Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The growing interest in one-dimensional tin oxide-based nanomaterials boosts research on both high-quality nanomaterials as well as production methods. This is due to the fact that they present unique electrical and optical properties that enable their application in various (opto)electronic devices. Thus, the aim of the paper was to produce ceramic SnO₂ nanowires using electrospinning with the calcination method, and to investigate the influence of the calcination temperature on the morphology, structure and optical properties of the obtained material. A scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the morphology and chemical structure of obtained nanomaterials. The optical properties of manufactured one-dimensional nanostructures were investigated using UV-Vis spectroscopy. Moreover, based on the UV-Vis spectra, the energy band gap of the prepared nanowires was determined. The analysis of the morphology of the obtained nanowires showed that both the concentration of the precursor in the spinning solution and the calcination temperature have a significant impact on the diameter of the nanowires and, consequently, on their optical properties.
Go to article

Bibliography

  1.  W. Matysiak and T. Tański, “Novel bimodal ZnO (amorphous)/ZnO NPs (crystalline) electrospun 1D nanostructure and their optical characteristic,” Appl. Surf. Sci., vol. 474, pp. 232–242, Apr. 2019.
  2.  P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, and M. Bilewicz, “Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles,” Appl. Surf. Sci., vol. 424, pp. 206–212, Dec. 2017.
  3.  V.R. Bandi et al., “Synthesis, structural and optical properties of pure and rare-earth ion doped TiO2 nanowire arrays by a facile hydrothermal technique,” Thin Solid Films, vol. 547, pp. 207–211, 2013.
  4.  V.M.D.S. Rocha, M.D.G. Pereira, L.R. Teles, and M.O.D.G. Souza, “Effect of copper on the photocatalytic activity of semiconductor- based titanium dioxide (anatase) and hematite (α-Fe2O3),” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 185, no. 1, pp. 13–20, Jul. 2014.
  5.  Z. Tao, Y. Li, B. Zhang, G. Sun, J. Cao, and Y. Wang, “Bi-doped urchin-like In2O3 hollow spheres: Synthesis and improved gas sensing and visible-light photocatalytic properties,” Sensors Actuators B Chem., vol. 321, p. 128623, Oct. 2020.
  6.  M. Parthibavarman, M. Karthik, and S. Prabhakaran, “Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material,” Vacuum, vol. 155, pp. 224–232, Sep. 2018.
  7.  Y. Chen et al., “SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress,” J. Energy Chem., vol. 35, pp. 144–167, Aug. 2019.
  8.  M. Dou and C. Persson, “Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects,” J. Appl. Phys., vol. 113, no. 8, p. 083703, Feb. 2013.
  9.  X. Zhang et al., “SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells,” J. Power Sources, vol. 402, pp. 460–467, Oct. 2018.
  10.  V.S. Jahnavi, S.K. Tripathy, and A.V.N. Ramalingeswara Rao, “Structural, optical, magnetic and dielectric studies of SnO2 nano particles in real time applications,” Phys. B Condens. Matter, vol. 565, pp. 61–72, Jul. 2019.
  11.  M.A. Yildirim, S.T. Yildirim, E.F. Sakar, and A. Ateş, “Synthesis, characterization and dielectric properties of SnO2 thin films,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 133, pp. 60–65, Dec. 2014.
  12.  K. Bhuvaneswari et al., “Enhanced photocatalytic activity of ethylenediamine-assisted tin oxide (SnO2) nanorods for methylene blue dye degradation,” Mater. Lett., vol. 276, p. 128173, Oct. 2020.
  13.  L.R. Hou, L. Lian, L. Zhou, L.H. Zhang, and C.Z. Yuan, “Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange,” Mater. Res. Bull., vol. 60, pp. 1–4, Dec. 2014.
  14.  D. Narsimulu, E.S. Srinadhu, and N. Satyanarayana, “Surfactant-free microwave-hydrothermal synthesis of SnO2 flower-like structures as an anode material for lithium-ion batteries,” Materialia, vol. 4, pp. 276–281, Dec. 2018.
  15.  S. Sharma and S. Chhoker, “CVD grown doped and Co-doped SnO2 nanowires and its optical and electrical studies,” Mater. Today Proc., vol. 28, pp. 375–378, Jan. 2020.
  16.  C. Gao, S. Yuan, B. Cao, and J. Yu, “SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells,” Chem. Eng. J., vol. 325, pp. 378–385, Oct. 2017.
  17.  W. Matysiak, T. Tanski, and W. Smok, “Electrospinning as a versatile method of composite thin films fabrication for selected applications,” Solid State Phenom., vol. 293, pp. 35–49, 2019.
  18.  T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, “Electrospinning of nanofibers,” J. Appl. Polym. Sci., vol. 96, no. 2, pp. 557–569, Apr. 2005.
  19.  T. Tański, W. Matysiak, and P. Jarka, “Introductory Chapter: Electrospinning-smart Nanofiber Mats,” in Electrospinning Method Used to Create Functional Nanocomposites Films, InTech, 2018.
  20.  W. Matysiak, T. Tański, and W. Smok, “Study of optical and dielectric constants of hybrid SnO2 electrospun nanostructures,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 2, p. 115, Feb. 2020.
  21.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  22.  S.S. Mali et al., “Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells,” Nanoscale, vol. 10, no. 17, pp. 8275–8284, May 2018.
