Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 73
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents proposal of a model of the fluidized bed boiler adapted for use in model-based controllers e.g. predictive, adaptive or internal model control (IMC). The model has been derived in the form of transfer function matrix which allows its direct implementation in the controller structure. Formulated model takes into consideration the principal cross-coupling between process variables which enables the opportunity to search for feasibility of decoupling control. The results of the identification of the dynamics of the 2 MW industrial bubbling fluidized bed boiler using the proposed model form was presented. According to the experimental data it was found that despite of introduced simplifications presented model allows the boiler behavior prediction.
Go to article

Authors and Affiliations

Jan Porzuczek
Download PDF Download RIS Download Bibtex

Abstract

The development of digital signal processors and the increase in their computing capabilities bring opportunities to employ algorithms with multiple variable parameters in active noise control systems. Of particular interest are the algorithms based on artificial neural networks. This paper presents an active noise control algorithm based on a neural network and a nonlinear input-output system identification model. The purpose of the algorithm is an active noise control system with a nonlinear primary path. The algorithm uses the NARMAX system identification model. The neural network employed in the proposed algorithm is a multilayer perceptron. The error backpropagation rule with adaptive learning rate is employed to update the weight of the neural network. The performance of the proposed algorithm has been tested by numerical simulations. Results for narrow-band input signals and nonlinear primary path are presented below.

Go to article

Authors and Affiliations

Tomasz Krukowicz
Download PDF Download RIS Download Bibtex

Abstract

System identification is an approach for parameter detection and mathematical model determination using response signals of a dynamic system. Two degrees of freedom (2DOF) pendulum controlled by a QUBE-servo motor is a great experiment device to work with; though it is not easy to control this system due to its complex structure and multi-dimensional outputs. Hence, system identification is required for this system to analyze and evaluate its dynamic behaviors. This paper presents a methodology for identifying a 2DOF pendulum and its dynamic behaviors including noise from an encoder cable. Firstly, all parameters from both mechanical and electrical sides of the QUBE-servo motor are analyzed. Secondly, a mathematical model and identified parameters for the 2DOF pendulum are illustrated. Finally, disturbances from encoder cable of the QUBE-servo motor which introduce an unwanted oscillation or self-vibration in this system are introduced. The effect of itself on output response signals of the 2DOF QUBE-pendulum is also discussed. All identified parameters are checked and verified by a comparison between a theoretical simulation and experimental results. It is found that the disturbance from encoder cable of the 2DOF QUBE-pendulum is not negligible and should be carefully considered as a certain factor affecting response of system.

Go to article

Bibliography

[1] H. Hjalmarsson. System identification of complex and structured systems. European Journal of Control, 15(3-4): 275–310, 2019. doi: 10.3166/ejc.15.275-310.
[2] L. Ljung. System Identification: Theory for the User. 2nd edition, Pearson, 1998.
[3] P.V. Dang, S. Chatterton, P. Pennacchi, and A. Vania. Numerical investigation of the effect of manufacturing errors in pads on the behaviour of tilting-pad journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232(4):480–500, 2018. doi: 10.1177/1350650117721118.
[4] P.V. Dang, S. Chatterton, and P. Pennacchi. The effect of the pivot stiffness on the performances of five-pad tilting pad bearings. Lubricants, 7(7):61, 2019. doi: 10.3390/lubricants7070061.
[5] S. Chatterton, P. Pennacchi, A. Vania, and P.V. Dang. Cooled pads for tilting-pad journal bearings. Lubricants, 7(10):92, 2019. doi: 10.3390/lubricants7100092.
[6] S. Chatterton, P. Pennacchi, A. Vania, A. De Luca, and P.V. Dang. Tribo-design of lubricants for power loss reduction in the oil-film bearings of a process industry machine: Modelling and experimental tests. Tribology International, 130:133–145, 2019. doi: 10.1016/j.triboint.2018.09.014.
[7] M.Q. Phan and J.A. Frueh. System identification and learning control. In: Z. Bien, J-X. Xu, editors, Iterative Learning Control, chapter 15, pages 285–310. Springer, Boston, MA, 1998. doi: 10.1007/978-1-4615-5629-9_15.
[8] C. Shravankumar and R. Tiwari. Experimental identification of cracked rotor system parameters from the forward and backward whirl responses. Archive of Mechanical Engineering, 66(3):329–353, 2019. doi: 10.24425/ame.2019.129679.
[9] D.K. Roy and R. Tiwari. Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls. Archive of Mechanical Engineering, 66(2):229–255, 2019. doi: 10.24425/ame.2019.128446.
[10] A. Wadi, J. Lee, and L. Romdhane. Nonlinear sliding mode control of the Furuta pendulum. 2018 11th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab Emirates, 4–6 March 2018. doi: 10.1109/ISMA.2018.8330131.
[11] J.L.D. Madrid, E.A.G. Querubín, and P.A. Ospina-Henao. Predictive control of a Furata pendulum. 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, Colombia, 18–20 October, 2017. doi: 10.1109/CCAC.2017.8276483.
[12] I. Paredes, M. Sarzosa, M. Herrera, P. Leica, and O. Camacho. Optimal-robust controller for Furuta pendulum based on linear model. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Equador, 16–20 October, 2017. doi: 10.1109/ETCM.2017.8247510.
[13] M. Antonio-Cruz, R. Silva-Ortigoza, J. Sandoval-Gutiérrez, C.A. Merlo-Zapata, H. Taud, C.Márquez-Sánchez, and V.M.Hernandez-Guzmán. Modeling, simulation, and construction of a Furuta pendulum test-bed. 2015 International Conference on Electronics, Communications and Computers (CONIELECOMP), pages 72–79, Cholula, Mexico, 25–27 February, 2015. doi: 10.1109/CONIELECOMP.2015.7086928.
[14] P.X. La Hera, L.B. Freidovich, A.S. Shiriaev, and U. Mettin. New approach for swinging up the Furuta pendulum: Theory and experiments. Mechatronics, 19(8):1240–1250, 2009. doi: 10.1016/j.mechatronics.2009.07.005.
[15] K. Furuta and M. Iwase. Swing-up time analysis of pendulum. Bulletin of the Polish Academy of Sciences: Technical Sciences, 52(3):153–163, 2004.
[16] K. Andrzejewski, M. Czyżniewski, M. Zielonka, E. Łangowski, and T. Zubowicz. A comprehensive approach to double inverted pendulum modelling. Archives of Control Sciences, 29(3):459–483, 2019. doi: 10.24425/acs.2019.130201.
[17] M. Gäfvert, J. Svensson, and K.J. Astrom. Friction and friction compensation in the Furuta pendulum. 1999 European Control Conference (ECC), pages 3154–3159, Karlsruhe, Germany, 31 August – 3 September, 1999. doi: 10.23919/ECC.1999.7099812.
[18] QUBE-servo Experiment for LabVIEW Users. Student book. Quanser System, 2014.
[19] A. Kathpal and A. Singla. SimMechanics™ based modeling, simulation and real-time control of Rotary Inverted Pendulum. 2017 11th International Conference on Intelligent Systems and Control (ISCO), pages 166–172, Coimbatore, India, 5–6 January, 2017. doi: 0.1109/ISCO.2017.7855975.
[20] D.L. Peters. Design of a higher order attachment for the Quanser Qube. 2016 American Control Conference, pages 6634–6639, Boston, USA, 6–8 July, 2016. doi: 10.1109/ACC.2016.7526715.
[21] R.M. Reck. Validating DC motor models on the Quanser Qube Servo. In: Proceedings of the ASME 2018 Dynamic Systems and Control Conference (DSCC2018), V002T16A005, Atlanta, USA, 30 September–3 October, 2018. doi: 10.1115/DSCC2018-9158.
[22] Y.V. Hote. Analytical design of lead compensator for Qube Servo system with inertia disk: An experimental validation. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pages 341–346, Noida, India, 14–17 December 2016. doi: 10.1109/IC3I.2016.7917986.
[23] N. Krishnan. Estimation and Control of the Nonlinear Rotary Inverted Pendulum: Theory and Hardware Implementation. M.Sc. Thesis, San Diego State University, San Diego, USA, 2019.
[24] A. Bisoi, A.K. Samantaray, and R. Bhattacharyya. Control strategies for DC motors driving rotor dynamic systems through resonance. Journal of Sound and Vibration, 411:304–327, 2017. doi: 10.1016/j.jsv.2017.09.014.
[25] G. Bartolini, E. Punta, and T. Zolezzi. Approximability properties for second-order sliding mode control systems. IEEE Transactions on Automatic Control, 52(10):1813–1825, 2007. doi: 10.1109/TAC.2007.906179.
Go to article

