caselli, M., de Gennaro, G., Solito, M. & Tutino, M. (2007). Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manag., 27, pp. 539–544. DOI:10.1016/j.wasman.2006.03.006.
  10. Burnley, S.J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Manag., 27, pp. 1274–1285. DOI:10.1016/j.wasman.2006.06.018.
  11. Butrymowicz T. (2018). Badania odpadów w Jarocinie. Centralne Laboratorium Instytutu Inżynierii Środowiska, Uniwersytet Zielonogórski., unpublished (in Polish).
  12. Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M. & Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant - A case study. Waste Manag., 28, pp. 885–895. DOI:10.1016/j.wasman.2007.05.006.
  13. Capelli, L. & Sironi, S. (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ., 191, pp. 273–290. DOI:10.1016/j.atmosenv.2018.08.007.
  14. Capelli, L., Sironi, S. & del Rosso, R. (2013a). Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors, 13, pp. 938–955. DOI:10.3390/s130100938.
  15. Capelli, L., Sironi, S., Del Rosso, R. & Guillot, J.M. (2013b). Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ., 79, pp. 731–743. DOI:10.1016/j.atmosenv.2013.07.029.
  16. Chang, H., Tan, H., Zhao, Y., Wang, Y., Wang, X., Li, Y., Lu, W. & Wang, H. (2019). Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste. Waste Manag., 87, pp. 701–708. DOI:10.1016/j.wasman.2019.03.014.
  17. Chen, Y.C. (2018). Effects of urbanization on municipal solid waste composition. Waste Manag., 79, pp. 828–836. DOI:10.1016/j.wasman.2018.04.017.
  18. Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z. & Feng, L. (2020). Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater., 384, 120912. DOI:10.1016/j.jhazmat.2019.120912.
  19. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ., 649, pp. 1038–1044. DOI:10.1016/j.scitotenv.2018.08.230.
  20. Colón, J., Alvarez, C., Vinot, M., Lafuente, F.J., Ponsá, S., Sánchez, A. & Gabriel, D. (2017). Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem. Eng. J., 313, pp. 1311–1319. DOI:10.1016/j.cej.2016.11.026.
  21. Conti, C., Guarino, M. & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environ. Int., 134, 105261. DOI:10.1016/j.envint.2019.105261.
  22. Curren, J., Hallis, S.A., Snyder, C. (Cher) L. & Suffet, I. (Mel) H. (2016). Identification and quantification of nuisance odors at a trash transfer station. Waste Manag., 58, pp. 52–61. DOI:10.1016/j.wasman.2016.09.021.
  23. Çetin Doğruparmak, Ş., Pekey, H. & Arslanbaş, D. (2018). Odor dispersion modeling with CALPUFF: Case study of a waste and residue treatment incineration and utilization plant in Kocaeli, Turkey. Environ. Forensics, 19, pp. 79–86. DOI:10.1080/15275922.2017.1408160.
  24. Damgaard, A., Riber, C., Fruergaard, T., Hulgaard, T. & Christensen, T.H. (2010) Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag., 30, pp. 1244–1250. DOI:10.1016/j.wasman.2010.03.025.
  25. Defoer, N., De Bo, I., Van Langenhove, H., Dewulf, J. & Van Elst, T. (2002) Gas chromatography-mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A, 970, pp. 259–273. DOI:10.1016/S0021-9673(02)00654-4.
  26. Di Foggia, G., Beccarello, M. (2021) Market structure of urban waste treatment and disposal: Empirical evidence from the italian industry. Sustain., 13. DOI:10.3390/su13137412.
  27. Di, Y., Liu, J., Liu, J., Liu, S. & Yan, L. (2013). Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manag. Assoc., 63, pp. 1173–1181. DOI:10.1080/10962247.2013.807318.
  28. Directive 2008/98/EC of The European Parliment and of The Council of 19 November 2008 on waste and repealing certain Directives.
  29. Duan, Z., Scheutz, C. & Kjeldsen, P. (2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Manag., 119, pp. 39–62. DOI:10.1016/j.wasman.2020.09.015.
  30. European Comission Eurostat Available online: https://ec.europa.eu/eurostat/web/main/data/database.
  31. European Union Council Directive 1999/31/EC on the landfill, 1999.
  32. European Union Directive 2018/851 amending Directive 2008/98/EC on waste.
  33. Fang, J.J., Yang, N., Cen, D.Y., Shao, L.M. & He, P.J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag., 32, pp. 1401–1410. DOI:10.1016/j.wasman.2012.02.013.
  34. Fang, J., Zhang, H., Yang, N., Shao, L. & He, P. (2013). Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc., 63, pp. 1287–1297. DOI:10.1080/10962247.2013.822439.
