Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The essential problem in the process of technological prestressing is the imperfection of web sheets. These elements made of relatively large sheets (about 2 meters high) show significant imperfections of the shape and flatness. Initial deflections have the value equal several times the web thickness, but they tend to grow in the process of straightening. Such a case can particularly occur when stresses that compress the shield of the web sheet between diaphragms are close to the critical buckling stress. Experiments were carried out in a real object. The box girder having I I .Om span and 1.8 m in its height was prestressed by welding the straps on the bottom flange and on the web in the vicinity of the bottom llange. Results of performed investigations are the subject of the paper.
Go to article

Authors and Affiliations

Artur Blum
Tomasz Kubiak
ORCID: ORCID
Tadeusz Niezgodziński
Zbigniew Orłoś
Jacek Woliński
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new approach to stratigraphy and palaeogeography of NW Ukraine. So far, the glacial landforms near the Rostan area have been interpreted as end moraines derived from the Saalian ice-sheet. Sedimentological and petrographic analyses conducted at the Rostan site shed new light on the dynamics and age of the ice-sheet that formed the examined glaciogenic forms. Sedimentological analysis of glacial deposits documented the sedimentary environment of a glaciofluvial fan deposited by the ice-sheet front characterised by varying dynamics, i.e. advancing, stationary and retreating. Petrographic analysis proved an older age of deposits, i.e. Elsterian, and not Saalian as interpreted so far. These results shed new light on palaeogeography and stratigraphy of this area. The occurrence of the Elsterian deposits on the surface gives evidence of the absence of younger – Saalian – glaciation in this area, which relates to the recently announced new approaches to palaeogeography and stratigraphy of neighbouring areas in eastern Poland.
Go to article

