Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In populated regions, strong earthquakes are among the most devastating natural disasters. But minor tremors usually go unnoticed, as their existence is only detected with the aid of precise measuring instruments.
Go to article

Authors and Affiliations

Grzegorz Lizurek
1

  1. PAS Institute of Geophysics in Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Na obszarach zamieszkałych silne trzęsienia ziemi są jedną z największych katastrof naturalnych, jednak pomniejszych wstrząsów nawet nie zauważamy, wiemy o ich występowaniu tylko dzięki aparaturze pomiarowej.
Go to article

Authors and Affiliations

Grzegorz Lizurek
1

  1. Instytut Geofizyki PAN w Warszawie
Download PDF Download RIS Download Bibtex

Abstract

The outcrop of the tsunami deposits, about 6 m thick, is located in the archaeological site Tel Askan in the Al Zhraa locality, southwest of the Gaza City. These deposits are unconformably underlain by sand dunes and sharply overlain by a palaeosol. They are pale gray sands mixed with volcanic ash and fine-grained deposits, and are intercalated with peat, few centimetres thick. The sand-sized grains are well rounded and well sorted, and consist mainly of quartz and subordinate of feldspar. Both macro- and microfossils were observed from tsunami deposits. Additionally, rip-up clasts and pottery shards were observed, indicating higher-flow regime. The potteries in tsunami deposits provide evidence for tsunami inundation at distance of about 1 km from the present shoreline.
Go to article