  35. Fei, F., Wen, Z., Huang, S. & De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. J. Clean. Prod., 178, pp. 731–739. DOI:10.1016/j.jclepro.2018.01.060.
  36. Forastiere, F., Badaloni, C., De Hoogh, K., Von Kraus, M.K., Martuzzi, M., Mitis, F., Palkovicova, L., Porta, D., Preiss, P. & Ranzi, A. (2011). Health impact assessment of waste management facilities in three European countries. Environ. Heal. A Glob. Access Sci. Source, 10, pp. 1–13. DOI:10.1186/1476-069X-10-53.
  37. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Manag., 29, pp. 2227–2239. DOI:10.1016/j.wasman.2009.03.028.
  38. Guo, H., Duan, Z., Zhao, Y., Liu, Y., Mustafa, M.F., Lu, W. & Wang, H. (2017). Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ. Sci. Pollut. Res., 24, pp. 18383–18391. DOI:10.1007/s11356-017-9376-8.
  39. He, P., Du, W., Xu, X., Zhang, H., Shao, L. & Lü, F. (2020). Effect of biochemical composition on odor emission potential of biowaste during aerobic biodegradation. Sci. Total Environ., 727, 138285. DOI:10.1016/j.scitotenv.2020.138285.
  40. Heyer, K.U., Hupe, K. & Stegmann, R. (2013). Methane emissions from MBT landfills. Waste Manag., 33, pp. 1853–1860. DOI:10.1016/j.wasman.2013.05.012.
  41. Hou, J.Q., Li, M.X., Wei, Z.M., Xi, B.D., Jia, X., Zhu, C.W. & Liu, D.M. (2013). Critical components of odors and VOCs in mechanical biological treatment process of MSW. Adv. Mater. Res., 647, pp. 438–449. DOI:10.4028/www.scientific.net/AMR.647.438.
  42. Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A. & Malamakis, A. (2010). Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag., 30, pp. 1860–1870. DOI:10.1016/j.wasman.2010.02.030.
  43. Internet source, website accessed on 15.07.2021, available online https://www.portalsamorzadowy.pl/gospodarka-komunalna/spalarnie-w-polsce-gdzie-dzialaja-kto-buduje-a-kto-ma-je-w-planie,253488.html.
  44. Jędrczak, A., den Boer, E., Kamińska-Boerak, J., Kozłowska B., Szpadt, R., Mierzwiński A., Krzyśków, A. & Kundegórski, M. (2020). Analysis of waste management costs - assessment of investment needs in the country in the field of waste prevention and waste management in connection with the new EU financial perspective 2021-2027, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://odpady.net.pl/wp-content/uploads/2021
  45. Jędrczak, A., den Boer, E., Kamińska-Borak, J., Szpadt, R., Krzyśków, A. & Wielgosiński, G. (2021). Analysis of the possibilities and barriers to the management of plastic waste from separate collection of municipal waste, and the issues of circular economy, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://ios.edu.pl/aktualnosci/analiza-mozliwosci-i-barier-zagospodarowania-odpadow-z-tworzyw-sztucznych-a-goz/
  46. Jiang, J., Wang, F., Wang, J. & Li, J. (2021). Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. Waste Manag. Res., 39, pp. 360–367. DOI:10.1177/0734242X20960225.
  47. Jońca, J., Pawnuk, M., Arsen, A. & Sówka, I. (2022) Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors, 22, 1510. https://DOI:10.3390/s22041510
  48. Ko, J.H., Xu, Q. & Jang, Y.C. (2015). Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Crit. Rev. Environ. Sci. Technol., 45, pp. 2043–2083. DOI:10.1080/10643389.2015.1010427.
  49. Kulig, A. & Szylak-Szydlowski, M. (2016). Assessment of range of olfactory impact of plant to mechanical-biological treatment of municipal waste. Chem. Eng. Trans., 54, pp. 247–252. DOI:10.3303/CET1654042.
  50. Le Bihan, Y., Loranger-King, D., Turgeon, N., Pouliot, N., Moreau, N., Deschênes, D. & Rivard, G. (2020). Use of alternative cover materials to control surface emissions (H2s and vocs) at an engineered landfill. Detritus, 10, pp. 118–126. DOI:10.31025/2611-4135/2020.13909.
  51. Liu, Y., Lu, W., Wang, H., Gao, X. & Huang, Q. (2019). Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation. Sci. Total Environ., 648, pp. 805–810. DOI:10.1016/j.scitotenv.2018.08.213.
  52. Liu, Y., Yang, H. & Lu, W. (2020). VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. J. Environ. Sci. (China), 98, pp. 143–150. DOI:10.1016/j.jes.2020.05.009.
