Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Heat treatment processes, due to qualitative requirements for the cast machinery components and restrictions on energy consumption resulting on the one hand from environmental concerns, and on the other hand from a requirements coming from minimization of manufacturing costs, are resulting in searching after a technologies enabling obtainment of satisfactory results, in form of improved mechanical properties mainly, while minimizing (limiting) parameters of successive operations of the heat treatment. Heat treatment of the T6 type presented in this paper consists in operations of heating of investigated alloys to suitably selected temperature (range of this temperature was evaluated on the base of the ATD method), holding at such temperature for a short time, and next rapid cooling in water (20 oC) followed by artificial ageing, could be such technology in term s of above mentioned understanding of this issue. Performed T6 heat treatment with limited parameters of solutioning operation resulted in visible increase in tensile strength Rm of AlSi7Mg, AlSi7Cu3Mg and AlSi9Cu3(Fe) alloys.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the analysis of elasto-plastic post-buckling state of rectangular laminated plates subjected to combined loads, such as uniform compression and shear. The plates are built of specially orthotropic symmetrical layers. The analysis is carried out on the basis of nonlinear theory of orthotropic plates involving plasticity. The solution can be obtained in the analytical-numerical way using Prandtl-Reuss equations. The preliminary results of numerical calculations are also presented in figures.
Go to article

Authors and Affiliations

Ryszard Grądzki
Katarzyna Kowal-Michalska
Download PDF Download RIS Download Bibtex

Abstract

Under eccentric load, a single column pier bridge often overturns. In order to study the anti overturning performance of a single column pier bridge, taking the accident bridge in Wuxi as an example, a finite element model is established based on ABAQUS. According to the model simulation results, the relationship between the ultimate rotational load and overturning load of the accident bridge is obtained, and the ratio of the latter to the former is 1.75. Based on the model, the stress state, displacement state, and support state of the accident bridge under dead load, highway class I vehicle load, and accident vehicle load are obtained. Whether the strength and stability of the accident bridge under each load meet the service requirements is analyzed. In order to explore the differences among China, United States, and Japan specifications, the lateral stability of accident bridges is checked. It is found that the safety of the United States and Japan specifications is conservative, but the utilization rate of bridge traffic capacity is low. The safety of China specifications is slightly lower, but it can maximize the bridge’s traffic capacity and judge the ultimate overturning state of the bridge more accurately. The research results can provide technical references for the design and application of a single-column pier bridge.
Go to article

Authors and Affiliations

Yongcheng Ji
1
ORCID: ORCID
Wenchao Liu
1
ORCID: ORCID
Wei Li
1
ORCID: ORCID
Pixiang Wang
2
ORCID: ORCID

  1. Northeast Forestry University, School of Civil Engineering, Al. Harbin City, Heilongjiang Province, China
  2. Guangdong University of Technology, School of Civil Engineering, Al. Guangzhou, Guangdong Province, China
Download PDF Download RIS Download Bibtex

Abstract

In this work, we perform an analysis of the characteristics of the one-year and ultimate reserve risk distributions commonly used in actuarial science: duration, first development factor, coefficient of variation, skewness coefficient, skewness-to-CoV ratio, emergence factor, emergence pattern, and risk margin run-off patterns. Our study is based on empirical data for two European markets: the Polish and Slovak markets. We provide benchmarks and ranges for the considered characteristics, as well as analyse the relations between them. We study Solvency II lines of business and compare our coefficients of variation to the Standard Formula reserve risk standard deviations. We investigate more deeply the topic of emergence pattern and risk margin run-off patterns.
Go to article

Authors and Affiliations

Marcin Szatkowski
1

  1. Institute of Econometrics, SGH Warsaw School of Economics, Poland; Risk Department, STU ERGO Hestia SA
Download PDF Download RIS Download Bibtex

Abstract

The paper summarizes the debate concerning the divine hiddenness argument. First, it presents two versions of the argument that was initially formulated by J.L. Schellenberg and subsequently discussed over the last twenty years and it marks its most important theses. Then the author indicates some possible rebuttals, segregating them according to the challenged premises. Particularly noteworthy, he argues, are these theistic answers that accuse the images of God assumed by the hiddenness argument of excessive anthropomorphism and those that try to point out higher goods justifying divine hiddenness. In conclusion the author claims that the hiddenness argument proves atheism only if by theism one understands theistic personalism. Other positions, such as ultimism or theism of transcendence, are not threatened by the argument.