Bibliography

1. Bogucki, A., Wołoszyn, P., Gaigalas, A., Meleszyte, M., Zalesski, I., 1998. Glacigenic complex of Volhynian Polesie, Rostań and Kalinówka sites. In: Dobrowolski, R. (Ed.), Tour Guide of the 4th Congress of Polish Geomorphologists, Main directions of geomorphological research in Poland, Current status and perspectives, III, Lublin, 65–81 (in Polish).
2. Bogucki, A., Zalesski, I., Karpenko, N., Kowalczuk, I., Krawczuk, J., 2003. Geologic-geomorphologic evolution of the north-western part of the Volhynian Polesie. Acta Agrophysica 1 (2), 217–232 (in Polish with English summary).
3. Bogucki, A., Łanczont, M., 2018. Stratigraphy of loess-soil complexes of the periglacial zone of the western part of Ukraine. Guide of XX Polish-Ukrainian Field Seminar, Climatic cycles of Pleistocene in the record of the sludge sequence of the Podlaska Lowland. Mielnik, 9–10 (in Polish).
4. Böse, M., 1989. Methodisch-stratigraphische Studien und paläomorphologische Untersuchungen zum Pleistozän südlich der Ostsee. Berliner Geographische Abhandlungen 51, 1–114 (in German with English summary).
5. Buraczyński, J., Wojtanowicz, J., 1982. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Orzechów Nowy. PIG, Warszawa (in Polish).
6. Curray, J.R., 1956. The analysis of two-dimensional data. Journal of Geology 64, 117–131.
7. Czubla, P., 2015. Fennoscandian erratics in glacial sediments of Poland and their research significance. Wyd. UŁ, Łódź, 335 pp. (in Polish with English summary).
8. Czubla, P., Terpiłowski, S., Orłowska, A., Zieliński, P., Zieliński, T., Pidek, I.A., 2019. Petrographic features of tills as a tool in solving stratigraphical and palaeogeographical problems – a case study from Central-Eastern Poland. Quaternary International 501, 45–58.
9. Davis, J.C., 1973. Statistics and data analysis in geology. New York, 550 pp.
10. Dolecki, L., Gardziel, Z., Nowak, J., 1990. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Sosnowica. PIG, Warszawa (in Polish).
11. Evans, D.J.A., Phillips, E.R., Hiemstra, J.F., Auton, C.A., 2006. Subglacial till: Formation, sedimentary characteristics and classification. Earth-Science Reviews 78, 115–176.
12. Gałązka, D., 2004. Application of macroscopic examination of erratic boulders to determine stratigraphy of glacial clays of central and northern Poland. (Zastosowanie makroskopowych badań eratyków do określania stratygrafii glin lodowcowych środkowej i północnej Polski) (PhD thesis). Archiwum Wydziału Geologii UW, Warszawa.
13. Gibbard, S., Caldeira, K., Bala, G., Phillips, T.J., Wickett, M., 2005. Climate effects of global land cover change, Geophysical Research Letters 32, L23705, doi: 10.1029/2005GL024550.
14. Górska-Zabielska, M., 2010. Petrographic study of glacial sediments – an outline of the problem. Landform Analysis 12, 49–70 (in Polish with English summary).
15. Instrukcja, 2004. Instructions for developing and publishing the Detailed Geological Map of Poland in the scale 1: 50,000, edition II supplemented. Państwowy Instytut Geologiczny, Warszawa (in Polish), 137 pp.
16. Lindner, L., 2005. A new look at the number, age and extent of the Middle Polish Glaciations in the southern part of central-eastern Poland. Przegląd Geologiczny, 53 (2), 145–150 (in Polish).
17. Lindner, L., A. Bogucki, A., Chlebowski, R., Jelowiczewa, J., Wojtanowicz, J., Zalesski, I., 2007. Outline of the Pleistocene stratigraphy in the Yolhynian Polesie (NW Ukraine). Annales UMCS, B, 62, 7–41 (in Polish with English summary).
18. Lindner, L., Marks, L., Nita, M., 2013. Climatostratigraphy of interglacials in Poland: Middle and Upper Pleistocene lower boundaries from a Polish perspective. Quaternary International 292, 113–123.
19. Lindner, L., Marks, L., 2018. Korelacja zlodowaceń i interglacjałów Polski, Białorusi i Ukrainy. XX Polsko-Ukraińskie Seminarium Terenowe”Klimatyczne cykle plejstocenu w zapisie sekwencji osadowej Niziny Podlaskiej”, 16–17.
20. Lisicki, S., 2003. Lithotypes and lithostratigraphy of tills of the Pleistocene in the Vistula drainage basin area, Poland. Prace PIG 177, 1–105 (in Polish with English summary).
