Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI). The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM). Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.
Go to article

Authors and Affiliations

M. Górny
M. Kawalec
Download PDF Download RIS Download Bibtex

Abstract

In many application fields, thin-walled ductile iron castings can compete with castings made from aluminium alloys thanks as their show superior mechanical properties higher stiffness, vibrations damping as well as properties at higher temperatures. As problematic criterion in thin-walled cast-iron castings can be seen the graphitization ability and high sensitivity of the structure and the mechanical properties to the solidification rate.
The tests were curried on plate castings with wall thicknesses of 3, 5, and 8 mm, using inoculants based on FeSi70 with different contents of nucleation-active elements as aluminium, calcium, zirconium and magnesium. The inoculation was made by the in-mould method. In the experiments structures were achieved, differing by the graphite dispersity, structure and mechanical properties. The experiments have proved particularly a high sensitivity of the structure and the mechanical properties to the cooling rate of the sample castings. The influence of the inoculant type is less important than the influence of solidification rate.
Go to article

Bibliography

[1] Caldera, M., Chapetti, M., Massone, J.M. & Sikora J.A. (2007). Influence of nodule count on fatique properties of ferritic thin wall ductile iron. Materials Science and Engineering. 23(8), 1000-1004. DOI: 10.1179/174328407X185910
[2] Stefanescu, D.M., Dix, :.P., Ruxanda, R.E., Corbitt-Coburn, C. & Piwonka, T.S. (2002). Tensile properties of thin wall ductile iron. AFS Transactions. 02-178, 1149-1162 Schaumburg USA: AFS Society.
[3] Soedarsono, J.W., Suharno, B. & Sulamet-Ariobimo, R.D. (2011). Effect of casting design to microstructure and mechanical properties of 3 mm TWDI plate. Advance Material Researchs. 415-417, 831-837. https://doi.org/10.4028/www.scientific.net/AMR.415-417.831
[4] Labresque, C. (2003). Production and properties of thin-wall ductile iron castings. International Journal of Cast Metals Research. 16(1-3), 313- 317. https://doi.org/10.1080/13640461.2003.11819601
[5] Sulamet-Ariobimo, R.D., Soedersono, J.W. & Soemardi,T.P. (2017). Thin wall ductile iro and n castings. IntechOpen 72117. Advanced Casting Technologies. DOI: 10.5772/intechopen.72117
[6] Vijayan, S., Wilson, P. & Prabhakaran, K. (2017). Ultra low-density mullite foams by reaction sintering of thermo-foamed alumina-silica powder dispersion in molten sucrose. Journal of the European Ceramic Society. 37(4), 1657-1664. https://doi.org/10.1016/j.jeurceramsoc.2016.11.025
[7] Stefanescu, D.M., Alonso, G. & Suarez, R. (2020). Recent devepments in understanding nucleation and crystallization of spheroidal grapfite in iron- carbon-silicon alloys. Metals. 1092), 221, 1-39. DOI: 10.3390/met10020221.
[8] Alonso, G., Larrañaga, P., Stefanescu, D.M., De la Fuente, E., Natxiondo, A. & Suarez, R. (2017). Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. International Journal of Metalcasting. 11(1), 14- 26. DOI: 10.1007/s40962-016-0094-7
[9] Alonso, G., Stefanescu, D.M., Fuente, E., Larrana, P. & Suarez, R. (2018). The influence of trace elements on the nature of the nuclei of graphite ductile iron. Materials Science Forum. 925,78-85. ISSN 1662-9752
[10] Skaland, T. (2005). Nucleation mechanisms in ductile iron. Proceedings of AFS Cast Iron Inoculation Conference. 29-30 September 2005. Schaumburg. USA (pp. 13-30).
[11] Skaland, T., Grong, O. & Grong, T. (1993). A model for the graphite formation in ductile cast iron. Metal Transaction. 24A, 2321-2345.
[12] Lekakh, S. (2014). Analysis of heterogeneous nucleation in ductile iron. Shape casting. 5th International Symposium. Materials Science, January. 121-128. DOI: 10.1007/978-3-319-48130-2_15
[13] Alonso, G., Stefanescu, D.M., Suarez. R. (2020). Effect of antimony on nucleation process of spheroidal graphite iron. AFS Proceedings of the 124th Metalcasting congress. Paper 2020-04.
[14] Stefanescu, D.M. (2016). On the crystalization of graphite from liquid iron-carbon-silicon melts. Acta Materialia. 107, 102-126. https://doi.org/10.1016/j.actamat.2016.01.047
[15] Stefanescu, D.M. Ruxanda, R. & Dix, L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. Journal of Cast Metals Research. 16(1-3), 319-324. https://doi.org/10.1080/13640461.2003.11819602
[16] Javaid, A. (2001). In Proceedings of Cast Iron Division, AFS 105th Casting Congress, Dallas, USA.
Go to article

