Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The cost overrun in road construction projects in Iraq is one of the major problems that face the construction of new roads. To enable the concerned government agencies to predict the final cost of roads, the objective this paper suggested is to develop an early cost estimating model for road projects using a support vector machine based on (43) sets of bills of quantity collected in Baghdad city in Iraq. As cost estimates are required at the early stages of a project, consideration was given to the fact that the input data for the support vector machine model could be easily extracted from sketches or the project’s scope definition. The data were collected from contracts awarded by the Mayoralty of Baghdad for completed projects between 2010–2013. Mathematical equations were constructed using the Support Vector Machine Algorithm (SMO) technique. An average of accuracy (AA) (99.65%) and coefficient of determination (R2) (97.63%) for the model was achieved by the created prediction equations.
Go to article

Authors and Affiliations

Musaab Falih Hasan
1
ORCID: ORCID
Oday Hammody
2
ORCID: ORCID
Khaldoon Satea Albayati
3
ORCID: ORCID

  1. General Directorate of Education Baghdad Rusafa First, Ministry of Education, Iraq
  2. Civil Engineering Department, University of Technology, Baghdad, Iraq
  3. Iraqi Reinsurance Company, Ministry of Finance, Iraq
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a soft sensing method of least squares support vector machine (LS-SVM) using temperature time series for gas flow measurements. A heater unit has been installed on the external wall of a pipeline to generate heat pulses. Dynamic temperature signals have been collected upstream of the heater unit. The temperature time series are the main secondary variables of soft sensing technique for estimating the flow rate. A LS-SVM model is proposed to construct a non-linear relation between the flow rate and temperature time series. To select its inputs, parameters of the measurement system are divided into three categories: blind, invalid and secondary variables. Then the kernel function parameters are optimized to improve estimation accuracy. The experiments have been conducted both in the single-pulse and multiple-pulse heating modes. The results show that estimations are acceptable.
Go to article

Authors and Affiliations

Weiqing Xu
Zichuan Fan
Maolin Cai
Yan Shi
Xiaomeng Tong
Junpeng Sun
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design process and the results of a novel fall detector designed and constructed at the Faculty of Electronics, Military University of Technology. High sensitivity and low false alarm rates were achieved by using four independent sensors of varying physical quantities and sophisticated methods of signal processing and data mining. The manuscript discusses the study background, hardware development, alternative algorithms used for the sensor data processing and fusion for identification of the most efficient solution and the final results from testing the Android application on smartphone. The test was performed in four 6-h sessions (two sessions with female participants at the age of 28 years, one session with male participants aged 28 years and one involving a man at the age of 49 years) and showed correct detection of all 40 simulated falls with only three false alarms. Our results confirmed the sensitivity of the proposed algorithm to be 100% with a nominal false alarm rate (one false alarm per 8 h).
Go to article

Authors and Affiliations

Bartłomiej Wójtowicz
Andrzej Dobrowolski
Kazimierz Tomczykiewicz
Download PDF Download RIS Download Bibtex

Abstract

Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring sounds related to respiratory disorder events were classified using a support vector machine (SVM) method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm optimization methods. The predicted AHI from the present study has a high correlation with the AHI from polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for diagnosis of OSAHS.

Go to article

Authors and Affiliations

Can Wang
Jianxin Peng
Xiaowen Zhang
Download PDF Download RIS Download Bibtex

Abstract

This study offers two Support Vector Machine (SVM) models for fault detection and fault classification, respectively. Different short circuit events were generated using a 154 kV transmission line modeled in MATLAB/Simulink software. Discrete Wavelet Transform (DWT) is performed to the measured single terminal current signals before fault detection stage. Three level wavelet energies obtained for each of three-phase currents were used as input features for the detector. After fault detection, half cycle (10 ms) of three-phase current signals was recorded by 20 kHz sampling rate. The recorded currents signals were used as input parameters for the multi class SVM classifier. The results of the validation tests have demonstrated that a quite reliable, fault detection and classification system can be developed using SVM. Generated faults were used to training and testing of the SVM classifiers. SVM based classification and detection model was fully implemented in MATLAB software. These models were comprehensively tested under different conditions. The effects of the fault impedance, fault inception angle, mother wavelet, and fault location were investigated. Finally, simulation results verify that the offered study can be used for fault detection and classification on the transmission line.
Go to article