21. Łanczont, M., Bogucki, A., Yatsyshyn, A., Terpiłowski, S., Mroczek, P., Orłowska, A., Hołub, B., Zieliński, P., Komar, M., Woronko, B., Kulesza, P., Dmytruk, R., Tomeniuk, O., 2019. Stratigraphy and chronology of the periphery of the Scandinavian ice-sheet at the foot of the Ukrainian Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 530, 59–77.
22. Maizels, J.K., 1993. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sedimentary Geology 85, 299–325.
23. Marks, L., Ber, A., Gogołek, W., Piotrowska, K., (Eds) 2006. Geological Map of Poland in scale 1:500 000. Państwowy Instytut Geologiczny, Warszawa.
24. Marszałek, S., 2001. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Sobibór. PIG, Warszawa (in Polish).
25. Miall, A.D., 1977. A review of the braided river depositional environment. Earth Sciences Review 13, 1–62.
26. Palienko, W.P., 1982. Peculiarities of the glacial landscape of the Dnieper Glaciation in Volhynia Polesie. Quaternary research materials of the territory of Ukraine (Osobiennosti glacioreliefa krayevoy zony dnieprovskogo lednika w predelakh Volynskogo Polesiya). Materialy po izucheniyu chetvertichnogo perioda na teritorii Ukrainy, 203–211 (in Russian).
27. Palienko, W.P., Gruzman, G.G., 1978. O строиении некоторых краевых форм ледникового рельефа Волынского Полесья (O strojenii niekotorych krajewych form lednikogo relief Wołynskogo Polesia.) In: Krajewyje obrazowanija matierikowych oledienenija. Materialy V Vsesoyuznogo soveshchaniya. Naukowa Dumka, Kiev, 177–181 (in Russian).
28. Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94–106.
29. Salamon, T., 2017. Elsterian ice sheet dynamics in a topographically varied area (Southern part of the Racibórz-Oświęcim Basin and its vicinity, southern Poland). Geological Quarterly 61 (2), 465–479. 30. TGL 25 232 1971. Standards in geology – Analysis of bottom moraines. Zentrales Geologisches Institut, Berlin (in German).
31. TGL 25232/01-05 1980. Standards in geology – Analysis of bottom moraines. Zentrales Geologisches Institut, Berlin (in German).
32. Terpiłowski, S., Zieliński, T., Kusiak, J., Pidek, I.A., Czubla, P., Hrynowiecka, A., Godlewska, A., Zieliński, P., Małek, M., 2014. How to resolve Pleistocene stratigraphic problems by different methods? A case study from eastern Poland. Geological Quarterly 58 (2), 235–250.
33. Tutkovskiy, P.A., 1902. Конечные морены, валунные полосы и озы в Южном Полесье. Зап. Киев. о-ва естествоиспытателей. – Киев (Koniecznyje moreny, wałunyja połosy i ozy w jużnom Polesije s kartoj.). Zapiski w Kievskogo obshchestva yestestvoispytatelej 17, 2, 353–460. (in Russian).
34. Włodarski, W., Godlewska, A., 2016. Sedimentary and structural evolution of a Pleistocene small-scale push moraine in eastern Poland: New insight into paleoenvironmental conditions at the margin of an advancing ice lobe. Quaternary Science Reviews 146, 300–321.
35. Włodawa, 1933, Topographic Map 1:100 000, Sheet Włodawa, Military Geographical Institute (in Polish).
36. Wodyk, K., 2000. Explanations for the Detailed Geological Map of Poland 1:50 000, Sheet Sosnówka. PIG, Warszawa (in Polish).
37. Zalesskij, І.I., 1978. Краевые ледниковые образования северо- запада Украины в районе Любомль-Шацк (Kraevye lednikovye obrazovaniya severo-zapada Ukrainy v rayone Lyuboml’-Shatsk) In: Краевые образования материковых оледенений : материалы V Всесоюзного совещания. Наукова Думка, Киев (Kraevye obrazovaniya materikovykh oledeneny: Materialy V Vsesoyuznogo soveshchaniya. Naukova Dumka, Kiev) (in Russian).
38. Zalesskij, I., 2014. (Ed.) Державна Геологічна Карта України Масштаб 1:200 000 Геологічна Карта І Карта Корисних Копалин Четвертинних Відкладів (Derzhavna Heolohichna Karta Ukrainy Masshtab 1:200 000 Heolohichna Karta I Karta Korysnykh Kopalyn CHetvertynnykh Vidkladiv) (in Ukrainian).
39. Zalesskij, І.I., Zuzuk, F.W., Melniczuk, W.G., Matjejuk, W.W., Brovko, G.I., 2014. Шацьке поозер’я. Геологічна будова та гідрогеологічні умови (Shaćke poozerjia. Heolohichna budova ta hidroheolohichni umovy). Morfologia 1 (in Ukrainian).
40. Zieliński, T., Pisarska-Jamroży, M., 2012. Jakie cechy litologiczne osadów warto kodować, a jakie nie? Przegląd Geologiczny 60, 387–397 (in Polish).
41. Zieliński, T., Van Loon, A.J., 1999. Subaerial terminoglacial fans I: a semi-quantitative sedimentological analysis of the proximal environment. Geologie en Mijnbouw 77, 1–15
Go to article

