Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the problem of voice signals recognition means introduction in the system of distance learning. The results of the conducted research determine the prospects of neural network means of phoneme recognition. It is also shown that the main difficulties of creation of the neural network model, intended for recognition of phonemes in the system of distance learning, are connected with the uncertain duration of a phoneme-like element. Due to this reason for recognition of phonemes, it is impossible to use the most effective type of neural network model on the basis of a multilayered perceptron, at which the number of input parameters is a fixed value. To mitigate this shortcoming, the procedure, allowing to transform the non-stationary digitized voice signal to the fixed quantity of mel-cepstral coefficients, which are the basis for calculation of input parameters of the neural network model, is developed. In contrast to the known ones, the possibility of linear scaling of phoneme-like elements is available in the procedure. The number of computer experiments confirmed expediency of the fact that the use of the offered coding procedure of input parameters provides the acceptable accuracy of neural network recognition of phonemes under near-natural conditions of the distance learning system. Moreover, the prospects of further research in the field of development of neural network means of phoneme recognition of a voice signal in the system of distance learning is connected with an increase in admissible noise level. Besides, the adaptation of the offered procedure to various natural languages, as well as to other applied tasks, for instance, a problem of biometric authentication in the banking sector, is also of great interest.

Go to article

Authors and Affiliations

Berik Akhmetov
Igor Tereykovsky
Aliya Doszhanova
Lyudmila Tereykovskaya
Download PDF Download RIS Download Bibtex

Abstract

Position time series from permanent Global Navigation Satellite System (GNSS) stations are commonly used for estimating secular velocities of discrete points on the Earth’s surface. An understanding of background noise in the GNSS position time series is essential to obtain realistic estimates of velocity uncertainties. The current study focuses on the investigation of background noise in position time series obtained from thirteen permanent GNSS stations located in Nepal Himalaya using the spectral analysis method. The power spectrum of the GNSS position time series has been estimated using the Lomb–Scargle method. The iterative nonlinear Levenberg–Marquardt (LM) algorithm has been applied to estimate the spectral index of the power spectrum. The power spectrum can be described by white noise in the high frequency zone and power law noise in the lower frequency zone. The mean and the standard deviation of the estimated spectral indices are −1.46±0.14,−1.39±0.16 and −1.53±0.07 for north, east and vertical components, respectively. On average, the power law noise extends up to a period of ca. 21 days. For a shorter period, i.e. less than ca. 21 days, the spectra are white. The spectral index corresponding to random walk noise (ca. –2) is obtained for a site located above the base of a seismogenic zone which can be due to the combined effect of tectonic and nontectonic factors rather than a spurious monumental motion. Overall, the usefulness of investigating the background noise in the GNSS position time series is discussed.

Go to article

Authors and Affiliations

Jagat Dwipendra Ray
M. Sithartha Muthu Vijayan
Walyeldeen Godah
ORCID: ORCID
Ashok Kumar
Download PDF Download RIS Download Bibtex

Abstract

Electric guitar manufacturers have used tropical woods in guitar production for decades claiming it as beneficiary to the quality of the instruments. These claims have often been questioned by guitarists but now, with many voices raising concerns regarding the ecological sustainability of such practices, the topic becomes even more important. Efforts to find alternatives must begin with a greater understanding of how tonewood affects the timbre of an electric guitar. The presented study examined how the sound of a simplified electric guitar changes with the use of various wood species. Multiple sounds were recorded using a specially designed test setup and their analysis showed differences in both spectral envelope and the generated signal level. The differences between the acoustic characteristics of tones produced by the tonewood samples explored in the study were larger than the just noticeable differences reported for the respective characteristics in the literature. To verify these findings an informal listening test was conducted which showed that sounds produced with different tonewoods were distinguishable to the average listener.
Go to article

