Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Progress in UV treatment applications requires new compact and sensor constructions. In the paper a hybrid (organic-inorganic) rare-earth-based polymeric UV sensor construction is proposed. The efficient luminescence of poly(methyl) methacrylate (PMMA) matrix doped by europium was used for testing the optical sensor (optrode) construction. The europium complex assures effective luminescence in the visible range with well determined multi-peak spectrum emission enabling construction of the optrode. The fabricated UV optical fibre sensor was used for determination of Nd:YAG laser intensity measurements at the third harmonic (355 nm) in the radiation power range 5.0-34.0 mW. The multi-peak luminescence spectrum was used for optimization of the measurement formula. The composition of luminescent peak intensity enables to increase the slope of sensitivity up to −2.8 mW-1. The obtained results and advantages of the optical fibre construction enable to apply it in numerous UV detection systems.

Go to article

Authors and Affiliations

Piotr Miluski
Marcin Kochanowicz
Jacek Żmojda
Dominik Dorosz
Download PDF Download RIS Download Bibtex

Abstract

Exposure of green algae Chlorella vulgaris to short-term UV-B radiation (280 nm – 315 nm) induced several changes in the function of photosystem II (PS II) studied by means of chlorophyll fluorescence (FL) and oxygen evolving. The intensity of photosynthetic oxygen evolving intensity of algae suspension decreased in a similar way to the FL parameter values in proportion to the applied dose of UV-B radiation (0.0, 3.2, 6.4, 12.8 kJ·m-2). The correlation between photosynthetic oxygen evolving intensity and FV/FO ratio was better than that between photosynthetic oxygen evolving intensity and FV/FM. The vitality index (Rfd) in the UV-B irradiated algae strongly decreased, compared to the control, which indicates inhibition of potential CO2 fixation and cooperation between light and dark reactions of photosynthesis. It may indicate damage of Rubisco.
Go to article

Authors and Affiliations

Elżbieta Skórska
Antoni Murkowski
Download PDF Download RIS Download Bibtex

Abstract

The research and analysis of the bactericidal properties of the spacer knitted fabric with the UV-C system are presented in this paper. The disintegration factor affecting the bacteria in the knitted fabric is the UV-C radiation in the range of 265–270 nm distributed via woven optical fibres. The way of integrating elements of the system generating the UV-C radiation in the structure of the spacer knitted fabric was designed, as well as various configurations of optical fibres arrangement, fibre density, number of radiation sources, and diode types were tested. The material was contaminated with selected microorganisms indicative of sanitary contamination and important in terms of nosocomial infections. The scope of the research included microbiological (quantitative and qualitative) analyses of selected taxonomic groups of microorganisms (mesophilic bacteria, fungi, actinomycetes) before and after the irradiation process. The analysis of the research results and the applied modification of the knitted fabric turned out to be effective in reducing the amount of potentially pathogenic microorganisms.
Go to article