  23.  K. Zhang et al., “An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction,” J. Electroanal. Chem., vol. 781, pp. 198–203, Nov. 2016.
  24.  F. Li, T. Zhang, X. Gao, R. Wang, and B. Li, “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor,” Sensors Actuators, B Chem., vol. 252, pp. 822–830, 2017.
  25.  Z. Jiang et al., “Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers,” Ceram. Int., vol. 42, no. 14, pp. 15881– 15888, Nov. 2016.
  26.  J.Y. Cheong, C. Kim, J. W. Jung, K.R. Yoon, and I.D. Kim, “Porous SnO2-CuO nanotubes for highly reversible lithium storage,” J. Power Sources, vol. 373, pp. 11–19, Jan. 2018.
  27.  Y.Y. Li, J.G. Wang, H.H. Sun, W. Hua, and X.R. Liu, “Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 43, no. 31, pp. 14121–14129, Aug. 2018.
  28.  Z. Huang, Z. Chen, S. Ding, C. Chen, and M. Zhang, “Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification,” Mater. Lett., vol. 219, pp. 19–22, May 2018.
  29.  K. Wang and J. Huang, “Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries,” J. Phys. Chem. Solids, vol. 126, pp. 155–163, Mar. 2019.
  30.  S. Javanmardi, S. Nasresfahani, and M.H. Sheikhi, “Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature,” Mater. Res. Bull., vol. 118, Oct. 2019.
  31.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  32.  W.Q. Li et al., “Synthesis of hollow SnO2 nanobelts and their application in acetone sensor,” Mater. Lett., vol. 132, pp. 338–341, Oct. 2014.
  33.  L. Cheng et al., “Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties,” Mater. Lett., vol. 131, pp. 23–26, Sep. 2014.
  34.  L. Liu et al., “High toluene sensing properties of NiO-SnO2 composite nanofiber sensors operating at 330°C,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 448–454, Dec. 2011.
  35.  S.H. Yan et al., “Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sensors Actuators, B Chem., vol. 221, pp. 88–95, Jul. 2015.
  36.  F. Li, X. Gao, R. Wang, T. Zhang, and G. Lu, “Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor,” Sensors Actuators, B Chem., vol. 248, pp. 812–819, 2017.
  37.  S.W. Choi, J. Zhang, K. Akash, and S.S. Kim, “H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 169, pp. 54–60, Jul. 2012.
  38.  X. Xu et al., “Effects of Al doping on SnO2 nanofibers in hydrogen sensor,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 858–863, Dec. 2011.
  39.  S.M. Hwang et al., “A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries,” Nano Energy, vol. 10, pp. 53–62, Nov. 2014.
  40.  W. Wang et al., “Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries,” Mater. Chem. Phys., vol. 223, pp. 762–770, Feb. 2019.
  41.  J. Zhu, G. Zhang, X. Yu, Q. Li, B. Lu, and Z. Xu, “Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries,” Nano Energy, vol. 3, pp. 80–87, Jan. 2014.
  42.  Q. Wali, A. Fakharuddin, I. Ahmed, M.H. Ab Rahim, J. Ismail, and R. Jose, “Multiporous nanofibers of SnO2 by electrospinning for high efficiency dye-sensitized solar cells,” J. Mater. Chem. A, vol. 2, no. 41, pp. 17427–17434, Nov. 2014.
  43.  T. Tański, W. Matysiak, and Ł. Krzemiński, “Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers,” Mater. Manuf. Process., vol. 32, no. 11, pp. 1218–1224, Aug. 2017.
  44.  W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, and P. Szperlich, “Comparison of optical properties of PAN/TiO2, PAN/ Bi2O3, and PAN/SbSI nanofibers,” Opt. Mater. (Amst)., vol. 83, pp. 145–151, Sep. 2018.
  45.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos, “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151–156, Apr. 2018.
  46.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process and characterization of electrospun PVP/ZnO NPs nanofibers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 193–200, 2019.
  47.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process, characterization and optical investigation of amorphous 1D zinc oxide nanostructures,” Appl. Surf. Sci., vol. 442, pp. 382–389, Jun. 2018.
  48.  J. Muangban and P. Jaroenapibal, “Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers,” Ceram. Int., vol. 40, no. 5, pp. 6759–6764, Jun. 2014.
  49.  W. Matysiak and T. Tański, “Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods,” Appl. Surf. Sci., vol. 489, pp. 34–43, Sep. 2019.
  50.  O.V. Otieno et al., “Synthesis of TiO2 nanofibers by electrospinning using water-soluble Ti-precursor,” J. Therm. Anal. Calorim., vol. 139, no. 1, pp. 57–66, Jan. 2020.
  51.  N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, and E.K. Suh, “Spectral studies of SnO2 nanofibres prepared by electrospinning method,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 64, no. 1, pp. 136–140, May 2006.
  52.  S.R. Ch, L. Zhang, T. Kang, Y. Lin, Y. Qiu, and S.R. A, “Annealing impact on the structural and optical properties of electrospun SnO2 nanofibers for TCOs,” Ceram. Int., vol. 44, no. 5, pp. 4586–4591, Apr. 2018.
  53.  S. Das, S. Kar, and S. Chaudhuri, “Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process,” J. Appl. Phys., vol. 99, no. 11, p. 114303, Jun. 2006.
  54.  N.S. Mohammad, “Understanding quantum confinement in nanowires: Basics, applications and possible laws,” J. Phys.-Condens. Matter, vol. 26, no. 42. Institute of Physics Publishing, 22-Oct-2014.
Go to article