Bibliography

1. Ahvenainen P. (2018), Anatomy and mechanical properties of woods used in electric guitars, IAWA Journal, 40(1): 106–S6, doi: 10.1163/22941932-40190218.
2. Ahmed S.A., Adamopoulos S. (2018), Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments, Applied Acoustics, 140: 92–99, doi: 10.1016/j.apacoust.2018.05.017.
3. Bennett B. (2016), The sound of trees: wood selection in guitars and other chordophones, Economic Botany, 70(1): 49–63, doi: 10.1007/s12231-016-9336-0.
4. Carral S. (2011), Determining the just noticeable difference in timbre through spectral morphing: a trombone example, Acta Acustica united with Acustica, 97(3): 466–476, doi: 10.3813/AAA.918427.
5. Fleischer H., Zwicker T. (1998), Mechanical vibrations of electric guitars, Acta Acustica united with Acustica, 84(4): 758–765.
6. Fletcher N., Rossing T. (1998), The Physics of Musical Instruments, doi: 10.1007/978-0-387-21603-4.
7. Green D.M. (1993), Auditory Intensity Discrimination, Springer Handbook of Auditory Research, Vol. 3, Springer, New York, doi: 10.1007/978-1-4612-2728-1_2.
8. Jansson E.V. (1983), Acoustics for the Guitar Maker, Function, Construction and Quality of the Guitar, Publication No. 38 of the Royal Swedish Academy of Music, Stockholm.
9. Koch M. (2001), Building Electric Guitars: How to Make Solid-Body, Hollow-Body and Semi-Acoustic Electric Guitars and Bass Guitars, Koch Verlag, Gleisdorf.
10. Martinez-Reyes J. (2015), Mahogany intertwined: Enviromateriality between Mexico, Fiji, and the Gibson Les Paul, Journal of Material Culture, 20(3): 313– 329, doi: 10.1177/1359183515594644.
11. Ozimek E. (2002), Sound and its Perception. Physical and Psychoacoustic Aspects [in Polish: Dzwiek i jego percepcja. Aspekty fizyczne i psychoakustyczne], Polish Scientific Publishers PWN, Warsaw.
12. Paté A., Le Carrou J., Fabre B. (2013), Ebony vs. Rosewood: experimental investigation about the influence of the fingerboard on the sound of a solid body electric guitar, [in:] Proceedings of the Stockholm Musical Acoustics Conference (SMAC), Stockholm (Sweden), pp. 182–187.
13. Paté A., Le Carrou J., Navarret B., Dubois D., Fabre B. (2015), Influence of the electric guitar’s fingerboard wood on guitarists’ perception, Acta Acustica united with Acustica, 101(2): 347–359, doi: 10.3813/AAA.918831.
14. Puszynski J. (2014), String-wood feedback in electrics string instruments, Annals of Warsaw University of Life Sciences – SGGW Land Reclamation, 2014(85): 196–199.
15. Puszynski J., Molinski W., Preis A. (2015), The effect of wood on the sound quality of electric string instruments, Acta Physica Polonica, 127(1): 114–116, doi: 10.12693/APhysPolA.127.114.
16. Schubert E., Wolfe J. (2006), Does timbral brightness scale with frequency and spectral centroid?, Acta Acoustica United with Acustica, 92(5): 820–825.
17. Torres J., Boullosa R. (2009), Influence of the bridge on the vibrations of the top plate of a classical guitar, Applied Acoustics, 70(11–12): 1371–1377, doi: 10.1016/j.apacoust.2009.07.002.
18. Torres J., Boullosa R. (2011), Radiation efficiency of a guitar top plate linked with edge or corner modes and intercell cancellation, The Journal of the Acoustical Society of America, 130(1): 546–556, doi: 10.1121/1.3592235.
19. Tzanetakis G., Cook P. (2002), Musical genre classification of audio signals, 2002 IEEE Transactions on Speech and Audio Processing, 10(5): 293–302, doi: 10.1109/TSA.2002.800560.
20. Ulrich R., Vorberg D. (2009), Estimating the difference limen in 2AFC tasks: pitfalls and improved estimators, Attention, Perception, & Psychophysics, 71(6): 1219–1227, doi: 10.3758/app.71.6.1219.
21. Wilkowski J., Michalowski P., Czarniak P., Górski J., Podziewski P., Szymanowski K. (2014), Influence of spruce, wenge and obeche wood used for electric guitar prototype on selected sound properties, Annals of Warsaw University of Life Sciences – SGGW. Forestry and Wood Technology, 85: 235–240.
Go to article

