Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

It has been found that the vegetable oils are promising substitute, because of their properties are similar to those of diesel fuel and they are renewable and can be easily produced. However, drawbacks associated with crude vegetable oils are high viscosity, low volatility call for low heat rejection combustion chamber, with its significance characteristics of higher operating temperature, maximum heat release, and ability to handle lower calorific value (CV) fuel etc. Experiments were carried out to evaluate the performance of an engine consisting of different low heat rejection (LHR) combustion chambers such as ceramic coated cylinder head-LHR-1, air gap insulated piston with superni (an alloy of nickel) crown and air gap insulated liner with superni insert - LHR-2; and ceramic coated cylinder head, air gap insulated piston and air gap insulated liner - LHR-3 with normal temperature condition of crude rice bran oil (CRBO) with varied injector opening pressure. Performance parameters (brake thermal efficiency, brake specific energy consumption, exhaust gas temperature, coolant load, and volumetric efficiency) and exhaust emissions [smoke levels and oxides of nitrogen [NOx]] were determined at various values of brake mean effective pressure of the engine. Combustion characteristics [peak pressure, time of occurrence of peak pressure, maximum rate of pressure rise] were determined at full load operation of the engine.

Conventional engine (CE) showed compatible performance and LHR combustion chambers showed improved performance at recommended injection timing of 27°bTDC and recommend injector opening pressure of 190 bar with CRBO operation, when compared with CE with pure diesel operation. Peak brake thermal efficiencyincreased relatively by 7%, brake specific energy consumption at full load operation decreased relatively by 3.5%, smoke levels at full load decreased relatively by 11% and NOx levels increased relatively by 58% with LHR-3 combustion chamber with CRBO at an injector opening pressure of 190 bar when compared with pure diesel operation on CE.

Go to article

Authors and Affiliations

M.V.S. Murali Krishna
N. Durga Prasada Rao
B. Anjeneya Prasad
P.V.K. Murthy
Download PDF Download RIS Download Bibtex

Abstract

The present study was to reflect the use of some bacteria in the treatment and removal of pollutants in three selected wastewater sites, including a vegetable oil plant (viz. Al-Etihad Food Industries), the main wastewater treatment station in the city of Hila, and Al-Hila River water from October 2019 to January 2020. The bacterial isolates identified in these three sites were Klebsiella pneumoniae, Escherichia coli, Enterobacteria cloacae, Pseudomonas aeruginosa, Thalasobacillus devorans, Acinetobacter baumannii, and Bacillus subtilis. The molecular study of the bacterial isolates involved the detection of bacterial genera using the polymerase chain reaction (PCR). The results showed that water had a variable nature, depending on the substances in it. It recorded varying chemical and physical property values, ranging between 6.36 and 7.82 for pH and from 2500 to 7100 mg∙dm–3 for total alkalinity. Additional values were 713–2051 μS∙cm–1 for electrical conductivity (EC), 5.90–9.80 mg∙dm–3 for chemical oxygen demand (COD), and 480–960 mg∙dm–3 for total hardness. The given values were also 0.20–0.65 μg∙dm–3, 0.03-0.23 μg∙dm–3, and 0–107 mg∙dm–3 for nitrite (NO2), phosphate (PO4) oils, respectively.
Go to article

Authors and Affiliations

Hanan Kareem Salim
1
ORCID: ORCID
Suad Ghali Kadhim Al-Ahmed
1

  1. Babylon University, College of Sciences, Department of Biology, PO Box: 4 Iraq - Babylon - Hilla, Iraq
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, the surface characteristics of Nickel based superalloy Inconel-625 were evaluated by the electrical discharge machining with used cooking oil-based biodiesel as a dielectric. Nickel-based superalloys find wide applicability in numerous industries due to their specific properties. The Cu electrodes of various densities prepared by atomic diffusion additive manufacturing process were used for machining. A comparison of the performance was made based on average surface roughness. The Design-expert software was used for experimental design and parametric analysis. The outcome demonstrated that bio-dielectric fluid produced improved surface characteristics. The surface roughness was observed to reduce. The surface micrograph obtained from scanning electron microscopy also confirms a better surface finish of bio-dielectric fluid over EDM oil. The surface roughness was shown to be most significantly influenced by the discharge current, with the other parameters having little or no effect. The results showed that for bio-dielectric, the lowest Ra was 0.643 µm, and for EDM oil, the highest value of 0.844 µm. The slightest difference in roughness value for two dielectric fluids was 0.013 µm, and the highest difference was 0.115 µm.
Go to article

Authors and Affiliations

Mohd Yunus Khan
1
ORCID: ORCID
P. Sudhakar Rao
1
ORCID: ORCID
BS. Pabla
1
ORCID: ORCID

  1. National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh, India
Download PDF Download RIS Download Bibtex

Abstract

Cosmetic emulsion bases containing extracts from natural plants were produced. The emulsifier was an aqueous solution of self-emulsifying base made from apricot kernel oil and soy lecithin, while the oil phase was based on coconut, almond or grape seed oils. In addition, mixtures enriched with vegetable glycerine were produced. It was found that for the emulsions with almond oil as the concentration of the oil phase increased, the value of the average Sauter diameter increased. In comparison, results for emulsions with coconut oil and emulsions with grapeseed oil did not give such a clear relationship. It was also shown that for stable emulsions, the self-emulsifying base of apricot kernel oil performed much better than soy lecithin. The addition of vegetable glycerine to the mixture resulted in a reduction of the average droplet diameter. Produced emulsions were also visually observed for 60 days to assess their stability and possible aging processes. In order to exclude the formation of microorganisms, periodic density control and microscopic examinations were carried out. The presence of microorganisms 30 in the analysed emulsion was evaluated using microscopic and culture techniques. No tarnish waso bserved on the surface of the samples, indicating the formation of mould, which can lead to poisoning and the development of allergies, respiratory diseases, liver diseases, ulcers, or bleeding in the intestines.
Go to article

Authors and Affiliations

Waldemar Szaferski
1
ORCID: ORCID
Piotr T. Mitkowski
1
ORCID: ORCID
Marcin Janczarek
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland

This page uses 'cookies'. Learn more