Go to article

Authors and Affiliations

Marek Dobrzeniecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The Zirconium 702 alloy effectively used in nuclear industry at various critical conditions like high temperature and high pressure. This survey is an assessment of insights into the mechanical properties of the metal when exposed to different temperatures along the rolling direction.The main objective of this work is to characterize the tensile properties, and fracture study of broken tensile test samples at various temperatures.The tensile samples tested in our current work are 100°C,150°C, and 200°C temperatures in different directions (0°, 45°, 90°) along with the rolling direction of the sheet. It is evident from the experimental results that temperatures significantly affect material properties. Temperature increases cause % elongation to increase, and strength decreases. ANOVA analysis revealed that temperature significantly influenced ultimate tensile strength (UTS), and yield strength (YS), as well as % elongation.The temperature contribution for UTS, YS, and % elongation is 41.90%, 31.60%, and 77.80% respectively. SEM fractured images showing the ductile type of behavior for all the temperatures.
Go to article

Authors and Affiliations

J. Lade
1
ORCID: ORCID
B. Dharavath
1
ORCID: ORCID
A. Badrish
2
ORCID: ORCID
S. Kosaraju
3
ORCID: ORCID
S.K. Singh
3
ORCID: ORCID
K.K. Saxena
4
ORCID: ORCID

  1. KG Reddy College of Engineering & Technology, Department of Mechanical Engineering, Hyderabad 500075, India
  2. DOFS, DRDL, Hyderabad, 500058, India
  3. GRIET, Department of Mechanical Engineering, Hyderabad 500090, India
  4. Division of Research and Development, Lovely Professional University, Phagwara 144411, India
Download PDF Download RIS Download Bibtex

Abstract

Present study introduces effect of forge application and elimination on microstructural and mechanical properties of AISI 316 during friction welding. Temperature measurements, microstructure, micro-hardness, tensile test, scanning electron microscopy and X-ray diffraction were evaluated. Maximum temperature recorded was 819°C while forge was applied between 357°C-237°C. Thermo-mechanically affected zone and highly plastically deformed zone were created at the interface at elimination and application of forge respectively. Ultimate tensile strength decreased and ductility increased when forge elimination compared to forge application. Tensile fracture was occurred adjacent to the welding interface for both cases, though, after forge application, ductile fracture mode and cleavage features through the fingerprints were observed in the fracture morphology. Redistribution and concentration of gamma iron in 111 level after forge application and heat treated of AISI 316.
Go to article

Authors and Affiliations

A. Jabbar Hassan
1
T. Boukharouba
1
D. Miroud
2

  1. Houari Boumediene University of Sciences and Technology (USTHB), Advanced Mechanic Laboratory (LMA), BP. 32, El-Alia, 16111 Bab-Ezzoaur, Algiers-Algeria
  2. Houari Boumediene University of Sciences and Technology (USTHB), Materials Science and Process Engineering Laboratory (LSGM), BP. 32, El-Alia,16111 Bab-Ezzoaur, Algiers-Algeria
Download PDF Download RIS Download Bibtex

Abstract

In this research, nonlinear analysis of composite shear walls (CSWs) with a gap between reinforced concrete wall and steel frame is investigated under cyclic loading by the use of the finite element method (FEM) software ABAQUS. For the purpose of the verification, an experimental test is modelled and comparison of its obtained result with that of the experimental test demonstrates an inconsiderable difference between them; therefore, the reasonable accuracy of the modelling is revealed. Then, effects of different parameters on the behaviour of the CSWs are examined. Gap size between reinforced concrete wall and steel frame, reinforcement percentage, steel sections of beams and columns, and existence of reinforced concrete wall are considered as parameters. It is concluded that change of the parameters affects the ultimate strength, ductility, and energy dissipation of the system. A steel shear wall (SSW) is also modelled and compared with the CSWs. Buckling of the walls is presented as well.

Go to article

Authors and Affiliations

Alireza Bahrami
Mojtaba Yavari
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, an analysis uf lower bound estimation of the load carrying capacity of structures with intermediate stiffeners is undertaken. Thin-walled structures with intermediate stiffeners in the elastic range, being under axial compression and a bending moment, are examined on the basis of the Byskov and Hutchinson's method [4] and the co-operation between all the walls of the considered structures is shown. The structures are assumed to be simply supported at the ends. The study is based on the numerical method 01· the transition matrix using Godunov's orthogonalization [2]. Instead of the finite strip method, the exact transition matrix method is used in this case. In the presented method for lower bound estimation uf the load carrying capacity of structures, it is postulated that the reduced local critical load should be determined taking into account the global pre-critical bending within the first order non-linear approximation to the theory of the interactive buckling of the structure. The results are compared to those obtained from the design code and the data reported by other authors. The present paper is a continuation of papers [9], [ 11], [ 19], where the interactive buckling of thin-walled beam-columns with central intermediate stiffeners in the first and the second order approximation was considered. The most important advantage of this method is that it enables us to describe a complete range of behaviour ot· thin-walled structures from all global (flexural. flexural-torsional, lateral, distortional and their combinations) to local stability. In the solution obtained, the effects of interaction of modes, the transformation of buckling modes with an increase in load, the shear lag phenomenon and also the effect of cross-sectional distortions arc included.
Go to article