Authors and Affiliations

Jan Jasiński
1
Stanisław Oleś
1
Daniel Tokarczyk
1
Marek Pluta
1

  1. Department of Mechanics and Vibroacoustics, AGH University of Science and Technology, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Study of musical-acoustic influences, which are used to improve the functional state of a person, as well as her/his neurophysiological or psychological rehabilitation, is very relevant nowadays. It is related with a large number of conflict situations, significant psychological and informational overloads of modern human, permanent stress due to the pandemic, economic crisis, natural and man-made disasters. This work examines the effect of listening to low-frequency music on the percentage of alpha, beta, delta, and theta waves in the total spectral power of the electroencephalogram in the frequency band 0.5–30 Hz. To obtain rhythms of the brain the spectral analysis of filtered native electroencephalogram was used. For statistical analysis of neural oscillations the Student’s t-test and the sign test were implemented with usage of the Lilliefors normality criterion and the Shapiro-Wilk test. Statistically significant differences were identified in alpha, theta and delta oscillations. For the beta rhythm presented music did not play any significant role. An increase in the activity of the alpha rhythm in the temporal (for 2.20 percentage point), central (for 1.51 percentage point), parietal (for 2.70 percentage point), occipital (for 2.22 percentage point) leads of the right hemisphere and the parietal (for 1.74 percentage point) and occipital (for 2.46 percentage point) leads of the left hemisphere and also of the theta rhythm in the temporal leads of the left hemisphere (for 1.13 percentage point) were observed. The downfall of delta rhythm in the frontal lead of the left hemisphere (for 1.51 percentage point) and occipital in both hemispheres (for 1.64 and 1.33 percentage points respectively in the left and right hemispheres) was detected. These may indicate that listening to low-frequency compositions helps to restore the brain in physiological conditions at different functional overload levels, decrease the level of emotional tone, and promote relaxation.
Go to article

Authors and Affiliations

Kateryna Drozdenko
1
Sergey Naida
1
Oleksandr Drozdenko
1
Anastasiia Damarad
1
Dmytro Pareniuk
1
Liudmyla Vakulenko
2
Zhanna Adaricheva
2

  1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Faculty of Electronics, Department of Acoustic and Multimedia Electronic Systems, Kyiv, Ukraine
  2. State Institution National Scientific Center “The M.D. Strazhesko Institute of Cardiology”, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In this study, the temperature influence on the spectral responsivity of a Light Emitting Diode (LED) used as a photoreceptor, combined to light source spectrum is correlated to electrical characteristics in order to propose an alternative method to estimate LED junction temperature, regardless of the absolute illumination intensity and based on the direct correlation between the integral of the product of two optical spectra and the photo-generated currents. A laboratory test bench for experimental optical measurements has been set in order to enable any characterizing of photoelectric devices in terms of spectral behaviour, in a wavelength range placed between 400–1000 nm, and of current-voltage characteristics as function of temperature by using two different illumination sources. The temperature is analysed in a range from 5°C up to 85°C, so as to evaluate thermal variation effects on the sensor performance. The photo-generated current of two LEDs with different peak wavelengths has been studied. Research has observed and mathematically analysed what follows: since the photo-generated current strictly depends on the combination between the spectral response of the photoreceptor and the lighting source response, it becomes possible to estimate indirectly the junction temperature of the LEDs by considering the ratio between the photogenerated currents obtained by using two different illumination sources. Such results may for one thing increase knowledge in the fields where LEDs are used as photo-detectors for many applications and for another, they could be extended to generic photodetectors, thus providing useful information in photovoltaic field, for instance.

Go to article

Authors and Affiliations

E. Vannacci
S. Granchi
M. Cecchi
M. Calzolai
E. Mazzi
E. Biagi
Download PDF Download RIS Download Bibtex

Abstract

In this paper the analysis of backlash influence on the spectrum of torque at the output shaft of a cycloidal gearbox has been performed. The model of the single stage cycloidal gearbox was designed in the MSC Adams. The analysis for the excitation with the torque and the analysis with constant angular velocity of the input shaft were performed. For these analyses, the amplitude spectrums of the output torque for different backlashes was solved using FFT algorithm. The amplitude spectrums of the combined sine functions composed of the impact to impact times between the cycloidal wheel and the external sleeves were computed for verification. The performed studies show, that the backlash has significant influence on the output torque amplitude spectrum. Unfortunately the dependencies between the components of the spectrum and the backlash could not be expressed by linear equations, when vibrations of the output torque in the range of (350 Hz – 600 Hz) are considered. The gradual dependence can be found in the spectrum determined for the combined sine functions with half-periods equal impact-to-impact times. The spectrum is narrower for high values of backlash.
Go to article