Bibliography

1. Altinok, Y., Alpar, B., Özer, N., Aykurt, H., 2011. Revision of the tsunami catalogue affecting Turkish coasts and surrounding regions. Natural Hazards and Earth System Sciences 11, 273–291.
2. Ambraseys, N., Karcz, I., 1992. The earthquake of 1546 in the Holy Land. Terra Nova 4, 254–263.
3. Ambraseys, N., Melville, C.P., Adams, R.D., 1994. The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review. Cambridge University Press, pp. 181.
4. Amiran, D.H., 1994. Location index for earthquakes in Israel since 100 BCE. Israel Exploration Journal 46, 120–130.
5. Aránguiz, R., González, G., González, J., Catalán, P.A., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I., Rojas, C., 2016. The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics 173, 333–348.
6. Bahlburg, H., Spiske, M., 2012. Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example. Sedimentology 59, 1063–1086.
7. Barkai, O., Katz, O., Mushkin, A., Goodman-Tchernov, B.N., 2017. Long-term retreat rates of Israel’s Mediterranean sea cliffs inferred from reconstruction of eroded archaeological sites. Geoarchaeology 1–14.
8. Bruins, H.J., MacGillivray, J.A., Synolakis, C.E., Benjamini, C., Keller, J., Kisch, H.J., Klügel, A., van der Plicht, J., 2008. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Archaeological Science 35, 191–212.
9. Chagué-Goff, C., 2010. Chemical signatures of palaeotsunamis: a forgotten proxy? Marine Geology 271, 67–71.
10. Dominey-Howes, D., 2007. Geological and historical records of tsunami in Australia. Marine Geology 239, 99–123.
11. Fokaefs, A., Papadopoulos, G.A., 2007. Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in Cyprus and the Levantine Sea. Natural Hazards 40, 503–526.
12. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., Talamo, S., 2006. Santorini eruption radiocarbon dated to 1627– 1600 BC. Science 312, 548.
13. Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July 1998 Papua New Guinea tsunami. Pure and Applied Geophysics 160, 1969–1999.
14. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D., 2012. Progress in palaeotsunami research. Sedimentary Geology 243–244, 70–88.
15. Goff, J., McFadgen, B.G., Chagué-Goff, C., 2004. Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology 204, 235–250.
16. Goodman-Tchernov, B., Katz, T., Shaked, Y., Qupty, N., Kanari, M., Niemi, T., Agnon, A., 2016. Offshore evidence for an undocumented tsunami event in the “low risk” gulf of Aqaba-Eilat, Northern Red Sea. PLoS One 11, e0145802.
17. Goodman-Tchernov, B., Katz, O., 2016. Holocene-era submerged notches along the southern Levantine coastline: punctuated sea level rise? Quaternary International 401, 17–27.
18. Goodman-Tchernov, B.N., Dey, H.W., Reinhardt, E.G., McCoy, F., Mart, Y., 2009. Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology 37, 943–946.
19. Goto, K., Chagué-goff, C., Goff, J., Jaffe, B., 2012. The future of tsunami research following the 2011 Tohoku-oki event. Sedimentary Geology 282, 1–13.
20. Goto, K., Kawana, T., Imamura, F., 2010. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews 102, 77–99.
21. Goto, K., Takahashi, J., Oie, T., Imamura, F., 2011. Remarkable bathymetric change in the nearshore zone by the 2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka. Geomorphology 127, 107–116.
22. Hoffmann, N., Master, D., Goodman-Tchernov, B., 2018. Possible tsunami inundation identified amongst 4–5th century BCE archaeological deposits at Tel Ashkelon, Israel. Marine Geology 396, 150–159.
23. Jaffe, B., Gelfenbaum, G., Rubin, D., Peters, R., Anima, R., Swensson, M., Olcese, D., Anticona, L.B., Gomez, J.C., Riega, P.C., 2003. Identification and interpretation of tsunami deposits from the June 23, 2001 Perú tsunami. Coastal Sediments 2003 Conference Proceedings. 24. Katz, O., Mushkin, A., 2013. Characteristics of sea-cliff erosion induced by a strong winter storm in the eastern Mediterranean. Quaternary Research 80, 20–32.
25. Katz, O., Reuven, E., Aharonov, E., 2015. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental- slope. Marine Geology 369, 100–115.
26. Klein, M., Zviely, D., Kit, E., Shteinman, B., 2007. Sediment transport along the Coast of Israel: examination of fluorescent sand tracers. Journal of Coastal Research 23, 1462–1470.
27. Kortekaas, S., Dawson, A.G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology 200, 208–221.
28. Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the last glacial maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 15296–15303.
29. Maramai, A., Brizuela, B., Graziani, L., 2014. The Euro-Mediterranean tsunami catalogue. Annals of Geophysics 57, S0435.
30. Moore, A.L., Brian G. McAdoo, B.G., Ruffman, A., 2007. Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology 200, 336–346.
31. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology 200, 184–207.
32. Negev, A., Gibson, S., 2001. Archaeological Encyclopedia of the Holy Land. New York and London, Continuum, pp. 25–26.
33. Nelson, A.R., Briggs, R.W., Dura, T., Engelhart, S.E., Gelfenbaum, G., Bradley, L., Forman, S.L., Vane, C.H., Kelley, K.A., 2015. Tsunami recurrence in the eastern Alaska-Aleutian arc: a Holocene stratigraphic record from Chirikof Island, Alaska. Geosphere 11, 1172–1203.
34. Papadopoulos, G.A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P.M., Pantosti, D., González, M., Yalciner, A.C., Mascle, J., Sakellariou, D., Salamon, A., Tinti, S., Karastathis, V., Fokaefs, A., Camerlenghi, A., Novikova, T., Papageorgiou, A., 2014. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: geological signatures, generation mechanisms and coastal impacts. Marine Geology 354, 81–109.
35. Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., Wassmer, P., 2010. Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore-onshore model. Marine Geology 268, 43–54.
36. Peters, R., Jaffe, B., Gelfenbaum, G., 2007. Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America. Sedimentary Geology 200, 372–386.
37. Pfannenstiel, M., 1952. Das Quartaer der Levante, I: Die Kueste Palaestina- Syriens, Akad. In: Abhundlungen Der Mathematisch-Naturwissenschaftlichen Klasse, Akademider Wissenschaften Und Der Literatur in Mainz in Kommission Bei F. Steiner, pp. 373–475.
38. Pfannenstiel, M., 1960. Erläuterungen zu den bathymetrischen Karten des östlichen Mittelmeeres. Bulletin de l’Institut Océanographique 1192, 1–60.
39. Phantuwongraj, S., Choowong, M., 2012. Tsunamis versus storm deposits from Thailand. Natural Hazards 63, 31–50.
40. Pilarczyk, J.E., Dura, T., Horton, B.P., Engelhart, S.E., Kemp, A.C., Sawai, Y., 2014. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeography, Palaeoclimatology, Palaeoecology 413, 144–157.
41. Rosen, A., 2008. Site formation. In: Stager, L., Schloen, D.J., Master, D. (Eds.), Ashkelon 1: Introduction and Overview. Eisenbrauns, Winona Lake, Indiana, pp. 101–104.
42. Sakuna-Schwartz, D., Feldens, P., Schwarzer, K., Khokiattiwong, S., Stattegger, K., 2015. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash-flood deposits. Natural Hazards and Earth System Sciences 15, 1181–1199.
43. Salamon, A., Rockwell, T., Guidoboni, E., Comastri, A., 2011. A critical evaluation of tsunami records reported for the Levant coast from the second millennium BCE to the present. Israel Journal of Earth Sciences 58, 327–354.
44. Salamon, A., Rockwell, T., Ward, S.N., Guidoboni, E., Comastri, A., 2007. Tsunami hazard evaluation of the Eastern Mediterranean: historical analysis and selected modeling. Bulletin of the Seismological Society of America 97, 705–724.
45. Scheffers, A.M., 2002. Paleotsunami evidences from boulder deposits. Science of Tsunami Hazards 20, 26–37.
46. Scheucher, L.E.A., Vortisch, W., 2011. Sedimentological and geomorphological effects of the Sumatra-Andaman tsunami in the area of Khao Lak, southern Thailand. Environmental Earth Sciences 63, 785–796.
47. Shah-Hosseini, M., Morhange, C., De Marco, A., Wante, J., Anthony, E.J., Sabatier, F., Mastronuzzi, G., Pignatelli, C., Piscitelli, A., 2013. Coastal boulders in Martigues, French Mediterranean: evidence for extreme storm waves during the Little Ice Age. Zeitschrift für Geomorphologie, Supplementary Issues 57 (4), 181–199.
48. Sivan, D., Wdowinski, S., Lambeck, K., Galili, E., Raban, A., 2001. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 101–117.
49. Sivan, D., Lambeck, K., Toueg, R., Raban, A., Porath, Y., Shirman, B., 2004. Ancient coastal wells of Caesarea Maritima, Israel, an indicator for relative sea level changes during the last 2000 years. Earth and Planetary Science Letters 222, 315–330.
50. Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S., Shchetnikov, N.A., 2000. Tsunamis in the Mediterranean Sea 2000 BC–2000 AD. Kluwer Academic Publishers, Dordrecht, pp. 239.
51. Ubeid, K.F., 2016. Quaternary Stratigraphy Architecture and Sedimentology of Gaza and Middle- to Khan Younis Governorates (The Gaza Strip, Palestine). International Journal of Scientific and Research Publications 6, 109–117.
52. Ubeid, K.F., 2010. Marine lithofacies and depositional zones analysis along coastal ridge in Gaza Strip, Palestine. Journal of Geography and Geology 2, 68–76.
53. Ubeid, K.F., 2011. Sand Characteristics and Beach Profiles of the Coast of Gaza Strip, Palestine. Serie Correlacion Geologica 27, 121–132.
54. Ubeid, K.F., Al-Agha, M.R., Almeshal, W.I., 2018. Assessment of heavy metals pollution in marine surface sediments of Gaza Strip, southeast Mediterranean Sea. Journal of Mediterranean Earth Sciences 10, 109–121.
55. Ubeid, K.F., Albatta, A., 2014. Sand dunes of the Gaza Strip (southwestern Palestine): morphology, textural characteristics and associated environmental impacts. Earth Sciences Research Journal 18, 131–142.
56. Ubeid, K.F., Ramadan, K.A., 2017. Activity concentration and spatial distribution of radon in beach sands of Gaza Strip, Palestine. Journal of Mediterranean Earth Sciences 9, 19–28.
57. Weiss, R., 2012. The mystery of boulders moved by tsunamis and storms. Marine Geology 295, 28–33.
58. Yolsal, S., Taymaz, T., Yalc, Iner, A.C., 2007. Understanding tsunamis, potential source regions and tsunami-prone mechanisms in the Eastern Mediterranean. Geological Society London Special Publications 291, 201–230.
Go to article