  53. Long, Y., Zhang, S., Fang, Y., Du, Y., Liu, W., Fang, C. & Shen, D. (2017). Dimethyl sulfide emission behavior from landfill site with air and water control. Biodegradation, 28, pp. 327–335. DOI:10.1007/s10532-017-9799-4.
  54. Lou, Z., Wang, M., Zhao, Y. & Huang, R. (2015). The contribution of biowaste disposal to odor emission from landfills. J. Air Waste Manag. Assoc., 65, pp. 479–484. DOI:10.1080/10962247.2014.1002870.
  55. Lucernoni, F., Tapparo, F., Capelli, L. & Sironi, S. (2016). Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ., 144, pp. 87–99. DOI:10.1016/j.atmosenv.2016.08.064.
  56. Maurer, D.L., Bragdon, A.M., Short, B.C., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Arch. Environ. Prot., 44, pp. 100–107. DOI:10.24425/119699.
  57. Meišutovič-Akhtarieva, M. & Marčiulaitienė, E. (2017). Research on odours emitted from non-hazardous waste landfill using dynamic olfactometry. 10th Int. Conf. Environ. Eng. ICEE 2017, pp. 27–28. DOI:10.3846/enviro.2017.034.
  58. Monzambe, G.M., Mpofu, K. & Daniyan, I.A. (2021). Optimal location of landfills and transfer stations for municipal solid waste in developing countries using non-linear programming. Sustain. Futur., 3, 100046. DOI:10.1016/j.sftr.2021.100046.
  59. Mustafa, M.F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H. & Lu, W. (2017). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater., 327, pp. 35–43. DOI:10.1016/j.jhazmat.2016.11.046.
  60. Naddeo, V., Zarra, T., Oliva, G., Chiavola, A., Vivarelli, A. & Cardona, G. (2018). Odour impact assessment of a large municipal solid waste landfill under different working phases. Glob. Nest J., 20, pp. 654–658. DOI:10.30955/gnj.002770.
  61. Oleniacz, R. (2014). Impact of the municipal solid waste incineration plant in Warsaw on air quality. Geomatics Environ. Eng., 8, 25. DOI:10.7494/geom.2014.8.4.25.
  62. Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A. & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int., 68, pp. 16–24. DOI:10.1016/j.envint.2014.03.004.
  63. Pawnuk, M., Grzelka, A., Miller, U. & Sówka, I. (2020). Prevention and reduction of odour nuisance in waste management in the context of the current legal and technological solutions. J. Ecol. Eng., 21, pp. 34–41. DOI:10.12911/22998993/125455.
  64. Polish Committee for Standardization. Polish Standard PN-EN 13725:2007: Air Quality—Determination of Odour Concentration by Dynamic Olfactometry, Polish Committee for Standardization: Warsaw, Poland, 2007.
  65. Ragazzi, M., Tosi, P., Rada, E.C., Torretta, V. & Schiavon, M. (2014). Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag., 34, pp. 2400–2406. DOI:10.1016/j.wasman.2014.07.026.
  66. Sánchez-Monedero, M.A., Fernández-Hernández, A., Higashikawa, F.S. & Cayuela, M.L. (2018). Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag., 79, pp. 179–187. DOI:10.1016/j.wasman.2018.07.041.
  67. Scaglia, B., Orzi, V., Artola, A., Font, X., Davoli, E., Sanchez, A. & Adani, F. (2011). Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol., 102, pp. 4638–4645. DOI:10.1016/j.biortech.2011.01.016.
  68. Schiavon, M., Martini, L.M., Corrà, C., Scapinello, M., Coller, G., Tosi, P. & Ragazzi, M. (2017). Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ. Pollut., 231, pp. 845–853. DOI:10.1016/j.envpol.2017.08.096.
  69. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Manag., 25, pp. 928–939. DOI:10.1016/j.wasman.2005.07.006.
  70. Shi, X., Zheng, G., Shao, Z. & Gao, D. (2020). Effect of source-classified and mixed collection from residential household waste bins on the emission characteristics of volatile organic compounds. Sci. Total Environ., 707, 135478. DOI:10.1016/j.scitotenv.2019.135478.
  71. Sironi, S., Capelli, L., Céntola, P. & Del Rosso, R. (2007). Odour emissions from MSW composting process steps. Int. J. Environ. Technol. Manag., 7, pp. 304–316. DOI:10.1504/IJETM.2007.015148.
  72. Sironi, S., Capelli, L., Céntola, P., Del Rosso, R. & Il Grande, M. (2006). Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ., 40, pp. 7632–7643. DOI:10.1016/j.atmosenv.2006.06.052.
  73. Sonibare, O.O., Adeniran, J.A. & Bello, I.S. (2019). Landfill air and odour emissions from an integrated waste management facility. J. Environ. Heal. Sci. Eng., 17, pp. 13–28. DOI:10.1007/s40201-018-00322-1.