Authors and Affiliations

J. Roučka
1
ORCID: ORCID
V. Kaňa
1
ORCID: ORCID
T. Kryštůfek
1
A. Chýlková
1

  1. Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper, which is a summary and supplement of previous works and research, presents the results of numerical and physical modeling of the GX2CrNiMoCuN25-6-3 duplex cast steel thin-walled castings production. To obtain thin-walled castings with wall in the thinnest place even below 1 mm was used the centrifugal casting technology and gravity casting. The analyzed technology (centrifugal casting) enables making elements with high surface quality with reduced consumption of batch materials and, as a result, reducing the costs of making a unitary casting. The idea behind the production of cast steel with the use of centrifugal technology was to find a remedy for the problems associated with unsatisfactory castability of the tested alloy.

The technological evaluation of the cast construction was carried out using the Nova Flow & Solid CV 4.3r8 software. Numerical simulations of crystallization and cooling were carried out for a casting without a gating system and sinkhead located in a mold in accordance with the pouring position. It was assumed that the analyzed cast will be made in the sand form with dimensions 250×250×120 mm.

Go to article

Authors and Affiliations

G. Stradomski
M. Nadolski
ORCID: ORCID
A. Zyska
B. Kania
D. Rydz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

‘Dhokra’ or ‘Dokra’ casting is a sophisticated cast metal craft tradition of the Indian subcontinent. It has been practiced by the countryfolk now since the Copper Age. It is a lost wax casting process in the hot clay mold. The technology is such sophisticated that it can produce up to 400 μm thin-walled hollow cast products with complicated and intricate shapes using Brass, Bronze, Copper, and other copper alloys. The investigation was for engraving Brass (2% lead) which is used by Dhokra artisans nowadays. In a field visit during dimensional analysis, one discrepancy was identified. The metal thicknesses of hollow castings are thicker than the thickness of the wax pattern. This cast metal dilation phenomenon is unusual. Shrinkage of metals compared to the pattern dimension is familiar in the casting world. The same abnormalities in the repeated investigation at different sites were observed. All the studies and experiments were organized to explain the reason hidden behind the phenomenon.
Go to article