Authors and Affiliations

Tomasz Tański
1
ORCID: ORCID
Weronika Smok
1
ORCID: ORCID
Wiktor Matysiak
1

  1. Department of Engineering Material and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to produce a thin SnO2 film by a technique combining the sol-gel method and electrospinning from a solution based on polyvinylpyrrolidone and a tin chloride pentahydrate as a precursor. The spinning solution was subjected to an electrospinning process, and then the obtained nanofiber mats were calcined for 10 h at 500°C. Then, the scanning electron microscopy morphology analysis and chemical composition analysis by X-ray microanalysis of the manufactured thin film was performed. It was shown that an amorphous-crystalline layer formed by the SnO2 nanofiber network was obtained. Based on the UV-Vis spectrum, the width of the energy gap of the obtained layer was determined.

Go to article

Authors and Affiliations

W. Matysiak
T. Tański
W. Smok
S. Polishchuk
Download PDF Download RIS Download Bibtex

Abstract

The electrical contactors play a crucial role in closing the circuit in many power distribution components like overhead lines, underground cables, circuit breakers, transformers, and control systems. The failure in these components mainly occurs due to the break-down of contactors due to the continuous opening and closing action of contacts. Silver (Ag)-based oxide contact materials are widely used in practice, among which silver tin oxide (AgSnO2) is most common. An attempt is made in increasing the performance of AgSnO2, by adding Tungsten Oxide (WO3) in various weight proportions, thus finding the optimal proportion of AgSnO2WO3 to have increased mechanical and electrical performances. All the composite samples are fabricated in-house using powder metallurgy process. The assessment of physical and electrical properties namely, density, hardness, porosity, and electrical conductivity, showed that 90%Ag-8.5%SnO2-1.5%WO3 composite yielded superior results. With help of morphological tests, wear characteristics are also investigated, which showed that 90%Ag-8.5%SnO2-1.5%WO3 composite has a wear coefficient of 0.000227 and a coefficient of friction of 0.174 at an optimized load of 10 N and sliding velocity of 0.5 mm/s.
Go to article