Authors and Affiliations

Hoai Nam Le
1
Phuoc Vinh Dang
1
Anh-Duc Pham
1
Nhu Thanh Vo
1

  1. Faculty of Mechanical Engineering, The University of Danang – University of Science andTechnology, Danang, Vietnam.
Download PDF Download RIS Download Bibtex

Abstract

In the areas of acoustic research or applications that deal with not-precisely-known or variable conditions, a method of adaptation to the uncertainness or changes is usually necessary. When searching for an adaptation algorithm, it is hard to overlook the least mean squares (LMS) algorithm. Its simplicity, speed of computation, and robustness has won it a wide area of applications: from telecommunication, through acoustics and vibration, to seismology. The algorithm, however, still lacks a full theoretical analysis. This is probabely the cause of its main drawback: the need of a careful choice of the step size - which is the reason why so many variable step size flavors of the LMS algorithm has been developed.

This paper contributes to both the above mentioned characteristics of the LMS algorithm. First, it shows a derivation of a new necessary condition for the LMS algorithm convergence. The condition, although weak, proved useful in developing a new variable step size LMS algorithm which appeared to be quite different from the algorithms known from the literature. Moreover, the algorithm proved to be effective in both simulations and laboratory experiments, covering two possible applications: adaptive line enhancement and active noise control.

Go to article

Authors and Affiliations

Dariusz Bismor
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamics was described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.

Go to article

Bibliography


[1] J. Kaletka. BO-105 identification results. In Rotorcraft System Identification, AGARD LS-178, AGARD LS-178, Paper 9, November 1991.
[2] R.K. Mehra, R.K. Prasanth, and S. Gopalaswamy. XV-15 tiltrotor flight control system design using model predictive control. In I EEE Aerospace Conference, volume 2, pages 139–148, March 1998. doi: 10.1109/AERO.1998.687905.
[3] R.E. Maine and J.E. Murray. Application of parameter estimation to highly unstable aircraft. Journal of Guidance, Control, and Dynamics, 11(3):213–219, May 1988. doi: 10.2514/3.20296.
[4] S. Weiss, H. Friehmelt, E. Plaetschke, and D. Rohlf. X-31A system identification using single-surface excitation at high angles of attack. J ournal of Aircraft, 33(3):485–490, May 1996. doi: 10.2514/3.46970.
[5] E. Özger. Parameter estimation of highly unstable aircraft assuming linear errors. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, August 2012. doi: 10.2514/6.2012-4511.
[6] B. Mettler, T. Kanade, and M. Tischler. System identification modeling of a model-scale helicopter. Technical Report CMU-RI-TR-00-03, Robotics Institute, Pittsburgh, PA, January 2000.
[7] S.K. Kim and D.M. Tilbury. Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics. Journal of Robotic Systems, 21(3):95–116, March 2004. doi: 10.1002/rob.20002.
[8] A. Ji and K. Turkoglu. Development of a low-cost experimental quadcopter testbed using an arduino controller for video surveillance. In AIAA Infotech @ Aerospace. AIAA, January 2015. doi: 10.2514/6.2015-0716.
[9] V. Hrishikeshavan, M. Benedict, and I. Chopra. Identification of flight dynamics of a cylcocopter micro air vehicle in hover. Journal of Aircraft, 52(1):116–129, April 2014. doi: 10.2514/1.C032633.
[10] K. Rogowski and R. Maroński. CFD computation of the Savonius rotor. Journal of Theoretical and Applied Mechanics, 53(1):37–45, 2015. doi: 10.15632/jtam-pl.53.1.37.
[11] M.B. Tischler and R.K. Remple. Aircraft and Rotorcraft System Identification. AIAA Education Series. AIAA, Washington, DC, 2 edition, August 2012. doi: /10.2514/4.868207.
[12] B. Etkin. Dynamics of Atmospheric Flight. Dover Publications, Mineola, NY, 2005.
[13] L.A. Zadeh. From circuit theory to system theory. Proceeding of the IRE, 50(5):856–865, May 1962. doi: 10.1109/JRPROC.1962.288302 .
[14] T. Söderstörm and P. Stoica. System Identification. Prentice Hall International, New York, 2001.
[15] G.C. Goodwin and R.L. Payne. Dynamic System Identification: Experiment Design and Data Analysis. Academic Press Inc., New York, 1977.
[16] R.V. Jategaonkar. Flight Vehicle System Identification: A Time Domain Methodology. Progess in Astronautics and Aeronautics. AIAA, Reston, VA, 2 edition, 2015. doi: 10.2514/4.102790.
[17] R.E. Maine and K.W. Iliff. Application of parameter estimation to aircraft stability and control: The output-error approach. Technical Report NASA-RP-1168, NASA, Edwards, CA, June 1986.
[18] V. Klein and E.A. Morelli. Aircraft System Identification: Theory and Practice. AIAA Education Series. AIAA, Reston, VA, August 2006.
[19] P. Stoica and R. Moses. Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2005.
[20] L.R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice Hall Inc., Englewood Cliffs, NJ, 1 edition, 1975.
[21] P. Young and R.J. Patton. Frequency domain identification of remotely-piloted helicopter dynamics using frequency-sweep and schroeder-phased test signals. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, August 1988. AIAA. doi: 10.2514/6.1988-4349.
Go to article

