Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study on the effect of passage of time on magnesium content in iron alloys and the effect of magnesium content on the number of vermicular graphite precipitations per unit surface area and value of the longitudinal ultrasonic wave velocity for two different vermicularization methods. The study was carried out with the use of inspection bar castings. For specific production conditions, it has been found that in case of application of both the cored wire injection method and the method of pouring liquid metal over magnesium master alloy on ladle bottom, the satisfactory level of magnesium content in the bottom-pour ladle, for which it was still possible to obtain castings with vermicular graphite, was 0.018% Mg. In case of the cored wire injection method, the “time window” available to a pouring station at which castings of vermicular cast iron are expected to be obtained, was about 5 minutes. This corresponds to the longitudinal ultrasonic wave velocity values exceeding 5500 m/s and the number of graphite precipitations per unit surface area above 320 mm–2. In case of the master alloy method, the respective “time window” allowing to obtain castings of vermicular cast iron was only about 3 minutes long. This corresponds to the longitudinal ultrasonic wave velocity value above 5400 m/s and the number of graphite precipitations per unit surface area above 380 mm–2.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
Marek Mróz
ORCID: ORCID
B. Kupiec
D. Pająk
M. Kawiński
Download PDF Download RIS Download Bibtex

Abstract

Early detection of damage is necessary for the safe and reliable use of civil engineering structures made of concrete. Recently, the identification of micro-cracks in concrete has become an area of growing interest, especially when it comes to using wave-based techniques. In this paper, a non-destructive testing approach for the characterization of the fracture process was presented. Experimental tests were performed on concrete beams subjected to mechanical degradation in a 3-point bending test. Ultrasonic waves were registered on a specimen surface by piezoelectric transducers located at several points. Then, the signals were processed taking advantage of wave scattering due to micro-crack disturbances. For early-stage damage detection, coda wave interferometry was used. The novelty of the work concerns the application of the complex decorrelation matrix and the moving reference trace approach for better distinguishment of sensors located in different parts of a crack zone. To enhance coda wave-based damage identification results, optical imaging of crack development was performed by means of digital image correlation measurement. The results obtained showed that the coda wave interferometry technique can be successfully used as a quantitative measure of changes in the structure of concrete. The results also indicated that the course of decorrelation coefficient curves enabled the identification of three stages during degradation, and it depended on the location of acquisition points versus the crack zone.
Go to article

Authors and Affiliations

Magdalena Knak
1
ORCID: ORCID
Erwin Wojtczak
1
ORCID: ORCID
Magdalena Rucka
1
ORCID: ORCID

  1. Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology,Narutowicza 11/12, 80-233, Gdańsk, Poland

This page uses 'cookies'. Learn more