Bibliography

[1] P.B. Joshi, N.S.S. Murti, V.L. Gadgeel, V.K. Kaushik, J. Mater. Sci. Lett. 14 (16), 1099-1101 (1995). DOI: https://doi.org/10.1007/BF00423372
[2] P.B. Joshi, P. Ramakrishnan, Materials for electrical and electronic contacts: processing, properties, and applications, Science Pub Inc. (2004).
[3] Z. Ying, W. Jingqin, K. Huiling, IEEE T. Comp. Pack. Man. 9 (5), 864-870 (2018). DOI: https://doi.org/10.1109/TCPMT.2018.2882237
[4] P.B. Joshi, V.J. Rao, B.R. Rehani, A. Pratap, Silver-Zinc oxide electrical contact materials by mechanochemical synthesis route (2007).
[5] B. Holm, Northwest coast Indian art: An analysis of form. University of Washington Press (2017).
[6] O. Nilsson, F. Hauner, D. Jeannot, Replacement of AgCdO by AgSnO/sub 2/in DC contactors, In Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts. (pp. 70-74). IEEE (2004 September). DOI: https://doi.org/10.1109/HOLM.2004.1353097
[7] D .A. Romanov, S.V. Moskovskii, E.A. Martusevich, E.A. Gayevoy, V.E. Gromov, Structural-phase state of the system “CdO-Ag coating/copper substrate” formed by electroexplosive method. Metalurgija 57 (4), 299-302 (2018).
[8] P.G. Slade, R.K. Smith, Electrical switching life of vacuum circuit breaker interrupters. In Electrical Contacts-2006. Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts (pp. 32- 37). IEEE (2006, September). DOI: https://doi.org/10.1109/HOLM.2006.284061
[9] S.H. Choi, B. Ali, S.Y. Kim, S.K. Hyun, S.J. Seo, K.T. Park, J.S. Park, Int. J. Appl. Ceram. Tec. 13 (2), 258-264 (2016). DOI: https://doi.org/10.1111/ijac.12478
[10] C. Wu, Q. Zhao, N. Li, H. Wang, D. Yi, W. Weng, J. Alloy Compd. 766, 161-177 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.06.317
[11] J.L. Wintz, S. Hardy, Design guideline of contactors: optimal use of assembled contacts. In 2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013) (pp. 1-10). IEEE (2013, September). DOI: https://doi.org/10.1109/HOLM.2013.6651406
[12] N.M. Talijan, V. Ćosović, J. Stajić-Trošić, A. Grujić, D. Živkovic, E. Romhanji, J. Min. Metall. B. 43 (2), 171-176 (2007). DOI: https://doi.org/10.2298/JMMB0702171T
[13] B. Rehani, P.B. Joshi, P.K. Khanna, J. Mater. Eng. Perform. 19 (1), 64-69 (2010). DOI: https://doi.org/10.1007/s11665-009-9437-3
[14] P.G. Slade, (Ed.), Electrical contacts: principles and applications, CRC Press (2017).
[15] M.W. Richert, J. Richert, A. Hotloś, P. Pałka, W. Pachla, M. Perek- Nowak, In Mater. Sci. Forum. 667, 145-150 (2011). DOI: https://doi.org/10.4028/www.scientific.net/MSF.667-669.145
[16] V. Ćosović, N. Talijan, D. Živković, D. Minić, Z. Živković, J. Min. Metall. B. 48 (1), 131-141 (2012).
[17] K. Wojtasik, W. Missol, Metal Powder Report 59 (7), 34-39 (2004). DOI: https://doi.org/10.1016/S0026-0657(04)00206-1
[18] M . Lungu, S. Gavriliu, T. Canta, M. Lucaci, E. Enescu, J. Optoelectron. Adv. M. 8 (2), 576 (2006).
[19] V. Ćosović, M.M. Pavlović, A. Cosovic, P. Vulić, M. Premović, D. Živković, N.M.Talijan, Sci. Sinter. 45 (2), 173-180 (2013). DOI: https://doi.org/10.2298/SOS1302173C
[20] N.M. Talijan, Zaštitamaterijala 52 (3), 173-180 (2011).
[21] M . Mustapha, F. Mustapha, O. Mamat, P. Hussain, Powder Metall. 54 (3), 343-353 (2011). DOI: https://doi.org/10.1179/003258909X12573447241581
[22] N.M. Talijan, V.R. Ćosović, A.R. Ćosović, D.T. Živković, Metallurgical and Materials Engineering 18 (4), 259-272 (2012).
[23] M . Braunovic. IEICE T. Electron. 92 (8), 982-991 (2009). DOI: https://doi.org/10.1587/transele.E92.C.982
[24] A . Dogariu, S. Sukhov, J. Sáenz, Nat. Photonics. 7 (1), 24-27 (2013). DOI: https://doi.org/10.1038/nphoton.2012.315
[25] M . Taher, F. Mao, P. Berastegui, A.M. Andersson, U. Jansson, Tribol. Int. 119, 680-687 (2018). DOI: https://doi.org/10.1016/j.triboint.2017.11.026
[26] F. Findik, H. Uzun, Mater. Design 24 (7), 489-492 (2003). DOI: https://doi.org/10.1016/S0261-3069(03)00125-0
[27] B.A. Wasmi, A.A. Al-Amiery, A.A.H. Kadhum, A.B. Mohamad, J. Nanomater. (2014).
[28] M . Lungu, S. Gavriliu, D. Patroi, M. Lucaci, Adv. Mat. Res. 23, 103-106 (2007). DOI: https://doi.org/10.4028/www.scientific.net/AMR.23.103
[29] M . Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Optik 145, 169-180 (2017). DOI: https://doi.org/10.1016/j.ijleo.2017.07.049
[30] E . Harea, I. Lapsker, A. Laikhtman, L. Rapoport, L. Tribol, Lett. 52 (2), 205-212 (2013).
[31] S. Praveen Kumar, R. Parameshwaran, A. Ananthi, J. JenilJaba Sam, Arch. Metall. Mater. 62 (2017). DOI: https://doi.org/10.1515/amm-2017-0287
[32] S.P. Kumar, R. Parameshwaran, S.A Kumar, S. Nathiya, K. Heenalisha, Mater. Today-Proc. (2020). DOI: https://doi.org/10.1016/j.matpr.2020.05.666
[33] H . Li, X. Wang, Y. Xi, Y. Liu, X. Guo, Mater. Design. 121, 85-91 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.02.059
[34] Mohd Shahadan Mohd Suan, Nurulhawa Ali Hasim, Mohd Edeerozey Abd Manaf, Mohd Rafie Johan, Chinese J. Phys. 55 (5), 1857-1864 (2017). DOI: https://doi.org/10.1016/j.cjph.2017.08.012
Go to article