Authors and Affiliations

Piotr Lichota
1
Joanna Szulczyk
1

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main open-field producer regions of cucurbits (watermelon, squash, melon and cucumber) in Panama (Los Santos, Herrera and Coclé provinces) were surveyed for molecular identification, occurrence and distribution of Thrips palmi (the most important pest thrip species on cucurbits in Panama), Frankliniella intonsa and Frankliniella cephalica during the growing seasons of 2009 to 2013 and 2017 to 2018. Forty plots were surveyed and DNA extracts of 186 thrips (larvae and adults) were analyzed by multiplex PCR, using a set of T. palmi-specific primers in combination with a set of insect-universal primers. DNA extracts corresponding to 174 individual thrips (93.5%) rendered both PCR products of expected size with T. palmi-specific and insect-universal primers, whereas the remaining DNA extracts corresponding to 12 individual thrips (6.5%) only rendered the product of the expected size with insect-universal primers. Sequencing of those PCR products and BLAST analysis allowed for the identification of F. intonsa and F. cephalica. Thrips palmi was detected in all three provinces, while F. intonsa and F. cephalica were detected in Herrera and Los Santos provinces. To our knowledge, this is not only the first detection of F. intonsa in Panama, but also the first detection of F. cephalica in Panamanian cucurbit crops.

Go to article

Authors and Affiliations

Anovel A. Barba-Alvarado
José N. Jaén-Sanjur
Luis Galipienso
Laura Elvira-González
Luis Rubio
José A. Herrera-Vásquez
Download PDF Download RIS Download Bibtex

Abstract

The use of fractional-order calculus for system modeling is a good alternative to well-known classic integer-order methods, primarily due to the precision with which the modeled object may be mapped. In this study, we created integer and fractional discrete models of a real object – a highspeed brushless micro-motor. The accuracy of the models was verified and compared.

Go to article

Authors and Affiliations

M. Matusiak
M. Bąkała
R. Wojciechowski
P. Ostalczyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper, quanizted multisine inputs for a maneuver with simultaneous elevator, aileron and rudder deflections are presented. The inputs were designed for 9 quantization levels. A nonlinear aircraft model was exited with the designed inputs and its stability and control derivatives were identified. Time domain output error method with maximum likelihood principle and a linear aircraft model were used to perform parameter estimation. Visual match and relative standard deviations of the estimates were used to validate the results for each quantization level for clean signals and signals with measurement noise present in the data. The noise was included into both output and input signals. It was shown that it is possible to obtain accurate results when simultaneous flight controls deflections are quantized and noise is present in the data.

Go to article

Authors and Affiliations

P. Lichota
Download PDF Download RIS Download Bibtex

Abstract

Cladoceran remains preserve selectively in lake sediments. Possibly all Cladocera species leave at least some identifiable remains in lake sediments. Exosceletal body parts of families Chydoridae and Bosminidae preserve best but other families are only variably represented in sediments by their outer body parts. Identification of all possible remains helps to achieve more precise palaeolimnological reconstruction of past ecosystems by Cladocera analysis. This article describes, together with photograph and line drawing the subfossil post-abdomen and post-abdominal claw of Ceriodaphnia, previously not widely identified.
Go to article

Authors and Affiliations

Liisa Nevalainen
Download PDF Download RIS Download Bibtex

Abstract

Identification plays an important role in relation to control objects and processes as it enables the control system to be properly tuned. The identification methods described in this paper use the Stochastic Gradient Descent algorithms, which have so far been successfully presented in machine learning. The article presents the results of the Adam and AMSGrad algorithms for online estimation of the Dielectric Electroactive Polymer actuator (DEAP) parameters. This work also aims to validate the learning by batch methodology, which allows to obtain faster convergence and more reliable parameter estimation. This approach is innovative in the field of identification of control systems. The researchwas supplemented with the analysis of the variable amplitude of the input signal. The dynamics of the DEAP parameter convergence depending on the normalization process was presented. Our research has shown how to effectively identify parameters with the use of innovative optimization methods. The results presented graphically confirm that this approach can be successfully applied in the field of control systems.
Go to article

Authors and Affiliations

Jakub Bernat
1
ORCID: ORCID
Jakub Kołota
1
ORCID: ORCID

  1. Institute of Automatic Control and Robotics, Poznan University of Technology, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article provides a sociological analysis of national identities of Polish children growing up in Nor-way. The research results presented are unique in the sense that the portrayals of national identifica-tions constructed in the process of migration are shown through direct experiences of children. The analysis is based on semi-structured interviews with children, observation in the research situation (children’s rooms) and Sentence Completion Method. Adopting Antonina Kłoskowska’s analytical framework of national identity and her terminology of the so called ‘cultural valence’ (adoption of cul-ture), we argue that identities are processual and constructed, a result of the fact that mobility took place at a certain moment in time and in a specific geographical space. In addition, we see identities as conditioned by a plethora of identifiable objective and subjective reasons. The intensified mobility of children due to labour migrations of their parents leads to multiple challenges within the (re)construc-tions of children’s identities in their new place of settlement.

