Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The ultrasonic flowmeter which is described in this paper, measures the transit of time of an ultrasonic pulse. This device consists of two ultrasonic transducers and a high resolution time interval measurement module. An ultrasonic transducer emits a characteristic wave packet (transmit mode). When the transducer is in receive mode, a characteristic wave packet is formed and it is connected to the time interval measurement module inputs. The time interval measurement module allows registration of transit time differences of a few pulses in the packet. In practice, during a single measuring cycle a few time-stamps are registered. Moreover, the measurement process is also synchronous and, by applying the statistics, the time interval measurement uncertainty improves even in a single measurement. In this article, besides a detailed discussion on the principle of operation of the ultrasonic flowmeter implemented in the FPGA structure, also the test results are presented and discussed

Go to article

Authors and Affiliations

Stanisław Grzelak
Marcin Kowalski
Jarosław Czoków
Marek Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The designing process of high resolution time interval measurement systems creates many problems that need to be eliminated. The problems are: the latch error, the nonlinearity conversion, the different duty cycle coefficient of the clock signal, and the clock signal jitter. Factors listed above affect the result of measurement. The FPGA (Field Programmable Gate Array) structure also imposes some restrictions, especially when a tapped delay line is constructed. The article describes the high resolution time-to-digital converter, implemented in a FPGA structure, and the types of errors that appear there. The method of minimization and processing of data to reduce the influence of errors on the measurement is also described.

Go to article

Authors and Affiliations

Stanisław Grzelak
Marcin Kowalski
Jarosław Czoków
Marek Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the construction, operation and test results of three most popular interpolators from a viewpoint of time-interval (TI) measurement systems consisting of many tapped-delay lines (TDLs) and registering pulses of a wide-range changeable intensity. The comparison criteria include the maximum intensity of registered time stamps (TSs), the dependency of interpolator characteristic on the registered TSs’ intensity, the need of using either two counters or a mutually-complementing pair counter-register for extending a measurement range, the need of calculating offsets between TDL inputs and the dependency of a resolution increase on the number of used TDL segments. This work also contains conclusions about a range of applications, usefulness and methods of employing each described TI interpolator. The presented experimental results bring new facts that can be used by the designers who implement precise time delays in the field-programmable gate arrays (FPGA).

Go to article

Authors and Affiliations

Dariusz Chaberski
Robert Frankowski
Maciej Gurski
Marek Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a novel implementation of a time-to-digital converter (TDC) in field-programmable gate array (FPGA) devices. The design employs FPGA digital signal processing (DSP) blocks and gives more than two-fold improvement in mean resolution in comparison with the common conversion method (carry chain-based time coding line). Two TDCs are presented and tested depending on DSP configuration. The converters were implemented in a Kintex-7 FPGA device manufactured by Xilinx in 28 nm CMOS process. The tests performed show possibilities to obtain mean resolution of 4.2 ps but measurement precision is limited to at most 15 ps mainly due to high conversion nonlinearities. The presented solution saves FPGA programmable logic blocks and has an advantage of a wider operation range when compared with a carry chain-based time coding line.

Go to article

Authors and Affiliations

Paweł Kwiatkowski
Download PDF Download RIS Download Bibtex

Abstract

We present two main ways to precisely create the equivalent transfer function of picosecond time-to-digital converters based on commonly used method with tapped time coding delay lines. The ways consist either in evaluation of the quantization steps boundaries of the delay lines or in summation of numbers of the line quantization steps. The paper contains results of comprehensive analysis of both methods. The advantage and high versatility of the addition method is demonstrated.
Go to article