Authors and Affiliations

Joanna Rychel
1
Anna Orłowska
2
Łukasz Zbucki
3
Łukasz Nowacki
1
Ivan Zalesskij
4

  1. Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
  2. Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka 2d, 20-718 Lublin, Poland
  3. Pope John Paul 2nd State School of Higher Education, Faculty of Economics Sciences, Sidorska 95/97, 21-500 BiałaPodlaska, Poland
  4. Rivne State Humanitarian University, Halytskoho 12/20, 33012 Rivne, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

All local government units in Poland have been analysed regarding their consolidated debt. The consolidated debt was compared with the budget debt which is subject to monitoring and statutory restrictions. The scale of extra-budgetary debt has been revealed as recorded in the balance sheet of a local government unit, a parent entity. In practice, the consolidated balance sheet and debt presented in it are not subject to debates and analyses. Local governments refrain from auditing and publicising of the consolidated balance sheet. The article describes the risks related to unlimited local government debt.

Go to article

Authors and Affiliations

Mieczysław Czekaj
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental research on the fabrication of thin-walled panels with longitudinal stiffening ribs by the single point incremental sheet forming technique. The bead-stiffened panels were made of Alclad 2024-T3 aluminium alloy sheets commonly used in aircraft structures. The influence of forming parameters and tool strategy on surface quality and the possibility of obtaining stiffening ribs with the required profile and depth was tested through experimental research. Two tool path strategies, spiral with continuous sinking and multi-step z-level contouring, were considered. The results of the experiments were used to verify the finite element-based numerical simulations of the incremental forming process. It was found that the main parameter which influences the formability of test sheets is the tool path strategy; the tool path strategy with multi-step z-level contouring allowed the rib to be formed to a depth of 3.53 mm without risk of cracking. However a greater depth of rib equal of 5.56 mm was achieved with the continuous tool path. The tool path strategy was also the main parameter influencing the surface finish of the drawpiece during the single point incremental forming process.
Go to article

Authors and Affiliations

B. Krasowski
1
ORCID: ORCID
A. Kubit
2
ORCID: ORCID
T. Trzepieciński
2
ORCID: ORCID
J. Slota
3
ORCID: ORCID

  1. Carpatian State School in Krosno, Krosno, Poland
  2. Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959, Rzeszów, Poland
  3. Technical University of Košice, Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

This study aims to determine optimal forming parameters for Incremental Sheet Forming process Commercially Pure titanium Grade 2 sheets in terms of formability improvement, force reduction, and efficiency of forming. Based on the central composite design, data were collected during 20 runs and then variation analysis was performed. The experiments were performed on a 3 axis CNC milling machine equipped with a Kistler dynamometer plate. Subsequently, regression models have been developed to describe process responses by input factors. As crucial parameters, the relative velocity and step size of the tool that affect the forming force and the height of the fracture have been determined. Finally, the application of optimization algorithm has emerged optimal input factors in terms of selected multi-criteria goal. The results of this study suggest that there is a process window that allows the formation of 45° wall angle drawpieces of commercially pure titanium Grade 2.
Go to article

Authors and Affiliations

M. Szpunar
1
ORCID: ORCID
T. Trzepieciński
1 2
ORCID: ORCID
R. Ostrowski
3
ORCID: ORCID
M. Zwolak
3
ORCID: ORCID

  1. Rzeszow University of Technology, Doctoral School of Engineering and Technical Sciences, 8 Powst. Warszawy Av., 35-959, Rzeszów, Poland
  2. Rzeszow University of Technology, Department of Manufacturing and Production Engineering, 12 Powst. Warszawy Av., 35-959, Rzeszów, Poland
  3. Rzeszow University of Technology, Department of Materials Forming and Processing, 12 Powst. Warszawy Av., 35-959, Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Perforated sheets are materials which – maintaining good mechanical properties – are characterized by reduced mass in comparison to full sheets. Their elastic properties are important features that are considered in the context of these materials’ design applications. Compared to full sheets, they are characterized by reduced mass while simultaneously preserving good strength properties. This article presents an experimental and numerical analysis of the effect of key parameters of the hole mesh (open area, hole diameter and orientation relative to the direction of greatest hole concentration) in association with the type of material and sheet thickness �� on the value of the effective Young’s modulus of perforated sheet. A significant influence of open area (the share of holes in the sheet, as a percentage) and orientation angle was determined. On the basis of experimental results and computer simulations, a mathematical dependency allowing for calculation of this parameter’s valuewas proposed. The average deviation of calculated values from experimental is less than 4%.
Go to article

Authors and Affiliations

Łukasz Kuczek
1
ORCID: ORCID
Wacław Muzykiewicz
1
ORCID: ORCID
Marcin Mroczkowski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of effect of structural soil backfill parameters on load capacity of culvert made as buried flexible steel structure. The work is divided into two parts. The first part is devoted to the assumptions of the Sundquist-Pettersson method. The principles of the analysis of the structure in terms of ultimate limit strength, serviceability and fatigue in permanent and temporary calculation situations are described. The second part presents a design example of a soil steel composite bridge in the form of a closed profile culvert made of MulitiPlate-type corrugated sheet. The static and strength calculations were conducted according to the Sundquist-Pettersson method and the guidelines presented in the Eurocodes. According to the guidelines, the value of the backfill tangent modulus was determined using the simplified (A) and precise (B) methods. It was found that the modulus values determined by the simplified method were about three times lower than for the exact method, leading to very conservative, uneconomical results. The structural calculations using the tangent modulus determined by the simplified method, indicated that the load capacity of the structure was exceeded, regardless of the thickness of the backfill used (in the range from 0.5 to 5 m). The use of the tangent modulus determined using the precise method resulted in a significant reduction in stress to bearing capacity ratio of analysed parameters. Similar reduction was observed with the increase in the thickness of the backfill.
Go to article