Go to article

Authors and Affiliations

Krystyna Slany
Stella Strzemecka
Download PDF Download RIS Download Bibtex

Abstract

Maize dwarf mosaic virus (MDMV) is a serious and widespread virus pathogen of maize plants. This +ssRNA virus belongs to the Potyvirus genus in the Potyviridae family. Together with sugarcane mosaic virus (SCMV) it causes one of the most important viral diseases on maize crops in the world – maize dwarf mosaic. Both viruses are transmitted in the same non-persistent manner by several aphid species. They induce similar symptoms of leaf mosaic or mottling, stunting and a reduction in plant weight and grain yield. Available MDMV diagnostics include primarily commercialized enzyme-linked immunosorbent assays (ELISA) and reverse transcription-polymerase chain reactions (RT-PCR). Here, laborsaving reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay was optimized for identification of genetically different MDMV isolates. For this purpose, primer sets, MDMVF3/MDMVB3 and MDMVFIP/MDMVBIP amplifying fragments of coat protein coding sequence of MDMV, were used. The specificity of the reaction was verified using three MDMV (-P1, -Sp, -PV0802-DSMZ) and three SCMV (-P1, -PV0368- -DSMZ, -PV1207-DSMZ) isolates. Obtained products were visualised by DNA staining, electrophoretic separation as well as by real-time monitoring of the reaction. The sensitivity of RT-LAMP and conventional RT-PCR reactions was comparable. Both methods could detect virus as low as 550 fg · μl–1 of total RNA. This technique has application value for screening MDMV by phytosanitary services.
Go to article

Authors and Affiliations

Katarzyna Trzmiel
1
ORCID: ORCID
Beata Hasiów-Jaroszewska
1
ORCID: ORCID

  1. Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The operating modes of the automatic control system for electromechanical converters for synchronization of rotor speeds have been developed and investigated. The proposed automatic speed control system allows adjusting the slave engine to the master one in a wide range from 0 to 6000 rpm. To improve the synchronization accuracy an adaptive algorithm is proposed that allows to increase the synchronization accuracy by 3-4 times. The proposed model of an adaptive automatic control system with an observing identification tool makes it possible to minimize the error in the asynchrony of the rotation of the rotors of two electromechanical converters.
Go to article

Authors and Affiliations

Aidana Kalabayeva
1 2
Waldemar Wójcik
3
Gulzhan Kashaganova
4
Kulzhan Togzhanova
5
Zhaksygul Sarybayeva
1

  1. Academy of Logistics and Transport, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications Almaty, Kazakhstan
  3. Lublin University of Technology, Lublin, Poland
  4. Turan University, Almaty, Kazakhstan
  5. Almaty Technological University, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Helicobacter species have been reported in animals, some of which are of zoonotic importance. This study aimed to detect Helicobacter species among human and animal samples using conventional PCR assays and to identify their zoonotic potentials. Helicobacter species was identified in human and animal samples by genus-specific PCR assays and phylogenetic analysis of partial sequencing of the 16S ribosomal RNA gene. The results revealed that Helicobacter species DNA was detected in 13 of 29 (44.83%) of the human samples. H. pylori was identified in 2 (15.38%), and H. bovis was detected in 4 (30.77%), whereas 7 (53.85%) were unidentified. H. bovis and H. heilmannii were prevalent among the animal samples. Phylogenetic analysis revealed bootstrapping of sequences with H. cinaedi in camel, H. rappini in sheep and humans, and Wollinella succinogenes in humans. In conclusion, the occurrence of non-H. pylori infections among human and animal samples suggested zoonotic potentials.
Go to article

Bibliography


Amorim I, Smet A, Alves O, Teixeira S, Saraiva AL, Taulescu M, Reis C, Haesebrouck F Gartner F (2015) Presence and significance of Helicobacter spp. in the gastric mucosa of Portuguese dogs. Gut Pathog 7: 12.
Buczolits S, Hirt R, Rosengarten R, Busse HJ (2003) PCR-based genetic evidence for occurrence of Helicobacter pylori and novel Helico-bacter species in the canine gastric mucosa. Vet Microbiol 95: 259-270.
Chong SK, Lou Q, Fitzgerald JF, Lee CH (1996) Evaluation of 16S rRNA gene PCR with primers Hp1 and Hp2 for detection of Helicobacter pylori. J Clin Microbiol 34: 2728-2730.
De Groote D, Van Doorn LJ, Van den Bulck K, Vandamme P, Vieth M, Stolte M, Debongnie JC, Burette A, Haesebrouck F, Ducatelle R (2005) Detection of non-pylori Helicobacter species in “Helicobacter heilmannii”-infected humans. Helicobacter 10: 398-406.
Fox JG (2002) The non-H pylori helicobacters: their expan- ding role in gastrointestinal and systemic diseases. Gut 50: 273-283.
Germani Y, Dauga C, Duval P, Huerre M, Levy M, Pialoux G, Sansonetti P, Grimont PA (1997) Strategy for the detection of Helicobacter species by amplification of 16S rRNA genes and identification of H. felis in a human gastric biopsy. Res Microbiol 148: 315-326.
Goodwin CS, Armstrong JA, Chilvers T, Peter M, Colins MD, Sly L, Mcconnell W, Harper WES (1989) Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov. Respectively. Int J Syst Bacteriol 39: 397-405.
Harper CM, Xu S, Feng Y, Dunn JL, Taylor NS, Dewhirst FE, Fox JG (2002) Identification of novel Helicobacter spp. from a beluga whale. Appl Environ Microbiol 68: 2040-2043.
Hong S, Chung Y, Kang WG, Choi YS, Kim O (2015) Comparison of three diagnostic assays for the identification of Helicobacter spp. in laboratory dogs. Lab Anim Res 31: 86-92.
Jankowski M, Spuzak J, Kubiak K, Glinska-Suchocka K, Biernat M (2016) Detection of gastric Helicobacter spp. in stool samples of dogs with gastritis. Pol J Vet Sci 19: 237-243.
Makristathis A, Hirschl AM, Megraud F, Bessede E (2019) Review: Diagnosis of Helicobacter pylori infection. Helicobacter 24 (Suppl 1): e12641.
Mladenova-Hristova I, Grekova O, Patel A (2017) Zoonotic potential of Helicobacter spp. J Microbiol Immunol Infect 50: 265-269.
Momtaz H, Dabiri H, Souod N, Gholami M (2014) Study of Helicobacter pylori genotype status in cows, sheep, goats and human beings. BMC Gastroenterol 14: 61.
Neiger R, Dieterich C, Burnens A, Waldvogel A, Corthesy- -Theulaz I, Halter F, Lauterburg B, Schmassmann A (1998) Detection and preva-lence of Helicobacter infection in pet cats. J Clin Microbiol 36: 634-637.
Sabry MA, Abdel-Moein KA, Seleem A (2016) Evidence of zoonotic transmission of Helicobacter canis between sheep and human contacts. Vector Borne Zoonotic Dis. 16: 650-653.
Solnick JV (2003) Clinical significance of Helicobacter species other than Helicobacter pylori. Clin Infect Dis 36: 349-354.
Van den Bulck K, Decostere A, Baele M, Driessen A, Debongnie JC, Burette A, Stolte M, Ducatelle R, Haesebrouck F (2005) Identification of non-Helicobacter pylori spiral organisms in gastric samples from humans, dogs, and cats. J Clin Microbiol 43: 2256-2260.
Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol 81: 911-917.
Go to article