Bibliography

  1. Gniotek, K. & Krucinska, I. The basic problems of textronics. Fibres Text. East. Eur.12, 13–16 (2004).
  2. Łada-Tondyra, E. & Jakubas, A. Modern applications of textronic systems. Przegląd Elektrotechniczny 94, 198–201 (2018). [in Polish]. https://doi.org/10.15199/48.2018.12.44
  3. Strus, M. Mechanisms of action of physical factors on micro-organisms. Roczniki Państwowego Zakładu Higieny 3, 263–268 (1997). [in Polish]
  4. Diston, D., Ebdon, J. E. & Taylor, H. D. The effect of UV-C radiation (254 nm) on candidate microbial source tracking phages infecting a human-specific strain of Bacteroides fragilis (GB-124). Water Health 10, 262–270 (2012). https://doi.org/10.2166/wh.2012.173
  5. Wolska, A., Wisełka, M. & Pawlak. A. Reducing the risk of COVID-19 through the use of ultraviolet https://m.ciop.pl/CIOPPortalWAR/file/89579/202003206928&Covid-PROMIENIOWANIE- UV-Komunikat-3.pdf (2020). [in Polish]
  6. Statement on the CIE position on ultraviolet (UV) radiation as a measure to reduce the risk of the spread of COVID-19. https://cie.co.at/files/CIE%20Position%20Statement%20-%20UV%20radiation%20(2020)_PL_0.pdf (2020). [in Polish]
  7. Kowalski, W. J., Petraitis, V. & Walsh, T. J. 2020 COVID-19 Corona-virus Ultraviolet Susceptibility. (PurpleSun, Inc, New York, 2020).
  8. Beretsou, V. G. et al. A chemical, microbiological and (eco) toxicological scheme to understand the efficiency of UV-C/H2O2 oxidation on antibiotic-related microcontaminants in treated urban wastewater. Total Environ. 744, 140835 (2020). https://doi.org/10.1016/j.scitotenv.2020.140835
  9. Woo, H. et al. Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs). Water 11, 1131 (2019). https://doi.org/10.3390/w11061131
  10. Phattarapattamawong, S., Chareewan, N. & Polprasert, C. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Sci. Total Environ. 755, 142696 (2021). https://doi.org/10.1016/j.scitotenv.2020.142696
  11. Lada-Tondyra, E. & Jakubas, A. The Concept of a Textronic System Limiting Bacterial Growth. in 2018 Progress in Applied Electrical Engineering (PAEE) 1–4 (IEEE, Koscielisko, Poland, 2018). https://ieeexplore.ieee.org/document/8441107
  12. Cysewska-Sobusiak, A., Prokop, D.& Jukiewicz, M. Development Trends and Application Areas Fibre Optic Techniques. In Poznan University of Technology Academic Journals. Electrical Engineering 89, 205–217 (2017). [in Polish]
  13. Brochure of transparent polymer-TPXTM, Mitsui Chemicals America, Inc. mitsuichemicals.com/tpx_proc.htm
  14. Armakan, D. M. & Roye, A. A study on the compression behavior of spacer fabrics designed for concrete applications. Fibres Polym. 10, 116–123 (2009). https://doi.org/10.1007/s12221-009-0116-7
  15. ProLight PB2D-1CLA-TC 1W UV Power LED Technical Datasheet. ProLight Opto https://www.tme.eu/Document/5559cb9280c8f6735ea54eeee3067a39/PB2D-1CLA-TC.pdf (2021).
  16. ISO 18593:2018 Microbiology of the food chain — Horizontal methods for surface sampling. (2018).
  17. European Pharmacopoeia, 10th Edition. https://www.edqm.eu/en/work-programme-bsp (2021).
  18. Hardjawinata, K., Setiawati, R. & Dewi,W. Bactericidal efficacy of ultraviolet irradiation on Staphylococcus ureus. Asian J. Oral Maxillofac. Surg. 17, 157–161 (2005). https://doi.org/10.1016/S0915-6992(05)80043-3
  19. Xu, Z.et al. First report of class 2 integron in clinical Enterococcus faecalis and class 1 integron in Enterococcus faecium in South China. Diagn. Microbiol. Infec. Dis. 68, 315–317 (2010). https://doi.org/10.1016/j.diagmicrobio.2010.05.014
  20. Stańczyk-Mazanek, E., Pasoń, Ł. & Kępa, U. Effect of mesophilic fermentation of sewage sludge on drug-resistant bacterial count of the Enterococcus genus. Desalination Water Treat. 134, 86–91 (2018). https://doi.org/10.5004/dwt.2018.22672
  21. Stępniak, L., Pasoń, Ł., Stańczyk-Mazanek, E. & Lach, J. Analysis of the presence and drug resistance of bacteria from the Enterobacteriaceae family and the genus of Enterococcus in treated wastewater from a selected wastewater treatment plant. Desalination Water Treat. 134, 23–29 (2018). https://doi.org/10.5004/dwt.2018.22592
  22. Jarząb, A., Górska-Frączek, S., Rybka, J. & Witkowska, D. Enterobacteriaceae infection-diagnosis, antibiotic resistance and prevention. Postepy Hig. Med. Dosw. 65, 55–72 (2011). [in Polish] https://doi.org/10.5604/17322693.933273
Go to article

Authors and Affiliations

Ewa Łada-Tondyra
1
ORCID: ORCID
Adam Jakubas
1
ORCID: ORCID
Beata Jabłońska
2
ORCID: ORCID
Ewa Stańczyk-Mazanek
2
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Electrical Engineering, Częstochowa, Poland
  2. Częstochowa University of Technology, Faculty of Infrastructure and Environment, Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method of optical fluorescence analysis for the evaluation of homogeneity of multicomponent grain mixtures. This method is based on the evaluation of the content of fluorescent marker. Maize with two degrees of fineness d1 = 1:25 mm and d2 = 2:00 mm was used as a tracer. Maize was covered with Rhodamine B, which emits red light under the influence of ultraviolet radiation. The tracer was introduced into the mixture before the mixing process began. Nine multicomponent grain mixtures were used. The proportion of fluorescent maize was evaluated on the basis of computer image analysis. Additionally, the fraction of the tracer was evaluated using a control method (validation of the accuracy of the proposed method). The results indicate that the degree of the tracer’s fineness influences the results obtained. The use of fluorescent maize with particle size d2 = 2:00 mm allowed to obtain results which differed less from the control method. The average size of the difference in results ranged from 0.20–0.38 for the 2.00 mm tracer and 0.38–1.34 for the 1.25 mm tracer.
Go to article

Authors and Affiliations

Dominika B. Matuszek
1
Jolanta B. Królczyk
2

  1. Opole University of Technology, Faculty of Production Engineering and Logistics, Department of Biosystems Engineering and Chemical Processes, Mikolajczyka 5, 45-271 Opole, Poland
  2. Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing and Materials Engineering, Mikolajczyka 5, 45-271 Opole, Poland

This page uses 'cookies'. Learn more