Bibliography


[1] Cz. Machelski, “Modeling of soil–steel composite bridges” [in Polish], 1nd ed., Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2008.
[2] A. Wysokowski and L. Janusz, “Soil steel composite bridges. Laboratory destructive testing. Failures during construction and operation” [in Polish], in Proceedings of Conference XXIII Konferencja Naukowo – Techniczna Awarie Budowlane – 23rd International Conference on Structural Failures, Szczecin-Międzyzdroje, 2007, pp. 541–550.
[3] A. Wysokowski and J. Vaslestadt, “Full scale fatigue testing of large-diameter multi-plate corrugated steel culverts”, Archives of Civil Engineering, vol. 48, no. 1, pp. 31–57, 2002.
[4] A. Wysokowski, J. Vaslestad and A. Pryga, “Fatigue resistance of modern corrugated steel culverts” [in Polish], Konstrukcje Stalowe, no. 5, pp. 45–47, 2000.
[5] A. Wysokowski and J. Howis, “Operational durability of steel soil-shell structures as ecological bridges” [in Polish], in Proceedings of Conference XXVII Konferencja Naukowo – Techniczna Awarie Budowlane – 27th International Conference on Structural Failures, Szczecin-Międzyzdroje, 2017, pp. 879–890.
[6] D. Bęben, “Soil-steel bridge structures design problems and construction faults” [in Polish], Drogownictwo, no. 3, pp. 74–79, 2013.
[7] Cz. Machelski, L. Korusiewicz, “Deformation of buried corrugated metal box structure under railway load”, Roads and Bridges – Drogi i Mosty, vol. 16, no. 3: pp. 191–201, 2017. https://doi.org/10.7409/rabdim.017.013
[8] Cz. Machelski, “Steel plate curvatures of soil-steel structures during construction and exploitation”, Roads and Bridges – Drogi i Mosty, vol. 15, no. 3, pp. 207–220, 2016. https://doi.org/10.7409/rabdim.016.013
[9] L. Korusiewicz, “Verification of the method of estimating bending moments in soil-shell structures on the basis of shell deformation”, Roads and Bridges – Drogi i Mosty, vol. 15, no. 3, pp. 221–230, 2016. https://doi.org/10.7409/rabdim.016.014
[10] J. Howis and A. Wysokowski, “Culverts in the communication infrastructure – part 9. Methods for calculating culverts – part III. New calculation methods" [in Polish], Nowoczesne Budownictwo Inżynieryjne, no. 5, pp. 72–81, 2010.
[11] L. Pettersson and H. Sundquist, “Design of soil steel composite bridges”, Trita-BKN, Report 112, 5th Edition, Royal Institute of Technology, Department of Structural Design and Bridges, Stockholm, Sweden, 2014.
[12] PN-EN 1997-1:2008. Projektowanie geotechniczne. Część 1: Zasady ogólne.
[13] PN-EN 1997-2:2009. Projektowanie geotechniczne. Część 2: Rozpoznanie i badanie podłoża gruntowego.
[14] L. Janusz and A. Madaj, “Engineering objects made of corrugated sheets. Design and construction” [in Polish], 1nd ed., Wydawnictwo Komunikacji i Łączności, Warszawa, 2007.
[15] W. Rowińska, A. Wysokowski and A. Pryga, “Design and technological recommendations for engineering structures made of corrugated sheets” [in Polish], 1nd ed., Generalna Dyrekcja Dróg Krajowych i Autostrad, IBDiM, Żmigród, 2004.
[16] D. Bęben, “Soil-steel bridges. Design, maintenance and durability”, 1nd ed., Springer, Cham, 2020.
[17] A. Wysokowski and J. Howis, “Culverts in the communication infrastructure – part 1” [in Polish], Nowoczesne Budownictwo Inżynieryjne, no. 2, pp. 52–56, 2008.
[18] L. Pettersson, “Full scale tests and structural evaluation of soil steel flexible culverts with low height of cover”, PhD Thesis, Royal Institute of Technology, Department of Structural Design and Bridges, Stockholm, Sweden, 2007.
[19] PN-EN 1993-1-1:2006. Projektowanie konstrukcji stalowych. Część 1–1: Reguły ogólne i reguły dla budynków.
[20] L. Pettersson, “Design of soil steel composite bridges according to the Eurocode”, Archives of Institute of Civil Engineering, no. 12, pp. 21–25, 2012.
[21] PN-EN 1993-1-8:2008. Projektowanie konstrukcji stalowych. Część 1–8: Projektowanie węzłów.
[22] PN-EN 1991-2:2007. Oddziaływania na konstrukcje. Część 2: Obciążenia ruchome mostów.
[23] PN-EN 1993-1-9:2008. Projektowanie konstrukcji stalowych. Część 1–9: Zmęczenie.
[24] PN-EN 1993-2:2007. Projektowanie konstrukcji stalowych. Część 2: Mosty stalowe.
[25] www.viacon.pl (access: November 6, 2020).
[26] PN-EN 1990:2004. Podstawy projektowania konstrukcji.
[27] P. G. Kossakowski, “Fatigue Strength of an Over One Hundred Year Old Railway Bridge”, Baltic Journal of Road and Bridge Engineering, vol. 8, no. 3, pp. 166–173, 2013. https://doi.org/10.3846/bjrbe.2013.21
[28] P. G. Kossakowski, “Influence of Initial Porosity on Strength Properties of S235JR Steel at Low Stress Triaxiality”, Archives of Civil Engineering, vol. 58, no. 3, pp. 293–308, 2021. https://doi.org/10.2478/v.10169-012-0017-9
[29] P. G. Kossakowski, “Experimental Determination of the Void Volume Fraction For S235JR Steel at Failure in the Range of High Stress Triaxialities”, Archives of Metallurgy and Materials, vol. 62, no. 1, pp. 167–172, 2017. https://doi.org/10.1515/amm-2017-0023
[30] P. G. Kossakowski, “Analysis of the Void Volume Fraction For S235JR Steel at Failure for Low Initial Stress Triaxiality”, Archives of Civil Engineering, vol. 64, no. 1, pp. 101–115, 2018. https://doi.org/10.2478/ace-2018-0007
[31] P. G. Kossakowski, “Application of Damage Mechanics for Prediction of Failure of Structural Materials and Elements”, DEStech Transactions on Computer Science and Engineering, pp. 62–72, 2020. https://doi.org/10.12783/dtcse/msam2020/34228
[32] E. Bernatowska, “Numerical Simulations of Ductile Fracture in Steel Angle Tension Members Connected with Bolts”, Civil and Environmental Engineering Reports, vol. 30, no. 2, pp. 32–54, 2020. https://doi.org/10.2478/ceer-2020-0018
Go to article