Authors and Affiliations

A.I. Youssef
1
A. Afifi
2
S. Abbadi
3
A. Hamed
4
M. Enany
2

  1. Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, 41522, 4.5 Km Ring Road, Ismailia, Egypt
  2. Microbiology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
  3. Microbiology and Immunology Department, Faculty of Medicine, Suez University, 43512, Alsalam City, Suez, Egypt
  4. Biotechnology Department, Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Individual identification of similar communication emitters in the complex electromagnetic environment has great research value and significance in both military and civilian fields. In this paper, a feature extraction method called HVG-NTE is proposed based on the idea of system nonlinearity. The shape of the degree distribution, based on the extraction of HVG degree distribution, is quantified with NTE to improve the anti-noise performance. Then XGBoost is used to build a classifier for communication emitter identification. Our method achieves better recognition performance than the state-of-the-art technology of the transient signal data set of radio stations with the same plant, batch, and model, and is suitable for a small sample size.
Go to article

Bibliography

  1.  J. Dudczyk, “Radar emission sources identification based on hierarchical agglomerative clustering for large data sets”, J. Sens. 2016, 1879327 (2016).
  2.  G. Manish, G. Hareesh, and M. Arvind, “Electronic Warfare: Issues and Challenges for Emitter Classification”, Def. Sci. J. 201161(3), 228‒234 (2011).
  3.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters”, Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 391‒396 (2015).
  4.  Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device Fingerprinting in Wireless Networks: Challenges and Opportunities”, IEEE Commun. Surv. Tutor. 18(1), 94‒104 (2016).
  5.  P.C. Adam and G.L. Dennis, “Identification of Wireless Devices of Users Who Actively Fake Their RF Fingerprints With Artificial Data Distortion”, IEEE Trans. Wirel. Commun. 14(11), 5889‒5899 (2015).
  6.  N. Zhou, L. Luo, G. Sheng, and X. Jiang, “High Accuracy Insulation Fault Diagnosis Method of Power Equipment Based on Power Maximum Likelihood Estimation”, IEEE Trans. Power Deliv. 34(4), 1291‒1299 (2019).
  7.  S. Guo, R.E. White, and M. Low, “A comparison study of radar emitter identification based on signal transients”, IEEE Radar Conference, Oklahoma City, 2018, pp. 286‒291.
  8.  Q. Wu, C. Feres, D. Kuzmenko, D. Zhi, Z. Yu, and X. Liu, “Deep learning based RF fingerprinting for device identification and wireless security”, Electron. Lett. 54(24), 1405‒1407 (2018).
  9.  A. Kawalec, R. Owczarek, and J. Dudczyk, “Karhunen-Loeve transformation in radar signal features processing”, International Conference on Microwaves, Krakow, 2006.
  10.  B. Danev and S. Capkun, “Transient-based identification of wireless sensor nodes”, Information Processing in Sensor Networks, San Francisco, 2009, pp. 25‒36.
  11.  R.W. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance”, International Conference on Communications, Dresden, 2009, pp. 641‒645.
  12.  C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet Fingerprinting of Radio-Frequency Identification (RFID) Tags”, I IEEE Trans. Ind. Electron. 59(12), 4843‒4850 (2012).
  13.  Z. Shi, X. Lin, C. Zhao, and M. Shi, “Multifractal slope feature based wireless devices identification”, International Conference on Computer Science and Education, Cambridge, 2015, pp. 590‒595.
  14.  C.K. Dubendorfer, B.W. Ramsey, and M.A. Temple, “ZigBee Device Verification for Securing Industrial Control and Building Automation Systems”, International Conference on Critical Infrastructure Protection ,Washington DC, 2013, pp. 47‒62.
  15.  D.R. Reising and M.A. Temple, “WiMAX mobile subscriber verification using Gabor-based RF-DNA fingerprints”, International Conference on Communications, Ottawa, 2012, pp. 1005‒1010.
  16.  Y. Li, Y. Zhao, L. Wu, and J. Zhang, “Specific emitter identification using geometric features of frequency drift curve”, Bull. Pol. Acad. Sci. Tech. Sci. 66, 99‒108 (2018).
  17.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  18.  T.L. Carroll, “A nonlinear dynamics method for signal identification”, Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023109 (2007).
  19.  D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications & Networking Conference, San Francisco, 2017, pp. 1‒6.
  20.  Y. Jia, S. Zhu, and G. Lu, “Specific Emitter Identification Based on the Natural Measure”, Entropy 19(3), 117 (2017).
  21.  L. Lacasa, B. Luque, J. Luque, and J.C. Nuno, “The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion”, Europhys. Lett. 86(3), 30001‒30005 (2009).
  22.  M. Ahmadlou and H. Adeli, “Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems”, Physica D 241(4), 326‒332 (2012).
  23.  S. Zhu and L. Gan, “Specific emitter identification based on horizontal visibility graph”, IEEE International Conference Computer and Communications, Chengdu, 2017, pp. 1328‒1332.
  24.  B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility graphs: Exact results for random time series”, Phys. Rev. E. 80(4), 046103 (2009).
  25.  W. Jiang, B. Wei, J. Zhan, C. Xie, and D. Zhou, “A visibility graph power averaging aggregation operator: A methodology based on network analysis”, Comput. Ind. Eng. 101, 260‒268 (2016).
  26.  M. Wajs, P. Kurzynski, and D. Kaszlikowski, “Information-theoretic Bell inequalities based on Tsallis entropy”, Phys. Rev. A. 91(1), 012114 (2015).
  27.  J. Liang, Z. Huang, and Z. Li, “Method of Empirical Mode Decomposition in Specific Emitter Identification”, Wirel. Pers. Commun. 96(2), 2447‒2461, (2017).
  28.  A.M. Ali, E. Uzundurukan, and A. Kara, “Improvements on transient signal detection for RF fingerprinting”, Signal Processing and Communications Applications Conference (SIU), Antalya, 2017, pp. 1‒4.
  29.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  30.  D.R. Kong and H.B. Xie, “Assessment of Time Series Complexity Using Improved Approximate Entropy”, Chin. Phys. Lett. 28(9), 90502‒90505 (2011).
  31.  T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Knowledge Discovery and Data Mining, San Francisco, 2016, pp. 785‒794.
  32.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific Emitter Identification Based on Nonlinear Dynamical Characteristics”, Can. J. Electr. Comp. Eng.-Rev. Can. Genie Electr. Inform. 39(1), 34‒41 (2016).
  33.  D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications and Networking Conference, San Francisco, 2017, pp. 1‒6.
Go to article