Authors and Affiliations

Khalid Fathi Ubeid
1
ORCID: ORCID

  1. Department of Geology, Faculty of Science, Al Azhar University-Gaza, P.O. Box 1277, Gaza Strip, Palestine
Download PDF Download RIS Download Bibtex

Abstract

We test the application of dendrochronological methods for dating and assessing the environmental impacts of tsunamis in polar regions, using an example of the 21 November 2000 landslide−generated tsunami in Vaigat Strait (Sullorsuaq Strait), West Greenland. The studied tsunami inundated a c . 130 m−wide coastal plain with seawater, caused erosion of beaches and top soil and covered the area with an up to 35 cm−thick layer of tsunami deposits composed of sand and gravel. Samples of living shrub, Salix glauca (greyleaf willow) were collected in 2012 from tsunami−flooded and non−flooded sites. The tree−ring analyses reveal unambiguously that the tsunami−impacted area was immediately colonized during the following summer by rapidly growing shrubs, whilst one of our control site specimens records evidence for damage that dates to the time of the tsunami. This demonstrates the potential for dendrochronological methods to act as a precise tool for the dating of Arctic paleotsunamis, as well as rapid post−tsunami ecosystem recovery. The reference site shrubs were likely damaged by solifluction in the autumn 2000 AD that was triggered by high seasonal rainfall, which was itself a probable contributory factor to the tsunami−generating landslide.
Go to article

Authors and Affiliations

Agata Buchwał
Witold Szczuciński
Mateusz C. Strzelecki
Antony J. Long

This page uses 'cookies'. Learn more