Authors and Affiliations

S. Praveen Kumar
1
ORCID: ORCID
S.M. Senthil
1
ORCID: ORCID
R. Parameshwaran
1
ORCID: ORCID
R. Rathanasamy
1
ORCID: ORCID

  1. Kongu Engineering College, Erode, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

This study examines the optimal parameters for obtaining fluorine-doped SnO 2 (FTO) films with promising potential for photovoltaic applications. Due to its properties, tin oxide is used in a wide range of technologies, among which the manufacture of solar cells is one of the most important. Being doped with fluorine, tin dioxide becomes a good transparent and conductive electrode, suitable for solar cell applications. The chemical stability and low cost of the doped SnO 2 makes it an advantageous alternative to tin-doped indium oxide (ITO). Among the most important characteristics of FTO thin films are high photoconductivity under sunlight irradiation and strong UV absorption. The SnO 2 compound, doped with fluorine, exhibits a considerable chemical and physical stability, good electrical conductivity and high transmission (over 85%) in the visible range. The spray pyrolysis technique is the most preferable and efficient deposition method of fluorine-doped SnO2 thin films. This work aims to identify the optimal parameters for the spray pyrolysis of SnO 2:F films and to analyze the morphology, transparency and strength of as obtained films in relation to the doping amount in the precursor solution, spraying distance and film thickness.
Go to article