Authors and Affiliations

Ke Li
1 2 3
ORCID: ORCID
Wei Ge
1 2
ORCID: ORCID
Xiaoya Yang
1 2
Zhengrong Xu
1

  1. School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
  2. Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, 230036, China
  3. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, 200072, China
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the problem of the accuracy of the identification techniques detecting cracks and corroded members in vibrating beam and frame structures. The presence of the fatigue crack usually causes very small changes of the stiffness of the beam elements of the structure. To detect these changes it is necessary to apply the most precisely mathematical detection technique. The identification procedure based on the least squares technique uses finite element models (FEM) of the structure and as the source of information the measured dynamic response and the natural frequencies. The application of the Dynamic Stiffness Matrix (DSM) [I) for the representation of all constraints and modal equations makes it possible to present the identification process in a very accurate and efficient mathematical form. The methoyof d of the detection of structural changes used in the present paper was described in our previous paper (2). The Consistent Mass Matrices (CMM) and Lump Mass Matrices (LMM) are very often used in the identification algorithms. It is shown that application of simplified approaches (CMM and LMM) can result in lower accuracy and poorer convergence of the identification algorithms. However, the application ofCMM mass matrices does not introduce significant errors. The algorithms were tested on simulated numerical data for ten element beam frames.
Go to article

Authors and Affiliations

Stanisław A. Lukasiewicz
Emily R. Qian
Download PDF Download RIS Download Bibtex

Abstract

Courts in Poland, as well as in most countries in the world, allow for the identification of a person on the basis of his/her voice using the so-called voice presentation method, i.e., the auditory method. This method is used in situations where there is no sound recording and the perpetrator of the criminal act was masked and the victim heard only his or her voice. However, psychologists, forensic acousticians, as well as researchers in the field of auditory perception and forensic science more broadly describe many cases in which such testimony resulted in misjudgement. This paper presents the results of an experiment designed to investigate, in a Polish language setting, the extent to which the passage of time impairs the correct identification of a person. The study showed that 31 days after the speaker’s voice was first heard, the correct identification for a female voice was 30% and for a male voice 40%.
Go to article

Authors and Affiliations

Stefan Brachmański
1
ORCID: ORCID
Bartosz Hus
1
Piotr Staroniewicz
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Department of Acoustics, Multimedia and Signal Processing Wrocław University of Science and Technology
Download PDF Download RIS Download Bibtex

Abstract

For reasons of reliability, stability, safety and economy, controlling and monitoring the response of structures during the time of use, either permanently or temporally, is of increasing importance. Experimental methods enable in-situ measuring deformations of any kind of structures and enable drawing conclusions over the actual state of the structures. However, to obtain reliable knowledge of the real internal conditions like the strength of materials and the actual stress-state, as well as of their changes over time, caused by ageing, fatigue and environmental influences, always an inverse problem must be solved. That requires special mathematical algorithms. Especially for time-depending material response it might be quite important to know the material parameters at any time and furthermore the internal stress-state also. Therefore, a method will be presented to solve the inverse problem of parameter identification with reference to linear visco-elastic materials.
Go to article

Authors and Affiliations

Karl-Hans Laerrnann
Download PDF Download RIS Download Bibtex

Abstract

The artificial bee colony (ABC) intelligence algorithm is widely applied to solve multi-variable function optimization problems. In order to accurately identify the parameters of the surface-mounted permanent magnet synchronous motor (SPMSM), this paper proposes an improved ABC optimization method based on vector control to solve the multi-parameter identification problem of the PMSM. Because of the shortcomings of the existing parameter identification algorithms, such as high computational complexity and data saturation, the ABC algorithm is applied for the multi-parameter identification of the PMSM for the first time. In order to further improve the search speed of the ABC algorithm and avoid falling into the local optimum, Euclidean distance is introduced into the ABC algorithm to search more efficiently in the feasible region. Applying the improved algorithm to multi-parameter identification of the PMSM, this method only needs to sample the stator current and voltage signals of the motor. Combined with the fitness function, the online identification of the PMSM can be achieved. The simulation and experimental results show that the ABC algorithm can quickly identify the motor stator resistance, inductance and flux linkage. In addition, the ABC algorithm improved by Euclidean distance has faster convergence speed and smaller steady-state error for the identification results of stator resistance, inductance and flux linkage.
Go to article