Authors and Affiliations

Andrzej Teter
Zbigniew Kolakowski
Download PDF Download RIS Download Bibtex

Abstract

The issues of local stability and ultimate resistance of a continuous beam with thin-walled box section (Class 4) were reduced to the analysis of the local buckling of bilaterally elastically restrained internal plate of the compression flange at longitudinal stress variation. Critical stress of the local buckling was determined using the so-called Critical Plate Method (CPM). In the method, the effect of the elastic restraint of the component walls of the bar section and the effect of longitudinal stress variation that results from varying distribution of bending moments were taken into account. On that basis, appropriate effective characteristics of reliable sections were determined. Additionally, ultimate resistances of those sections were estimated. The impact of longitudinal stress variation and of the degree of elastic restraint of longitudinal edges on, respectively, the local buckling of compression flanges in the span section (p) and support section (s) was analysed. The influence of the span length of the continuous beam and of the relative plate slenderness of the compression flange on the critical ultimate resistance of box sections was examined.

Go to article

Authors and Affiliations

K. Brzezińska
A. Szychowski
Download PDF Download RIS Download Bibtex

Abstract

A theoretical formula for large-diameter rock-socket depth is developed to support pail embedding in a large bridge pile foundation project. There is a horizontal additional stress concentration at the place where the soil around the rock-socketed pile meets the soil layer under the horizontal load. When the rock-socketed tip stress and bending moment of the pile are relatively small, the pile shows favourable embedment effect and the pile foundation can be considered safe. The function curve of soil resistance around the pile under the action of horizontal force was obtained by finite element analysis. The force characteristics reveal the depth of the largediameter rock-socketed pile under the horizontal load. As the rock-socketed pile rotates under the action of horizontal force, the rock mass resistance around the pile changes according to the cosine. The distribution of pileside soil resistance is proportional to the displacement and distributed according to the sine. A comprehensive correction coefficient of pile shaft resistance beta is introduced to deduce the theoretical formula of the depth r h of the large-diameter rock-socketed pile embedded in the bedrock. It is verified through both experiments and numerical analysis.
Go to article

Authors and Affiliations

Yanfeng F. Li
ORCID: ORCID
Jihe Zhao
1
ORCID: ORCID
Ying Xiong
1
ORCID: ORCID
Qinghe Wang
2
ORCID: ORCID

  1. DSc., School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  2. Prof., PhD., School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Download PDF Download RIS Download Bibtex

Abstract

The optimization process of design parameters for composite lining of heavy haul railway tunnel is a key problem to be solved in tunnel engineering design. In order to put forward a better design scheme of composite lining for heavy haul railway tunnel, combined with field measurement and numerical simulation, the optimal working condition design is carried out by changing the thickness of shotcrete layer, the type of grid steel frame and the thickness of secondary lining. The influence of the above design parameters on the stress state of the composite lining is analyzed to obtain the optimal design parameters. Finally, the safety performance of the optimized lining is evaluated by the ultimate bearing capacity curve of the secondary lining section. The research shows that: 1) The optimal design parameters of the composite lining of the tunnel are the thickness of the shotcrete layer of 25 cm, the type of the grid steel frame of H180, the thickness of the secondary lining arch waist and the side wall of 40 cm and 35 cm respectively; 2) Different from the single-track heavy haul railway tunnel, the displacement value of the vault settlement of the double-track heavy haul railway tunnel is significantly greater than that of the inner convergence. Increasing the thickness of the shotcrete layer and changing the type of the grid steel frame have better effects on reducing the vault settlement, and have little effect on the inner convergence.
Go to article

Authors and Affiliations

Wei Han
1
ORCID: ORCID
Taoli Xiao
2
ORCID: ORCID
Duanwen Shi
3
ORCID: ORCID
Yupeng Wang
1
ORCID: ORCID

  1. Fujian Forestry Vocational and Technical College, Department of Traffic Engineering, Nanping, 353000, China
  2. Yangtze University, School of Urban Construction, Jingzhou, 434000, China
  3. China Railway Fourth Survey and Design Institute Group Co., Ltd, Tunnel Engineering, Wuhan,430000, China

This page uses 'cookies'. Learn more