Bibliography

  1.  M.M. Saha, J. Izykowski, and E. Rosolowski, Fault location on power networks. London: Springer, 2010.
  2.  M.B. Chatterjee and S. Debnath, “Cross correlation aided fuzzy based relaying scheme for fault classification in transmission lines,” Eng. Sci. Technol. Int J., vol. 23, no. 3, pp. 534–543, 2020, doi: 10.1016/j.jestch.2019.07.002.
  3.  A. Mukherjee, P.K. Kundu, and A. Das, “Classification and localization of transmission line faults using curve fitting technique with Principal component analysis features,” Electr. Eng., 2021, doi: 10.1007/s00202-021-01285-7.
  4.  R. Godse and S. Bhat, “Mathematical Morphology-Based Feature-Extraction Technique for Detection and Classification of Faults on Power Transmission Line,” IEEE Access, vol. 8, pp. 38459–38471, 2020, doi: 10.1109/access.2020.2975431.
  5.  Y. Liu, Y. Zhu, and K.Wu, “CNN-Based Fault Phase Identification Method of Double Circuit Transmission Lines,” Electr. Power Compon. Syst., vol. 48, no. 8, pp. 833–843, 2020, doi: 10.1080/15325008.2020.1821836.
  6.  M. Paul and S. Debnath, “Fault Detection and Classification Scheme for Transmission Lines Connecting Windfarm Using Single end Impedance,” IETE J. Res., pp. 1–13, 2021, doi: 10.1080/03772063.2021.1886601.
  7.  Y. Aslan and Y. E. Yağan, “Artificial neural-networkbased fault location for power distribution lines using the frequency spectra of fault data,” Electr. Eng., vol. 99, no. 1, pp. 301–311, 2016, doi: 10.1007/s00202-016-0428-8.
  8.  S. Ekici, “Support Vector Machines for classification and locating faults on transmission lines,” Appl. Soft Comput., vol. 12, no. 6,pp. 1650– 1658, 2012, doi: 10.1016/j.asoc.2012.02.011.
  9.  S.R. Samantaray, “A systematic fuzzy rule based approach for fault classification in transmission lines,” Appl. Soft Comput., vol. 13, no. 2, pp. 928–938, 2013, doi: 10.1016/j.asoc.2012.09.010.
  10.  S.R. Samantaray, P.K. Dash, and G. Panda, “Fault classification and location using HS-transform and radial basis function neural network,” Electr. Power Syst. Res., vol. 76, no. 9‒10, pp. 897–905, 2006, doi: 10.1016/j.epsr.2005.11.003.
  11.  A.A. Girgis and E.B. Makram, “Application of adaptive Kalman filtering in fault classification, distance protection, and fault location using microprocessors,” IEEE Trans. Power Syst., vol. 3, no. 1, pp. 301–309, 1988, doi: 10.1109/59.43215.
  12.  N. Ramesh Babu and B. Jagan Mohan, “Fault classification in power systems using EMD and SVM,” Ain Shams Eng. J., vol. 8, no. 2, pp. 103–111, 2017, doi: 10.1016/j.asej.2015.08.005.
  13.  F. Martin and J.A. Aguado, “Wavelet-based ann approach for transmission line protection,” IEEE Trans. Power Deliv., vol. 18, no. 4, pp. 1572–1574, 2003, doi: 10.1109/tpwrd.2003.817523.
  14.  O.A.S. Youssef, “Combined Fuzzy-Logic Wavelet-Based Fault Classification Technique for Power System Relaying,” IEEE Trans. Power Deliv., vol. 19, no. 2, pp. 582–589, 2004, doi: 10.1109/tpwrd.2004.826386.
  15.  A. Yadav and Y. Dash, “An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination,” Adv. Artif. Neural Syst., vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/230382.
  16.  M. Fikri and M.A.H. El-Sayed, “New algorithm for distance protection of high voltage transmission lines,” IEE Proc. C Gener. Transm. Distrib., vol. 135, no. 5, p. 436, 1988, doi: 10.1049/ip-c.1988.0056.
  17.  S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” Fundamental Papers in Wavelet Theory, 2009, pp. 494–513, doi: 10.1109/34.192463.
  18.  R. Salat and S. Osowski, “Accurate Fault Location in the Power Transmission Line Using Support Vector Machine Approach,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 979–986, 2004, doi: 10.1109/tpwrs.2004.825883.
  19.  P.K. Dash, S.R. Samantaray, and G. Panda, “Fault Classification and Section Identification of an Advanced Series-Compensated Transmission Line Using Support Vector Machine,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 67–73, 2007, doi: 10.1109/tpwrd.2006. 876695.
  20.  V. Vapnik, “The Support Vector Method of Function Estimation,” Nonlinear Modeling, 1998, pp. 55–85, doi: 10.1007/978-1-4615-5703- 6_3.
  21.  Chih-Wei Hsu and Chih-Jen Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415–425, 2002, doi: 10.1109/72.991427.
  22.  S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a stepwise procedure for building and training a neural network,” Neurocomputing, pp. 41–50, 1990, doi: 10.1007/978-3-642-76153-9_5.
  23.  J. Manit and P. Youngkong, Neighborhood components analysis in sEMG signal dimensionality reduction for gait phase pattern recognition. 7th Int. Conf. on Broadband Communications and Biomedical Applications, 2011, doi: 10.1109/IB2Com.2011.6217897.
  24.  M. Akdag and S. Rustemli, “Transmission line fault location: Simulation of real faults using wavelet transform based travelling wave methods,” Bitlis Eren Univ. J. Sci. Technol., vol. 9, no. 2, pp. 88–98, 2019, doi: 10.17678/beuscitech.653273.
  25.  N. Perera and A.D. Rajapakse, “Recognition of Fault Transients Using a Probabilistic Neural-Network Classifier,” IEEE Trans. Power Deliv., vol. 26, no. 1, pp. 410–419, 2011, doi: 10.1109/tpwrd.2010.2060214.
  26.  D. Gogolewski and W. Makiela, “Problems of Selecting the Wavelet Transform Parameters in the Aspect of Surface Texture Analysis,” TEH VJESN, vol. 28, no. 1, 2021, doi: 10.17559/tv-20190312141348.
  27.  J. Ypsilantis et al., “Adaptive, rule based fault diagnostician for power distribution networks,” IEE Proc. C Gener. Transm. Distrib., vol. 139, no. 6, p. 461, 1992, doi: 10.1049/ip-c.1992.0064.
  28.  F.B. Costa, “Fault-Induced Transient Detection Based on Real-Time Analysis of the Wavelet Coefficient Energy,” IEEE Trans. Power Deliv., vol. 29, no. 1, pp. 140–153, 2014, doi: 10.1109/tpwrd.2013.2278272.
  29.  P. Kapler, “An application of continuous wavelet transform and wavelet coherence for residential power consumer load profiles analysis,” Bull. Pol. Acad Sci. Tech. Sci., vol. 69, no. 1, 2021, doi: 10.24425/bpasts.2020.136216.
  30.  Y.Q. Chen, O. Fink, and G. Sansavini, “Combined Fault Location and Classification for Power Transmission Lines Fault Diagnosis With Integrated Feature Extraction,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 561–569, 2018, doi: 10.1109/TIE.2017.2721922.
  31.  G. Revati and B. Sunil, “Combined morphology and SVM-based fault feature extraction technique for detection and classification of transmission line faults,” Turk. J. Electr. Eng. Comput. Sci., vol. 28, no. 5, pp. 2768–2788, 2020, doi: 10.3906/elk-1912-7.
  32.  B.Y. Vyas, R.P. Maheshwari, and B. Das, “Versatile relaying algorithm for detection and classification of fault on transmission line,” Electr. Power Syst. Res., vol. 192, p. 106913, 2021, doi: 10.1016/j.epsr.2020.106913.
Go to article

