Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Solar photovoltaic (PV) and concentrated solar power (CSP) systems are the present worldwide trends in utilizing solar energy for electricity generation. Solar energy produced from photovoltaic cells (PV) is considered the main common technology used due to its low capital cost; however, the relatively low efficiency of PV cells has spotlighted development and research on thermal engine applications using concentrated solar power. The efficiency of concentrated solar power is greater than that of PV and considering the solar potential for Sudan. Therefore, this study has been performed in an attempt to draw attention to the utilization of CSP in Sudan since the share of CSP is insignificant in comparison with PV, besides the suitability of CSP applications to Sudan’s hot climate and the high solar energy resource, the study presents a design model of 1 MW parabolic trough collectors (PTC) using the Rankine cycle with thermal energy storage (TES) in Sudan, by adopting reference values of the Gurgaon PTC power plant in India. The design of a 1 MW Concentrated Solar thermal power plant using parabolic trough collectors (PTC) and thermal energy storage is proposed. The simulation was performed for a site receiving an annual direct normal irradiance (DNI) of 1915 kWh/m2, near Khartoum. The results showed that the plant can produce between nearly 0.6 to 1 MWh during the year, and around 0.9 MWh when it encompasses thermal energy storage with an average thermal efficiency of 24%. These results of the PTC Power plant encourage further investigation and the development of CSP technologies for electricity generation in Sudan.
Go to article

Authors and Affiliations

Abdelkareem Abdallah Abdelkareem Jebreel
1
ORCID: ORCID
Hamad Mohamed Ali Hamad
2

  1. Sapienza Università di Roma, Italy
  2. University of Khartoum, Sudan
Download PDF Download RIS Download Bibtex

Abstract

Solar collectors are used increasingly in single-family housing. Their popularity depends on many factors, including the price-to-productivity ratio, which in turn results from the development of solar collector technology as well as entire systems. This development consists of many aspects, including those related to the modernization of control systems and measuring of solar collector systems. Currently used systems offer, among others, the ability to determine the approximate solar heat gains using the sensors necessary for normal control of the sensor system. The paper analyzes, on the example of one facility, how such installations work in Polish conditions. An installation consisting of 3 solar collectors has been selected for analysis, supporting the preparation of hot utility water for a single-family residential building. The detailed analysis concerned days with high heat gains compared to the average heat demand for hot water preparation in the building. The temperature verification method (TVM) of the calculated solar heat gains by the solar system controller has been proposed. Then, differences in measurements according to two methods (controller and TVM) have been presented at various characteristic moments of the installation’s operation (start- -up, stop) and during continuous operation. It has been shown that during the day gains measured by the controller can be 15% lower than gains measured by the TVM method. The check has been carried out at a daily sunlight value higher than 4.8 kWh/m2 measured on a horizontal plane. The ratio of heat energy supplied to the domestic hot water storage tank to the measured insolation has been 34%. The sum of annual solar heat gains measured by the controller and TVM differed by 5.2%.
Go to article

Authors and Affiliations

Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more