Bibliography

[1] Boileau T., Leboeuf N., Nahid-Mobarakeh B., Online identification of PMSM parameters: parameter identifiability and estimator comparative study, IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1944–1957 (2011), DOI: 10.1109/TIA.2011.2155010.
[2] Ichikawa S., Tomita M., Doki S., Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory, IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 363–372 (2006), DOI: 10.1109/TIE.2006.870875.
[3] Jian-fei S., Bao-jun G., Yan-ling L., Research of parameter identification of permanent magnet synchronous motor online, Electric Machines and Control, vol. 22, no. 3, pp. 17–24 (2018), DOI: 10.15938/j.emc.2018.03.003.
[4] Fan S., LuoW., Zou J., A hybrid speed sensorless control strategy for PMSM based on MRAS and fuzzy control, Proceedings of 7th International Power Electronics and Motion Control Conference, Harbin, China, pp. 2976–2980 (2012), DOI: 10.1109/IPEMC.2012.6259344.
[5] Shi Y., Sun K., Huang L., Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control, IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4169–4178 (2012), DOI: 10.1109/TIE.2011.2168792.
[6] Liu K., Zhang J., Adaline neural network based online parameter estimation for surface-mounted permanent magnet synchronous machines, Proceedings of the CSEE, vol. 30, no. 30, pp. 68–73 (2010).
[7] Gu X., Hu S., Shi T., Muti-parameter decoupling online identification of permanent magnet synchronous motor based on neural network, Transactions of China Electrotechnical Society, vol. 30, no. 6, pp. 114–121 (2015).
[8] Liwei Z., Peng Z., Yuefeng L., Parameter identification of permanent magnet synchronous motor based on variable step-size Adaline neural network, Transactions of China Electrotechnical Society, vol. 33, no. z 2, pp. 377–384 (2018).
[9] Peerez J.N.H., Hernandez O.S., Caporal R.M., Parameter identification of a permanent magnet synchronous machine based on current decay test and particle swarm optimization, IEEE Latin America Transactions, vol. 11, no. 5, pp. 1176–1181 (2013), DOI: 10.1109/TLA.2013.6684392.
[10] Liu Z., Wei H., Zhong Q., Parameter estimation for VSI-Fed PMSM based on a dynamic PSO with learning strategies, IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 3154–3165 (2017), DOI: 10.1109/TPEL.2016.2572186.
[11] Liu Z., Wei H., Li X., Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO, IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10858–10871 (2018), DOI: 10.1109/TPEL.2018.2801331.
[12] Sandre-Hernandez O., Morales-Caporal R., Rangel-Magdaleno J., Parameter identification of PMSMs using experimental measurements and a PSO algorithm, IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 8, pp. 2146–2154 (2015), DOI: 10.1109/TIM.2015.2390958.
[13] Liu X., Hu W., Ding W., Research on multi-parameter identification method of permanent magnet synchronous motor, Transactions of China Electrotechnical Society, vol. 35, no. 6, pp. 1198–1207 (2020).
[14] Liu C., Zhou S., Liu K., Permanent magnet synchronous motor multiple parameter identification and temperature monitoring based on binary-modal adaptive wavelet particle swarm optimization, Acta Automatica Sinica, vol. 39, no. 12, pp. 2121–2130 (2013), DOI: 10.3724/SP.J.1004.2013.02121.
[15] Fu X., Gu H., Chen G., Permanent magnet synchronous motors parameters identification based on Cauchy mutation particle swarm optimization, Transactions of China Electrotechnical Society, vol. 29, no. 5, pp. 127–131 (2014).
[16] Guo-han L., Jing Z., Zhao-hua L., Kui-yin Z., Parameter identification of PMSM using improved comprehensive learning particle swarm optimization, Electric Machines and Control, vol. 19, no. 1, pp. 51–57 (2015).
[17] San-yang L., Ping Z., Ming-min Z., Artificial bee colony algorithm based on local search, Control and Decision, vol. 29, no. 1, pp. 123–128 (2014).
[18] Ding X., Liu G., Du M., Efficiency improvement of overall PMSM-Inverter system based on artificial bee colony algorithm under full power range, IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1–4 (2016), DOI: 10.1109/TMAG.2016.2526614.
[19] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020), DOI: 10.24425/aee.2020.133023.

Go to article

Authors and Affiliations

Chunli Wu
1
ORCID: ORCID
Shuai Jiang
1
Chunyuan Bian
1

  1. College of Information Science and Engineering, Northeastern University, China
Download PDF Download RIS Download Bibtex

Abstract

The availability of cheap and widely applicable person identification techniques is essential due to a wide-spread usage of online services. The dynamics of typing is characteristic to particular users, and users are hardly able to mimic the dynamics of typing of others. State-of-the-art solutions for person identification from the dynamics of typing are based on machine learning. The presence of hubs, i.e., few instances that appear as nearest neighbours of surprisingly many other instances, have been observed in various domains recently and hubness-aware machine learning approaches have been shown to work well in those domains. However, hubness has not been studied in the context of person identification yet, and hubnessaware techniques have not been applied to this task. In this paper, we examine hubness in typing data and propose to use ECkNN, a recent hubness-aware regression technique together with dynamic time warping for person identification. We collected time-series data describing the dynamics of typing and used it to evaluate our approach. Experimental results show that hubness-aware techniques outperform state-of-the-art time-series classifiers.

Go to article

Authors and Affiliations

Krisztian Buza
Dora Neubrandt
Download PDF Download RIS Download Bibtex

Abstract

The introduction of increasingly strict rules related to the processing and storage of animal waste, the growing demand for energy and the creation of sustainable animal husbandry have led to an increased interest in the production of clean energy from animal waste. The production of biogas and its subsequent burning on the farm is among the most promising technologies. One of the possibilities for the utilization of biogas is through the use of small aggregates for the combined production of electricity and heat energy based on an internal combustion engine. Analysis of such facilities that have been put into operation show that alternative technologies using biogas as fuel are better than conventional options, both from an economic and an environmental point of view. In this sense, however, the introduction of such a technology into operation is always associated with a number of risks, since investments in new technologies are influenced by technical and economic uncertainty. When planning and preparing the plan for the construction of such a biogas facility, the investment costs, technical support and profitability of the project are essential. Introducing critical economic and technical parameters to inform the farmer of all possible investments, operational and unforeseen risks will allow him to accept the challenges and choose the best solution for his farm. In this publication, an analysis and assessment of the risk has been carried out based on the characteristics of the technology – the possible consequences of the risk are also presented. A risk matrix related to the specifics of the object and the technology is proposed, with the help of which, the type of risk is identified. Based on an analysis of the obtained results, a motivated proposal for reducing the risk is made.
Go to article

Authors and Affiliations

Konstantin Vasilev Kostov
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Manufacturing and Thermal Engineering, Technical University of Sofia, Faculty of Engineering and Pedagogy of Sliven, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

The paper studies the fault identification problem for linear control systems under the unmatched disturbances. A novel approach to the construction of a sliding mode observer is proposed for systems that do not satisfy common conditions required for fault estimation, in particular matching condition, minimum phase condition, and detectability condition. The suggested approach is based on the reduced order model of the original system. This allows to reduce complexity of sliding mode observer and relax the limitations imposed on the original system.
Go to article