Authors and Affiliations

P. Lisnic
1
ORCID: ORCID
L. Hrostea
2
ORCID: ORCID
L. Leontie
1
ORCID: ORCID
M. Girtan
3
ORCID: ORCID

  1. Alexandru Ioan Cuza University of Iasi, Faculty of Physics Bulevardul Carol I, nr.11, 700506, Iasi, Romania
  2. Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Research Center on Advanced Materials and Technologies, Science Department, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
  3. Angers University, Faculty of Sciences, Photonics Laboratory, (LPhiA) E.A. 4464, SFR Matrix, 2 Bd Lavoisier, 49000 Angers, France
Download PDF Download RIS Download Bibtex

Abstract

Tin dioxide (SnO2) is an n-type semiconductor and has useful characteristics of high transmittance, excellent electrical properties, and chemical stability. Accordingly, it is widely used in a variety of fields, such as a gas sensor, photocatalyst, optoelectronics, and solar cell. In this study, SnO2 films are deposited by thermal atomic layer deposition (ALD) at 180°C using Tetrakis(dimethylamino)tin and water. A couple of 5.9, 7.4 and 10.1nm-thick SnO2 films are grown on SiO2/Si substrate and then each film is annealed at 400°C in oxygen atmosphere. Current transport of SnO2 films are analyzed by measuring current – voltage characteristics from room temperature to 150°C. It is concluded that electrical property of SnO2 film is concurrently affected by its semiconducting nature and oxidative adsorption on the surface.

Go to article

Authors and Affiliations

Seong Yu Yoon
Byung Joon Choi
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Among the various thin film coating techniques, atomic layer deposition (ALD) has features of good controllability of the thickness, excellent step-coverage in 3-dimensional object even in the sub-nm thickness range at the relatively low deposition temperature. In this study, SnO2 thin films were grown by ALD in the variation of substrate temperatures from 150 to 250°C. Even such a low temperature may influence on the growth kinetics of the ALD reaction and thus the physical characteristics of thin films, such as crystallinity, film density and optical band gap, etc. We observed the decrease of the growth rate with increasing substrate temperature, at the same time, the density of the film was decreased with increasing temperature. Steric hindrance effect of the precursor molecule was attributed to the inverse relationship of the growth temperature and growth rate as well as the film density. Optical indirect band gap energy (~3.6 eV) of the ALD-grown amorphous SnO2 films grown at 150°C was similar with that of the literature value, while slightly lower band gap energy (~3.4 eV) was acquired at the films grown at higher temperature.
Go to article

Authors and Affiliations

Daeho Kim
Dong Ha Kim
Doh-Hyung Riu
Byung Joon Choi
Download PDF Download RIS Download Bibtex

Abstract

Transparent Conductive Electrode (TCE) is an essential part of the optoelectronic and display devices such as Liquid Crystal Displays (LCDs), Solar Cells, Light Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs) and touch screens. Indium Tin Oxide (ITO) is a commonly used TCE in these devices because of its high transparency and low sheet resistance. However, scarcity of indium and brittle nature of ITO limit its use in future flexible electronics. In order to develop flexible optoelectronic devices with improved performance, there is a requirement of replacing the ITO with a better alternate TCE. In this work, several alternative TCEs including transparent conductive oxides, carbon nanotubes, conducting polymers, metal nanowires, graphene and composites of these materials are studied with their properties such as sheet resistance, transparency and flexibility. The advantage and current challenges of these materials are also presented in this work.

Go to article

Authors and Affiliations

S. Sharma
S. Shriwastava
S. Kumar
K. Bhatt
C. Charu Tripathi

This page uses 'cookies'. Learn more