Authors and Affiliations

Melih Coban
1 2
ORCID: ORCID
Suleyman S. Tezcan
2
ORCID: ORCID

  1. Bolu Abant Izzet Baysal University, Bolu, Turkey
  2. Gazi University, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to predict the selected product parameters of the dry separation process using a pneumatic sorter. From the perspective of application of coal for energy purposes, determination of process parameters of the output as: ash content, moisture content, sulfur content, calorific value is essential. Prediction was carried out using chosen machine learning algorithms that proved to be effective in forecasting output of various technological processes in which the relationships between process parameters are non-linear. The source of data used in the work were experiments of dry separation of coal samples. Multiple linear regression was used as the baseline predictive technique. The results showed that in the case of predicting moisture and sulfur content this technique was sufficient. The more complex machine learning algorithms like support vector machine (SVM) and multilayer perceptron neural network (MPL) were used and analyzed in the case of ash content and calorific value. In addition, k-means clustering technique was applied. The role of cluster analysis was to obtain additional information about coal samples used as feed material. The combination of techniques such as multilayer perceptron neural network (MPL) or support vector machine (SVM) with k-means allowed for the development of a hybrid algorithm. This approach has significantly increased the effectiveness of the predictive models and proved to be a useful tool in the modeling of the coal enrichment process.