  74. Statistic Poland Environment 2020. Stat. Anal. 2020, pp. 154–161.
  75. Statistic Poland Local Data Bank (2021) Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat.
  76. Szulczyński, B., Wasilewski, T., Wojnowski, W., Majchrzak, T., Dymerski, T., Namiésnik, J. & Gębicki, J. (2017). Different ways to apply a measurement instrument of E-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors (Switzerland), 17. DOI:10.3390/s17112671.
  77. Tan, H., Zhao, Y., Ling, Y., Wang, Y. & Wang, X. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manag., 68, pp. 677–687. DOI:10.1016/j.wasman.2017.07.015.
  78. Tagliaferri, F., Invernizzi, M., Sironi, S. & Capelli, L. (2020). Influence of modelling choices on the results of landfill odour dispersion. Detritus, 12, pp. 92–99. DOI:10.31025/2611-4135/2020.13998.
  79. The Act of 14 December 2012 on waste (Journal of Laws of 2020, item 797) (in Polish).
  80. Tyrała K. (2019. Conducting research on the quantity and morphological composition of municipal waste in Bydgoszcz. Final report. Collective analysis of the entire study, R.O.T. RECYCLING ODPADY TECHNOLOGIE S.C. K, Gliwice, (in Polish).
  81. VDI 3882 PART 1 Olfactometry, determination of odour intensity, Verein Deutscher Ingenieure, Germany, 1992.
  82. VDI 3880: Olfactometry. Static Sampling, Verein Deutscher Ingenieure, Germany, 2011.
  83. Wang, Y., Li, L., Qiu, Z., Yang, K., Han, Y., Chai, F., Li, P. & Wang, Y. (2021). Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk. Chemosphere, 272, 129582. DOI:10.1016/j.chemosphere.2021.129582.
  84. Wiśniewska, M. (2020a). Analysis of Potential Exposure to Components of Municipal Solid Waste in a Mechanical Biological Treatment. Proceedings, 51, 10. DOI:10.3390/proceedings2020051010.
  85. Wiśniewska, M. (2020b) Methods of assessing odour emissions from biogas plants processing municipal waste. J. Ecol. Eng., 21, pp. 140–147. DOI:10.12911/22998993/113039.
  86. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2021). The use of chemical sensors to monitor odour emissions at municipal waste biogas plants. Appl. Sci., 11. DOI:10.3390/app11093916.
  87. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020a). Odour emissions of municipal waste biogas plants-impact of technological factors, air temperature and humidity. Appl. Sci., 10. DOI:10.3390/app10031093.
  88. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020b). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot., 46, pp. 60–68. DOI:10.24425/aep.2020.134536.
  89. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Appl. Sci., 1, pp. 1–10. DOI:10.1007/s42452-019-0534-0.
  90. Wiśniewska, M. & Szyłak-Szydłowski, M. (2021). The air and sewage pollutants from biological waste treatment. Processes, 9, pp. 1–13. DOI:10.3390/pr9020250.
  91. Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C. & Liu, J. (2020). Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag., 103, pp. 314–322. DOI:10.1016/j.wasman.2019.12.043.
  92. Xu, A., Chang, H., Zhao, Y., Tan, H., Wang, Y., Zhang, Y., Lu, W. & Wang, H. (2020). Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor. Sci. Total Environ., 711, 135109. DOI:10.1016/j.scitotenv.2019.135109.
  93. Yao, X.Z., Ma, R.C., Li, H.J., Wang, C., Zhang, C., Yin, S.S., Wu, D., He, X.Y., Wang, J. & Zhan, L.T. (2019). Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag., 91, pp. 128–138. DOI:10.1016/j.wasman.2019.05.009.
  94. Zemanek, J., Wozniak, A. & Malinowski, M. (2011). The role and place of solid waste transfer station in the waste management system. Polish Acad. Sci. Cracow Branch 2011, 11, pp. 5–13.
  95. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Manag., 126, pp. 771–780. DOI:10.1016/j.wasman.2021.03.055.
  96. Zhang, H., Schuchardt, F., Li, G., Yang, J. & Yang, Q. (2013). Emission of volatile sulfur compounds during composting of municipal solid waste (MSW). Waste Manag., 33, pp. 957–963. DOI:10.1016/j.wasman.2012.11.008.
  97. Zhao, Y., Lu, W. & Wang, H. (2015). Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater., 300, pp. 695–701. DOI:10.1016/j.jhazmat.2015.07.081.
  98. Zielnica J. & Cudakiewicz P. (2016). Morphological studies of municipal waste generated in the Szczecin City Commune 2015-2016, SWECO (in Polish).
Go to article