Authors and Affiliations

Michał Bakalarz
1
ORCID: ORCID
Paweł Kossakowski
1
ORCID: ORCID
Wiktor Wciślik
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of present work is to investigate the mass transfer of steady incompressible hydromagnetic fluid near the stagnation point with deferment of dust particles over a stretching surface. Most researchers tried to improve the mass transfer by inclusion of cross-diffusion or dust particles due to their vast applications in industrial processes, extrusion process, chemical processing, manufacturing of various types of liquid drinks and in various engineering treatments. To encourage the mass transport phenomena in this study we incorporated dust with microorganisms. Conservation of mass, momentum, concentration and density of microorganisms are used in relevant flow equations. The arising system of nonlinear partial differential equations is transformed into nonlinear ordinary differential equations. The numerical solutions are obtained by the Runge-Kutta based shooting technique and the local Sherwood number is computed for various values of the physical governing parameters (Lewis number, Peclet number, Eckert number). An important finding of present work is that larger values of these parameters encourage the mass transfer rate, and the motile organisms density profiles are augmented with the larger values of fluid particle interaction parameter with reference to bioconvection, bioconvection Lewis number, and dust particle concentration parameter.

Go to article

Authors and Affiliations

S.U. Mamatha
K. Ramesh Babu
P. Durga Prasad
C.S.K. Raju
S.V.K. Varma
Download PDF Download RIS Download Bibtex

Abstract

This study describes a method that allows the modelling of magnetisation processes in transformer steel sheets for any direction of the magnetic field strength. In the proposed approach, limiting hysteresis loops for the rolling and transverse directions were used. These loops are modified depending on the magnetisation angle between the direction of the field strength vector and rolling direction. For this purpose, unique correction coefficients, which are functions of the magnetisation angle, were applied for both hysteresis loops. An algorithm for determining the limiting hysteresis loops for any magnetisation angle is presented herein. The calculation results for several cases of magnetisation were compared with the measured hysteresis loops.
Go to article