Bibliography

[1] M. Blagojević, M. Matejić, and N. Kostić. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Tehnički Vjesnik, 25(2):291–298, 2018, doi: 10.17559/TV- 20160530144431.
[2] M. Wikło, R. Król, K. Olejarczyk, and K. Kołodziejczyk. Output torque ripple for a cycloidal gear train. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(21–22):7270–7281, 2019, doi: 10.1177/0954406219841656.
[3] N. Kumar, V. Kosse, and A. Oloyede. A new method to estimate effective elastic torsional compliance of single-stage Cycloidal drives. Mechanism and Machine Theory, 105:185–198, 2016, doi: 10.1016/j.mechmachtheory.2016.06.023.
[4] C.F. Hsieh. The effect on dynamics of using a new transmission design for eccentric speed reducers. Mechanism and Machine Theory, 80:1–16, 2014, doi: 10.1016/j.mechmachtheory.2014.04.020.
[5] R. Król. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 19(6):523–527, 2018, doi: 10.24136/atest.2018.125.
[6] K.S. Lin, K.Y. Chan, and J.J. Lee. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73–91, 2018, doi: 10.1016/j.mechmachtheory.2017.12.028.
[7] L.X. Xu, B.K. Chen, and C.Y. Li. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137:432–458, 2019, doi: 10.1016/j.mechmachtheory.2019.03.035.
[8] D.C.H. Yang and J.G. Blanche. Design and application guidelines for cycloid drives with machining tolerances. Mechanism and Machine Theory, 25(5):487–501, 1990, doi: 10.1016/0094-114X(90) 90064-Q.
[9] J.W. Sensinger. Unified approach to cycloid drive profile, stress, and efficiency optimization. Journal of Mechanical Design, 132(2):024503, 2010, doi: 10.1115/1.4000832.
[10] Y. Li, K. Feng, X. Liang, and M.J. Zuo. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. Journal of Sound and Vibration, 439:271–286, 2019, doi: 10.1016/j.jsv.2018.09.054.
[11] Z.Y. Ren, S.M. Mao, W.C. Guo, and Z. Guo. Tooth modification and dynamic performance of the cycloidal drive. Mechanical Systems and Signal Processing, 85:857–866, 2017, doi: 10.1016/j.ymssp.2016.09.029.
[12] L.X. Xu and Y.H. Yang. Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing. Mechanism and Machine Theory, 104:327–349, 2016, doi: 10.1016/j.mechmachtheory.2016.06.018.
[13] S. Schmidt, P.S. Heyns, and J.P. de Villiers. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques, Mechanical Systems and Signal Processing, vol. 100, pp. 152–166, 2018, doi: 10.1016/j.ymssp.2017.07.032.
[14] Y. Lei, D. Han, J. Lin, and Z. He. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing, 38(1):113–124, 2013, doi: 10.1016/j.ymssp.2012.06.021.
[15] Y. Chen, X. Liang, and M.J. Zuo. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing, 134:106342, 2019, doi: 10.1016/j.ymssp.2019.106342.
[16] G. D’Elia, E. Mucchi, and M. Cocconcelli. On the identification of the angular position of gears for the diagnostics of planetary gearboxes. Mechanical Systems and Signal Processing, 83:305–320, 2017, doi: 10.1016/j.ymssp.2016.06.016.
[17] X. Chen and Z. Feng. Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions. Mechanical Systems and Signal Processing, 121:636–654, 2019, doi: 10.1016/j.ymssp.2018.11.049.
[18] S. Schmidt, P.S. Heyns, and K.C. Gryllias. A methodology using the spectral coherence and healthy historical data to perform gearbox fault diagnosis under varying operating conditions. Applied Acoustics, 158:107038, 2020, doi: 10.1016/j.apacoust.2019.107038.
[19] D. Zhang and D. Yu. Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement, 103:361–369, 2017, doi: 10.1016/j.measurement.2017.03.006.
[20] C. Wang, H. Li, J. Ou, R. Hu, S. Hu, and A. Liu. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA. Measurement, 165:108079, 2020, doi: 10.1016/j.measurement.2020.108079.
[21] W. Teng, X. Ding, H. Cheng, C. Han, Y. Liu, and H. Mu. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 136:393–402, 2019, doi: 10.1016/j.renene.2018.12.094.
[22] R. Król. Resonance phenomenon in the single stage cycloidal gearbox. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering, 68(3):303–320, 2021, doi: 10.24425/ame.2021.137050.
[23] MSC Software. MSC Adams Solver Documentation.
[24] MSC Software. MSC Adams View Documentation.
Go to article

Authors and Affiliations

Roman Król
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time−temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user−independent. We implemented and evaluated 3 different 3D time−series registration methods: 1. Linear affine, 2. Non−linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons’ registration method outperforms also with the best breast alignment and non−negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons’ registration as an effective technique for time−series dynamic infrared registration, to stabilize the local temperature oscillation.

Go to article

Authors and Affiliations

S. Riyahi-Alam
V. Agostini
F. Molinari
M. Knaflitz

This page uses 'cookies'. Learn more