Bibliography

[1] Szplet, R., Jachna, Z., Kwiatkowski, P.,&Rózyc K. (2013). A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines. Measurement Science and Technology, 20(3), 1–15. https://doi.org/10.1088/0957-0233/26/7/075002
[2] Wu, J., & Shi, Z. (2008). The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay. Proceedings of the IEEE Nuclear Science Symposium Conference Record, Dresden. 3440–3446. https://lss.fnal.gov/archive/2008/conf/fermilab-conf-08-498-e.pdf
[3] Szplet, R. (2014). Time-to-digital converters. In Carbone P., Kiaei, S., & Xu, W. (Eds.). Design, Modeling and Testing of Data Converters (pp. 211–246). Springer-Verlag. https://doi.org/10.1007/ 978-3-642-39655-7_7
[4] Cova, S. & Bertolaccini, M. (1970). Differential linearity testing and precision calibration of multichannel time sorters. Nuclear Instruments and Methods, 77(2), 269–276.
[5] Szplet, R., Szymanowski, R., & Sondej, D. (2019). Measurement Uncertainty of Precise Interpolating Time Counters. IEEE Transactions on Instrumentation and Measurement, 68(11), 4348–4356. https://doi.org/10.1109/TIM.2018.2886940
[6] Frankowski, R., Chaberski, D., & Kowalski, M. (2015). An optical method for the time-to-digital converters characterization. Proceedings of the International Conference on Transparent Optical Networks, Budapest. https://doi.org/10.1109/ICTON.2015.7193659
[7] Rivoir J. (2006). Statistical Linearity Calibration of Time-to-Digital Converters Using a Free- Running Ring Oscillator. Proceedings of the 15th Asian Test Symposium, Fukuoka, Japan. 45–50. https://doi.org/10.1109/ATS.2006.260991
[8] Chaberski, D., Frankowski, R., Gurski, M., & Zielinski, M. (2017). Comparison of interpolators used for time-interval measurement systems based on multiple-tapped delay line. Metrology and Measurement Systems, 24(2), 401–412.
[9] Mota, M. (2000). Design and Characterization of CMOS High-Resolution TDCs. [Doctoral dissertation, Inst. Superior Técnico, Tech. Univ. of Lisbon].
[10] Wu, J. (2014). Uneven BinWidth Digitization and a Timing Calibration Method Using Cascaded PLL. Proceedings of 19th IEEE-NPSS Real-Time Conference 2014, Japan
[11] Xie, W., Chen, H., & Li, D. D. U. (2021). Efficient time-to-digital converters in 20 nm FPGAs with wave union. IEEE Transactions on Industrial Electronics (Early Access). https://doi.org/10.1109/ TIE.2021.3053905
[12] Frankowski, R., Gurski, M., & Płóciennik, P. (2016). Optical methods of the delay cells characteristics measurements and their applications. Optical and Quantum Electronics, 48, 188. https://doi.org/10.1007/s11082-016-0465-6
[13] Kalisz, J., Orzanowski, T., & Szplet, R. (2000). Delay-locked loop technique for temperature stabilisation of internal delays of CMOS FPGA devices. Electronics Letters, 36(14), 1184–1185.
Go to article

Authors and Affiliations

Dominik Sondej
1
Rafał Szymanowski
1
Ryszard Szplet
1

  1. Military University of Technology, Faculty of Electronics, Institute of Communication Systems, gen. S. Kaliskiego 2, 00-908 Warsaw 46, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work shows a time-domain method for the discrimination and digitization of parameters of voltage pulses coming from optical detectors, taking into account the presence of electronic noise and afterpulsing. Our scheme is based on an FPGA-based time-to-digital converter as well as an adjustable-threshold comparator complemented with commercial elements. Here, the design, implementation and optimization of a multiphase TDC using delay lines shorter than a single clock period is also described. The performance of this signal processing system is discussed through the results from the statistical code density test, statistical distributions of measurements and information gathered from an optical detector. Unlike dual voltage threshold discriminators or constant-fraction discriminators, the proposed method uses amplitude and time information to define an adjustable discrimination window that enables the acquisition of spectra.
Go to article

Authors and Affiliations

del Mar Correa Maryam
Freddy R. Pérez

This page uses 'cookies'. Learn more