Go to article

Authors and Affiliations

Alina Żogała
Maciej Rzychoń
Download PDF Download RIS Download Bibtex

Abstract

Correct incipient identification of an analog circuit fault is conducive to the health of the analog circuit, yet very difficult. In this paper, a novel approach to analog circuit incipient fault identification is presented. Time responses are acquired by sampling outputs of the circuits under test, and then the responses are decomposed by the wavelet transform in order to generate energy features. Afterwards, lower-dimensional features are produced through the kernel entropy component analysis as samples for training and testing a one-against-one least squares support vector machine. Simulations of the incipient fault diagnosis for a Sallen-Key band-pass filter and a two-stage four-op-amp bi-quad low-pass filter demonstrate the diagnosing procedure of the proposed approach, and also reveal that the proposed approach has higher diagnosis accuracy than the referenced methods.
Go to article

Authors and Affiliations

Chaolong Zhang
Yigang He
Lei Zuo
Jinping Wang
Wei He
Download PDF Download RIS Download Bibtex

Abstract

Electrocatalytic gas sensors belong to the family of electrochemical solid state sensors. Their responses are acquired in the form of I-V plots as a result of application of cyclic voltammetry technique. In order to obtain information about the type of measured gas the multivariate data analysis and pattern classification techniques can be employed. However, there is a lack of information in literature about application of such techniques in case of standalone chemical sensors which are able to recognize more than one volatile compound. In this article we present the results of application of these techniques to the determination from a single electrocatalytic gas sensor of single concentrations of nitrogen dioxide, ammonia, sulfur dioxide and hydrogen sulfide. Two types of classifiers were evaluated, i.e. linear Partial Least Squares Discriminant Analysis (PLS-DA) and nonlinear Support Vector Machine (SVM). The efficiency of using PLS-DA and SVM methods are shown on both the raw voltammetric sensor responses and pre-processed responses using normalization and auto-scaling

Go to article

Authors and Affiliations

Paweł Kalinowski
Łukasz Woźniak
Anna Strzelczyk
Piotr Jasinski
Grzegorz Jasiński
Download PDF Download RIS Download Bibtex

Abstract

The paper analyses the distorted data of an electronic nose in recognizing the gasoline bio-based additives. Different tools of data mining, such as the methods of data clustering, principal component analysis, wavelet transformation, support vector machine and random forest of decision trees are applied. A special stress is put on the robustness of signal processing systems to the noise distorting the registered sensor signals. A special denoising procedure based on application of discrete wavelet transformation has been proposed. This procedure enables to reduce the error rate of recognition in a significant way. The numerical results of experiments devoted to the recognition of different blends of gasoline have shown the superiority of support vector machine in a noisy environment of measurement.

Go to article

Authors and Affiliations

Stanisław Osowski
Krzysztof Siwek
Download PDF Download RIS Download Bibtex

Abstract

Power electronic circuits (PECs) are prone to various failures, whose classification is of paramount importance. This paper presents a data-driven based fault diagnosis technique, which employs a support vector data description (SVDD) method to perform fault classification of PECs. In the presented method, fault signals (e.g. currents, voltages, etc.) are collected from accessible nodes of circuits, and then signal processing techniques (e.g. Fourier analysis, wavelet transform, etc.) are adopted to extract feature samples, which are subsequently used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because this classifier may generate some so-called refusal areas (RAs), and in our design these RAs are resolved with the one-against-one support vector machine (SVM) classifier. The obtained experiment results from simulated and actual circuits demonstrate that the improved SVDD has a classification performance close to the conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.
Go to article