Bibliography

[1] H. Alwi and C. Edwards: Fault tolerant control using sliding modes with on-line control allocation. Automatica, 44 (2008), 1859–1866, DOI: 10.1016/j.automatica.2007.10.034.
[2] H. Alwi, C. Edwards, and C. Tan: Sliding mode estimation schemes for incipient sensor faults. Automatica, 45 (2009), 1679–1685, DOI: 10.1016/j.automatica.2009.02.031.
[3] F. Bejarano, L. Fridman, and A. Pozhyak: Unknown input and state estimation for unobservable systems. SIAM J. Control and Optimization, 48 (2009), 1155–1178. DOI: 10.1137/070700322.
[4] F. Bejarano and L. Fridman: High-order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Control, 83 (2010), 1920– 1929, DOI: 10.1080/00207179.2010.501386.
[5] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki: Diagnosis and Fault-Tolerant Control. Berlin: Springer-Verlag, 2006.
[6] A. Brahim, S. Dhahri, F. Hmida, and A. Sellami: Simultaneous actuator and sensor faults reconstruction based on robust sliding mode observer for a class of nonlinear systems. Asian J. Control, 19 (2017), 362–371, DOI: 10.1002/asjc.1359.
[7] J. Chan, C. Tan, and H. Trinh: Robust fault reconstruction for a class of infinitely unobservable descriptor systems. Int. J. Systems Science, (2017), 1–10. DOI: 10.1080/00207721.2017.1280552.
[8] L. Chen, C. Edwards, H. Alwi, and M. Sato: Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica, 144 (2020), DOI: 10.1016/j.automatica.2020.108829.
[9] M. Defoort, K. Veluvolu, J. Rath, and M. Djemai: Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems. Int. J. Adaptive Control and Signal Processing, 30 (2016), 271–283, DOI: 10.1002/acs.2556.
[10] S. Ding: Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems. London: Springer-Verlag, 2014.
[11] C. Edwards and S. Spurgeon: On the development of discontinuous observers . Int. J. Control, 59 (1994), 1211–1229, DOI: 10.1080/ 00207179408923128.
[12] C. Edwards, S. Spurgeon, and R. Patton: Sliding mode observers for fault detection and isolation. Automatica, 36 (2000), 541–553, DOI: 10.1016/S0005-1098(99)00177-6.
[13] C. Edwards, H. Alwi, and C. Tan: Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. Int. J. Applied Mathematics and Computer Science, 22 (2012), 109–124, DOI: 10.2478/v10006-012-0008-7.
[14] V. Filaretov, A. Zuev, A. Zhirabok, and A. Protcenko: Development of fault identification system for electric servo actuators of multilink manipulators using logic-dynamic approach. J. Control Science and Engineering, 2017 (2017), 1–8, DOI: 10.1155/2017/8168627.
[15] T. Floquet, C. Edwards, and S. Spurgeon: On sliding mode observers for systems with unknown inputs. Int. J. Adaptive Control and Signal Processing, 21 (2007), 638–65, DOI: 10.1002/acs.958.
[16] L. Fridman, A. Levant, and J. Davila: Observation of linear systems with unknown inputs via high-order sliding-modes. Int. J. Systems Science, 38 (2007), 773–791, DOI: 10.1080/00207720701409538.
[17] L. Fridman, Yu. Shtessel, C. Edwards, and X. Yan: High-order slidingmode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust and Nonlinear Control, 18 (2008), 399–412, DOI: 10.1002/rnc.1198.
[18] R. Hmidi, A. Brahim, F. Hmida, and A. Sellami: Robust fault tolerant control design for nonlinear systems not satisfying matching and minimum phase conditions. Int. J. Control, Automation and Systems, 18 (2020), 1–14, DOI: 10.1007/s12555-019-0516-4.
[19] H. Rios, D. Efimov, J. Davila, T. Raissi, L. Fridman, and A. Zolghadri: Non-minimum phase switched systems: HOSM based fault detection and fault identification via Volterra integral equation. Int. J. Adaptive Control and Signal Processing, 28 (2014), 1372–1397, DOI: 10.1002/acs.2448.
[20] I. Samy, I. Postlethwaite, and D. Gu: Survey and application of sensor fault detection and isolation schemes. Control Engineering Practice, 19 (2011), 658–674, DOI: 10.1016/j.conengprac.2011.03.002.
[21] C. Tan and C. Edwards: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control, 13 (2003), 443–463, DOI: 10.1002/rnc.723.
[22] C. Tan and C. Edwards: Robust fault reconstruction using multiple sliding mode observers in cascade: development and design. Proc. 2009 American Control Conf., St. Louis, USA, (2009), DOI: 10.1109/ACC.2009.5160176.
[23] V. Utkin: Sliding Modes in Control Optimization, Berlin: Springer, 1992.
[24] X. Wang, C. Tan, and G. Zhou: A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions. Automatica, 79 (2017), 290–295, DOI: 10.1016/ j.automatica.2017.01.027.
[25] X. Yan and C. Edwards: Nonlinear robust fault reconstruction and estimation using a sliding modes observer. Automatica, 43 (2007), 1605–1614, DOI: 10.1016/j.automatica.2007.02.008.
[26] J. Yang, F. Zhu, and X. Sun: State estimation and simultaneous unknown input and measurement noise reconstruction based on associated observers. Int. J. Adaptive Control and Signal Processing, 27 (2013), 846–858, DOI: 10.1002/acs.2360.
[27] A. Zhirabok: Nonlinear parity relation: A logic-dynamic approach. Automation and Remote Control, 69 (2008), 1051-1064, DOI: 10.1134/ S0005117908060155.
[28] A. Zhirabok, A. Shumsky, and S. Pavlov: Diagnosis of linear dynamic systems by the nonparametric method. Automation and Remote Control, 78 (2017), 1173–1188, DOI: 10.1134/S0005117917070013.
[29] A. Zhirabok, A. Shumsky, S. Solyanik, and A. Suvorov: Fault detection in nonlinear systems via linear methods. Int. J. Applied Mathematics and Computer Science, 27 (2017), 261–272, DOI: 10.1515/amcs-2017-0019.
[30] A. Zhirabok, A. Zuev, and A. Shumsky: Methods of diagnosis in linear systems based on sliding mode observers. J. Computer and Systems Sciences Int., 58 (2019), 898–914, DOI: 10.1134/S1064230719040166.
[31] A. Zhirabok, A. Zuev, andV. Filaretov: Fault identification in underwater vehicle thrusters via sliding mode observers. Int. J. Applied Mathematics and Computer Science, 30 (2020), 679–688, DOI: 10.34768/amcs-2020-0050.
Go to article

Authors and Affiliations

Alexey Zhirabok
1 2
Alexander Zuev
2
Vladimir Filaretov
3
Alexey Shumsky
1

  1. Far Eastern Federal University, Vladivostok 690091, Russia
  2. Institute of Marine Technology Problems, Vladivostok, 690091, Russia
  3. Institute of Automation and Processes of Control, Vladivostok, 690014, Russia
Download PDF Download RIS Download Bibtex

Abstract

The study presents results of the internal reliability analysis of structural modules used for the determination of horizontal displacement in incomplete trigonometric network. The influence of such elements as: number of control points, sight line length and arrangement of control points around the instrument station on reliability was analysed. Furthermore the analysis of the influence of diversification of reliability indices calculated for individual observations on the detection efficiency of non-dislocated control points was performed. The presented numerical example illustrates the possibility of incorrect valuation of control point stability because of a large diversification of reliability indices. The summary contains recommendations from the point of view of internal reliability for optimal designing of structural modules in incomplete trigonometric networks.
Go to article

Authors and Affiliations

Mieczysław Kwaśniak

This page uses 'cookies'. Learn more