Authors and Affiliations

Marcin Pawnuk
1
ORCID: ORCID
Bartosz Szulczyński
2
ORCID: ORCID
Emilia den Boer
1
ORCID: ORCID
Izabela Sówka
1
ORCID: ORCID

  1. Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  2. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an application of Life Cycle Assessment (LCA) method for the environmental evaluation of the technologies for the fertilizers production. LCA has been used because it enables the most comprehensive identifi cation, documentation and quantifi cation of the potential impacts on the environment and the evaluation and comparison of all signifi cant environmental aspects. The main objective of the study was to assess and compare two technologies for the production of phosphorus (P) fertilizers coming from primary and secondary sources. In order to calculate the potential environmental impact the IMPACT 2002+ method was used. The fi rst part of the LCA included an inventory of all the materials used and emissions released by the system under investigation. In the following step, the inventory data were analyzed and aggregated in order to calculate one index representing the total environmental burden. In the scenario 1, fertilizers were produced with use of an integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and P fertilizer production. Samples of SSA collected from two Polish mono-incineration plants were evaluated (Scenario 1a and Scenario 1b). In the scenario 2, P-based fertilizer (reference fertilizer – triple superphosphate) was produced from primary sources – phosphate rock.

The results of the LCA showed that both processes contribute to a potential environmental impact. The overall results showed that the production process of P-based fertilizer aff ects the environment primarily through the use of the P raw materials. The specifi c results showed that the highest impact on the environment was obtained for the Scenario 2 (1.94899 Pt). Scenario 1a and 1b showed the environmental benefi ts associated with the avoiding of SSA storage and its emissions, reaching -1.3475 Pt and -3.82062 Pt, respectively. Comparing results of LCA of P-based fertilizer production from diff erent waste streams, it was indicated that the better environmental performance was achieved in the scenario 1b, in which SSA had the higher content of P (52.5%) in the precipitate. In this case the lower amount of the energy and materials, including phosphoric acid, was needed for the production of fertilizer, calculated as 1 Mg P2O5. The results of the LCA may play a strategic role for the decision-makers in the aspect of searching and selection of the production and recovery technologies. By the environmental evaluation of diff erent alternatives of P-based fertilizers it is possible to recognize and implement the most sustainable solutions.

Go to article

Authors and Affiliations

Marzena Smol
1
ORCID: ORCID
Joanna Kulczycka
2
ORCID: ORCID
Łukasz Lelek
1
Katarzyna Gorazda
3
Zbigniew Wzorek
3

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences
  2. AGH University of Science and Technology, Poland
  3. Cracow University of Technology, Poland

This page uses 'cookies'. Learn more