Authors and Affiliations

Jiang Cui
Download PDF Download RIS Download Bibtex

Abstract

In order to explore the impact of coal and gangue particle size changes on recognition accuracy and to improve the single particle size of coal and gangue identification accuracy of sorting equipment, this study established a database of different particle sizes of coal and gangue through image gray and texture feature extraction, using a relief feature selection algorithm to compare different particle size of coal and gangue optimal features of the combination, and to identify the points and particle size of coal and gangue. The results show that the optimal features and number of coal and gangue are different with different particle sizes. Based on visible-light coal and gangue separation technology, the change of coal and gangue particle size cause fluctuations in the recognition accuracy, and the fluctuation of recognition accuracy will gradually decrease with increases in the number of features. In the process of particle size classification, if the training model has a single particle size range, the recognition accuracy of each particle size range is low, with the highest recognition accuracy being 98% and the average recognition rate being only 97.2%. The method proposed in this paper can effectively improve the recognition accuracy of each particle size range. The maximum recognition accuracy is 100%, the maximum increase is 4%, and the average recognition accuracy is 99.2%. Therefore, this method has a high practical application value for the separation of coal and gangue with single particle size.
Go to article

Authors and Affiliations

Xin Li
1 2
ORCID: ORCID
Shuang Wang
1 2
Lei He
1 2
Qisheng Luo
1 2

  1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan, China
  2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, China
Download PDF Download RIS Download Bibtex

Abstract

Sorting coal and gangue is important in raw coal production; accurately identifying coal and gangue is a prerequisite for effectively separating coal and gangue. The method of extracting coal and gangue using image grayscale information can effectively identify coal and gangue, but the recognition rate of the sorting process based on image grayscale information needs to substantially higher than that which is needed to meet production requirements. A sorting method of coal and gangue using object surface grayscale-gloss characteristics is proposed to improve the recognition rate of coal and gangue. Using different comparative experiments, bituminous coal from the Huainan area was used as the experimental object. It was found that the number of pixel points corresponding to the highest level grey value of the grayscale moment and illumination component of the coal and gangue images were combined into a total discriminant value and used as input for the best classification of coal and gangue using the GWO-SVM classification model. The recognition rate could reach up to 98.14%. This method sorts coal and gangue by combining surface greyness and glossiness features, optimizes the traditional greyness-based recognition method, improves the recognition rate, makes the model generalizable, enriches the research on coal and gangue recognition, and has theoretical and practical significance in enterprise production operations.
Go to article

Authors and Affiliations

Gang Cheng
1
Yifan Wei
1 2
ORCID: ORCID
Jie Chen
1
Zeye Pan
1

  1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan, China
  2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,Anhui University of Science and Technology, Huainan, China
Download PDF Download RIS Download Bibtex

Abstract

A diagnostic technique based on independent component analysis (ICA), fast Fourier transform (FFT), and support vector machine (SVM) is suggested for effectively extracting signal features in infrasound signal monitoring. Firstly, ICA is proposed to separate the source signals of mixed infrasound sources. Secondly, FFT is used to obtain the feature vectors of infrasound signals. Finally, SVM is used to classify the extracted feature vectors. The approach integrates the advantages of ICA in signal separation and FFT to extract the feature vectors. An experiment is conducted to verify the benefits of the proposed approach. The experiment results demonstrate that the classification accuracy is above 98.52% and the run time is only 2.1 seconds. Therefore, the proposed strategy is beneficial in enhancing geophysical monitoring performance.
Go to article

Authors and Affiliations

Quanbo Lu
1
ORCID: ORCID
Meng Wang
1
Mei Li
1

  1. School of Information Engineering, China University of Geosciences, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

Leaf - a significant part of the plant, produces food using the process called photosynthesis. Leaf disease can cause damage to the entire plant and eventually lowers crop production. Machine learning algorithm for classifying five types of diseases, such as Alternaria leaf diseases, Bacterial Blight, Gray Mildew, Leaf Curl and Myrothecium leaf diseases, is proposed in the proposed study. The classification of diseases needs front face of leafs. This paper proposes an automated image acquisition process using a USB camera interfaced with Raspberry PI SoC. The image is transmitted to host PC for classification of diseases using online web server. Pre-processing of the acquired image by host PC to obtain full leaf, and later classification model based on SVM is used to detect type diseases. Results were checked with a 97% accuracy for the collection of acquired images.
Go to article