Authors and Affiliations

Michał Sierżęga
1
ORCID: ORCID
Witold Mazgaj
1
ORCID: ORCID

  1. Department of Electrical Engineering, Cracow University of Technology, 24 Warszawska str., 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the paper is to present a method which allows taking into account the anisotropic properties of dynamo steel sheets. An additional aim is to briefly present anisotropic properties of these sheets which are caused by occurrences of some textures. In order to take into account textures occurring in dynamo sheets, a certain sheet sample is divided into elementary segments. Two matrix equations, describing changes of the magnetic field, are transformed to one non-linear algebraic equation in which the field strength components are unknown. In this transformation the flux densities assigned to individual elementary segments are replaced by functions of flux densities of easy magnetization axes of all textures occurring in the given dynamo sheet. The procedure presented in the paper allows determining one non-linear matrix equation of the magnetic field distribution; in this equation all textures occurring in a dynamo sheet are included. Information about textures occurring in typical dynamo sheets may be used in various approaches regarding the inclusion of anisotropic properties of these sheets, but above all, the presented method can be helpful in calculations of the magnetic field distribution in anisotropic dynamo sheets.

Go to article

Authors and Affiliations

Witold Mazgaj
ORCID: ORCID
Zbigniew Szular
Michał Sierżęga
ORCID: ORCID
Paweł Szczurek
Download PDF Download RIS Download Bibtex

Abstract

The electronic, optical and thermoelectric properties of MoS2 nano-sheet in presence of the Ru impurity have been calculated by density functional theory framework with Generalized Gradient approximation. The MoRuS2 nano-sheet electronic structure was changed to the n-type semiconductor by 1.3 eV energy gap. The optical coefficients were shown that the loosing optical energy occurred in the higher ultraviolet region, so this compound is a promising candidate for optical sensing in the infrared and visible range. The thermoelectric behaviors were implied to the good merit parameter in the 100K range and room temperatures and also has high amount of power factor in 600K which made it for power generators applications.
Go to article

Authors and Affiliations

Firouzeh Motamad Dezfuli
1
ORCID: ORCID
Arash Boochani
2
ORCID: ORCID
Sara Sadat Parhizgar
1
ORCID: ORCID
Elham Darabi
1
ORCID: ORCID

  1. Department of Physics, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  2. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Download PDF Download RIS Download Bibtex

Abstract

Double corrugated, self-supporting K-span arch structures are now commonly used globally to make roofs for building structures, as an alternative to traditional solutions. The K-span system has become popular mainly due to the simple and cheap method of its manufacturing and quick installation. Nowadays, new versions of the system are created but still there is no valid design method. Design difficulties are among the causes of failures or even collapses of such structures. Back in the 1970s, the first studies were developed concerning computational analyses of double corrugated arch roofs. They laid grounds for the development of contemporary K-span system technology but have since lost their practical advantages due to changing engineering conditions. The paper presents a review of research and computational methods concerning double corrugated arch structures. The paper discusses selected scientific studies, which were used as the basis for the development of research and computational methods, and their contemporary continuation. Directions for further research and analyses are also presented which could contribute to the future development of science and engineering in the area and could provide inspiration for future studies.
Go to article

Authors and Affiliations

Artur Piekarczuk
1
ORCID: ORCID
Przemysław Więch
2
ORCID: ORCID
Krzysztof Kuczyński
2
ORCID: ORCID
Ryszard Walentyński
3

  1. Assoc. Prof. DSc., PhD., Eng., Building Research Institute (Instytut Techniki Budowlanej), Filtrowa-1, 00-611 Warsaw
  2. PhD., Eng., Building Research Institute (Instytut Techniki Budowlanej), Filtrowa-1, 00-611 Warsaw, Poland
  3. Assoc. Prof. DSc., PhD., Eng., Silesian University of Technology, Faculty of Civil Engineering, Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Co-Cr-Mo based sheet I-WP lattice was fabricated via laser powder bed fusion. The effect of microstructure and the I-WP shape on compressive mechanical response was investigated. Results of compression test showed that yield strength of the sheet I-WP was 176.3 MPa and that of bulk Co-Cr-Mo (reference material) was 810.4 MPa. By applying Gibson-Ashby analytical model, the yield strength of the lattice was reversely estimated from that of the bulk specimen. The calculated strength of the lattice obtained was 150.7 MPa. The shape of deformed lattice showed collective failure mode, and its microstructure showed that strain-induced martensitic transformation occurred in the overall lattice. The deformation behavior of additively manufactured sheet I-WP lattice was also discussed.
Go to article