Bibliography

[1] Mandal, B. & Datta P.K. (2010). Hot mold casting process of ancient east India and Bangladesh. China Foundry. 7(2), 171-177.
[2] Mukherjee, D. (2016). A comparative study of dokra metal craft technology and harappan metal craft technology. Heritage: Journal of Multidisciplinary Studies in Archaeology. 4, 757-768.
[3] Roy, S., Pramanick, A.K. & Datta, P.K. (2020). Precise filling time calculation of thin walled investment casting in hot mold. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42(10), 1-11. https://doi.org/10.1007/s40430-020-02634-6.
[4] Dong, Y.W., Li, X.L., Zhao, Q., Yang, J. & Dao, M. (2017). Modelling of shrinkage during investment casting of thin-walled hollow turbine blades. Journal of Materials Processing Technology. 244, 190-203. https://doi.org/10.1016/j.jmatprotec.2017.01.005.
[5] Cannell, N., Sabau, A.S. (2005). Predicting pattern tooling and casting, dimensions for investment casting, phase II. Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
[6] Kroma, A. & Brzęk, P. (2021). Influence of mould material on the mechanical properties of wax models. Archive of Foundry Engineering. 21(3), 48-52. DOI: 10.24425/afe.2021.138664.
[7] Stefanescu, D. S. (2002). Science and engineering of casting solidification. New York: Springer Scienee.
[8] Garbacz-Klempka, A., Suchy, J.S., Kwak, Z., Tokarski, T., Klempka, R. & Stolarczyk, T. (2018). Study of investment casting technology from bronze age. Casting workshop in grzybiany (Southwest Poland). Archives of Metallurgy and Materials. 63(2), 615-624. DOI: 10.24425/122385.
[9] Roy, S., Pramanick, A.K. & Datta, P.K. (2017). Kinetics of liquid metal flow in gating design of investment casting production. Slévárenství. 5-6, 149-154.
[10] Raza, M. (2015). Experimental study of the filling of thin-walled investment castings In 17-4ph stainless steel. Metall Foundry Engineering. 41(2), 85-98. DOI: https://doi.org/10.7494/mafe.2015.41.2.85.
[11] Chang, S. & Stefanescu, D.M. (1996). A model formacrosegregation and its application to Al-Cu castings. Metallurgical and Materials Transaction A. 27(9), 2708-2721.
[12] Roy, S., Pramanick, A.K., Datta P.K. (2021). Quality analysis of tribal casting products by topsis for different gating system. In IOP Conference Series: Materials Science and Engineering, February, 2021 (p. 012014). IOP Publishing. DOI: 10.1088/1757-899X/1080/1/012014.
[13] Stefanescu, D.M.(1998). Casting. ASM handbook Volume: 15. 409-413. ASM International.
[14] Roy, S., Kr Pramanick, A., Kr Datta P. (2022). The effect of gating system on quality of traditional rural metal castings of india. Rrecent trends in industrial and production engineering. Lecture notes in mechanical engineering. (pp. 267-278). Singapore: Springer. https://doi.org/10.1007/978-981-16-3135-1_27. [15] Austral Wright Metals-Ferrous, Non-Ferrous and High Performance Alloys (2008, August). Metal alloys-properties and applications of brass and brass alloys. Retrieved May, 30 2022, from https://www.azom.com/article.aspx?ArticleID=4387
[16] Extra High Leaded Brass UNS C35600. Retrieved May, 30 2022, from https://www.azom.com/article.aspx?ArticleID=6389
[17] Mandal, B. & Datta, P. K. (2010). Understanding alloy design principles and cast metal technology in hot molds for medieval Bengal. Indian Journal of History of Science. 45(1), 101-140.
[18] Rao, P.N. (2019). Manufacturing technology. Vol.- I, (5th ed.) India: McGraw Hill Education.
[19] Horáček, M. (2005). Accuracy of investment casting. Archives of Foundry. 5(15). 121-137.
[20] Indian Minerals Yearbook 2015 (Part- III : Mineral Reviews), (2017, February) Retrieved May 28, 2022, from https://ibm.gov.in/writereaddata/files/02282017165033IMYB2015_Kaolin_28022015_Adv.pdf.
[21] Thampi, C.J. (2013). Soils Of Bankura District (West Bengal) For Land Use Planning. National Bureau of Soil Survey & Land Use Planning, India.
[22] RSP Green Development And Laboratories PVT. LTD, (July 2018) District Survey Report of Bankura District. India.
[23] Chakraborty A. K. (2014). Phase transformation of kaolinite clay. (1st ed.), New York, New Delhi: Springer. DOI 10.1007/978-81-322-1154-9.
[24] Hyslop, A. McMurdo, (1938). The thermal expansion of some clay mineral. Transactions and journal of the British Ceramic Society. 37, 180-186.
[25] Heindl, R.A. & Meng, L.E. (1939). Length changes and endothermic and exothermic effects during heating of flint and aluminous clays. Journal of Research of the National Bureau of Standards. 23(9), 427-441.
[26] Thiel. J. (2011). Thermal expansion of chemically bonded silica sands. AFS Transations - American Foundry Society. 11-116, 1-10.
[27] ISO 1: 2016: Geometrical product specifications (GPS)—standard reference temperature for the specification of geometrical and dimensional properties. https://www.iso.org/standard/67630.html.
[28] Anggono, J. (2005). Mullite ceramics: its properties, structure, and synthesis. Jurnal Teknik Mesin. 7(1), 1-10.
[29] Cannell, N., Sabau, A.S. (2007). Predicting pattern tooling and casting, dimensions for investment casting, phase III. Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Go to article

Authors and Affiliations

S. Roy
1
ORCID: ORCID
A.K. Pramanick
1
P.K. Datta
1
ORCID: ORCID

  1. Dept. of Metallurgical and Material Engineering, Jadavpur University, Kolkata-700032, India

This page uses 'cookies'. Learn more