Authors and Affiliations

So-Yeon Park
1
ORCID: ORCID
Kyu-Sik Kim
2
ORCID: ORCID
Bandar Almangour
3
ORCID: ORCID
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Agency for Defense Development, Daejeon, Korea
  3. Interdisciplinary Research Center for Intelligent Manufacturing & Robotics, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabi
Download PDF Download RIS Download Bibtex

Abstract

The Rzeszów thrust-top basin was formed on the active Skole thrust sheet of the Outer Carpathian fold-andthrust belt and filled with Miocene syntectonic sediments. New seismic 3D, well and field data were used to define the relationship between sedimentation and tectonic activity and to establish the synkinematic context of the Rzeszów basin-fill architecture. The basin evolution was controlled by the activity of the Carpathian frontal thrust and hinterland thrusts developed in the forelimbs of folds in the Skole thrust sheet, bounding the basin from the north and south, respectively. The activity of the frontal thrust resulted in hinterland-directed depocentre migration and tilting of the syntectonic stratigraphic sequence. Balanced cross-sections have indicated that during the last compressive stage of deformation, the syntectonic deposits filling the basin were shortened by c. 5%, which resulted in the formation of folds and contractional faults. The architecture of the syntectonic deposits and the development of contractional structures reflect the activity of thrusts bounding the basin during compressive deformation of the Carpathian orogenic belt.

Go to article

Authors and Affiliations

Joanna Uroda
Download PDF Download RIS Download Bibtex

Abstract

New computational procedures developed within the framework of international research projects „Grispe” and „Grispe Plus” are briefly presented and characterised here. Considered algorithms pertain to the verification of bearing capacity and serviceability of selected bearing structure components erected with especially shaped thinwalled sheet metal panels. Structural components of this type are so far rather absent from the codes, and as a result the unequivocal design requirements have not been developed for them. Key problems related to the detailed analysis of the following element classes: steel decks with embossments, indentations and/or outwards stiffeners; liner trays; corrugated sheeting; curved profiles; cladding and roof profile assemblies; perforated and holed profiles; external interlocking planks and their assemblies are indicated in the text. The procedures formulated as a part of the projects indicated above have been delivered to CEN as an official proposal of amendments and/or additions submitted for introduction to the new generation of Eurocodes currently under preparation, and especially as an extension to the code EN 1993-1-3.

Go to article

Authors and Affiliations

M. Maslak
M. Pazdanowski
Download PDF Download RIS Download Bibtex

Abstract

Incremental Sheet metal Forming (ISF) Process is a suitable process which helps to produce various parts used in automotive sector by rapid prototyping. This method of producing a prototype helps industry in reducing the production cost. In ISF process, a final product is evolved through local deformation of the sheet metal made by the tool. Usually better formability is obtained when the tool makes a better contact with the sheet metal throughout the process. Improved formability elevates dimensional accuracy of the product, thus increases the market value of the product. A new tool with multiple ball ends capable of making multiple mating points over sheet metal was used in this research to enhance the efficiency of formability and surface finish. Ability of the new Multi-Point Incremental Forming Tool (MPIF) was investigated and compared to the existing Single Point Forming Tool (SPIF) based on the formability and surface finish. Forming Limit Diagram (FLD), Strain Distribution (SD) and Scanning Electron Microscope (SEM) were used to examine the formability of the sheet metal. The SEM & 3D-Surface roughness profilometer were used to observe the sheet metals surface finish. In addition to these experimental techniques a simulation results were also used to predict the stress and strain rate during forming process. The experimentation and simulation outcome shows that the MPIF provides superior formability and surface finish.
Go to article

Authors and Affiliations

K. Ramkumar
1
ORCID: ORCID
K.A. Selvarajan
2
ORCID: ORCID
C. Sathiya Narayanan
2
ORCID: ORCID
A. Bovas Herbert Bejaxhin
3
ORCID: ORCID

  1. Department Of Mechanical Engineering, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
  2. Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India
  3. Department Of Mechanical Engineering, Saveetha School Of Engineering, Saveetha Institute Of Medical And Technical Sciences (Simats), Chennai

This page uses 'cookies'. Learn more