Bibliography

[1] A. Akhtar, A. Khanum, S. A. Khan, and A. Shaukat, “Automated plant disease analysis (apda): performance comparison of machine learning techniques,” in 2013 11th International Conference on Frontiers of Information Technology. IEEE, 2013, pp. 60–65.
[2] M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease detection and classification by deep learning,” Plants, vol. 8, no. 11, p. 468, 2019.
[3] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics, no. 6, pp. 610–621, 1973.
[4] J. Isleib, Signs and symptoms of plant disease, 2019 (accessed February 3, 2019). [Online]. Available: https://www.canr.msu.edu/news/signs and symptoms of plant disease is it fungal viral or bacterial
[5] R. Borges, M. Rossato, M. Santos, M. Ferreira, M. Fonseca, A. Reis, and L. Boiteux, “First report of a leaf spot caused by paramyrothecium roridum on tectona grandis in brazil,” Plant Disease, vol. 102, no. 8, pp. 1661–1661, 2018.
[6] H. K. Mewada, A. V. Patel, and K. K. Mahant, “Concurrent design of active contour for image segmentation using zynq zc702,” Computers & Electrical Engineering, vol. 72, pp. 631–643, 2018.
[7] M. Rzanny, M. Seeland, J. W¨aldchen, and P. M¨ader, “Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain,” Plant methods, vol. 13, no. 1, pp. 1–11, 2017.
[8] D. Vukadinovic and G. Polder, “Watershed and supervised classification based fully automated method for separate leaf segmentation,” in The Netherland Congress on Computer Vision, 2015, pp. 1–2.
[9] C. Niu, H. Li, Y. Niu, Z. Zhou, Y. Bu, and W. Zheng, “Segmentation of cotton leaves based on improved watershed algorithm,” in International Conference on Computer and Computing Technologies in Agriculture. Springer, 2015, pp. 425–436.
[10] L. S. Pinto, A. Ray, M. U. Reddy, P. Perumal, and P. Aishwarya, “Crop disease classification using texture analysis,” in 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2016, pp. 825–828.
[11] A. Abraham, R. Falcon, and M. Koeppen, Computational Intelligence in Wireless Sensor Networks: Recent Advances and Future Challenges. Springer, 2017, vol. 676.
[12] S. Hu, H. Wang, C. She, and J. Wang, “Agont: ontology for agriculture internet of things,” in International Conference on Computer and Computing Technologies in Agriculture. Springer, 2010, pp. 131–137.
[13] Y. Shi, Z. Wang, X. Wang, and S. Zhang, “Internet of things application to monitoring plant disease and insect pests,” in 2015 International conference on Applied Science and Engineering Innovation. Atlantis Press, 2015.
[14] A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of iot (internet of things) and image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE, 2016, pp. 21–26.
[15] N. Anantrasirichai, S. Hannuna, and N. Canagarajah, “Automatic leaf extraction from outdoor images,” arXiv preprint arXiv:1709.06437, 2017.
[16] V. Singh and A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Information processing in Agriculture, vol. 4, no. 1, pp. 41–49, 2017.
[17] N. P. Singh, R. Kumar, and R. Srivastava, “Local entropy thresholding based fast retinal vessels segmentation by modifying matched filter,” in International Conference on Computing, Communication & Automation. IEEE, 2015, pp. 1166–1170.
[18] E. Hamuda, M. Glavin, and E. Jones, “A survey of image processing techniques for plant extraction and segmentation in the field,” Computers and Electronics in Agriculture, vol. 125, pp. 184–199, 2016.
[19] B.-y. Sun and M.-c. Lee, “Support vector machine for multiple feature classifcation,” in 2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006, pp. 501–504.
[20] S. Arivazhagan, R. N. Shebiah, S. Ananthi, and S. V. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 1, pp. 211–217, 2013.
[21] S. Arivazhagan, R. Shebiah, S. Ananthi, and S. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 1, pp. 211–217, 2013.
Go to article

Authors and Affiliations

Hiren Mewada
1
Jignesh Patoliaya
2

  1. Faculty of Electrical Engineering, Prince Mohammad Bin Fahd University, Al Kobhar, Kingdom of Saudi Arabai
  2. Charotar University of Science and Technology, Changa, India
Download PDF Download RIS Download Bibtex

Abstract

Obstructive Sleep Apnea is one common form of sleep apnea and is now tested by means of a process called Polysomnography which is time-consuming, expensive and also requires a human observer throughout the study of the subject which makes it inconvenient and new detection techniques are now being developed to overcome these difficulties. Heart rate variability has proven to be related to sleep apnea episodes and thus the features from the ECG signal can be used in the detection of sleep apnea. The proposed detection technique uses Support Vector Machines using Grid search algorithm and the classifier is trained using features based on heart rate variability derived from the ECG signal. The developed system is tested using the dataset and the results show that this classification system can recognize the disorder with an accuracy rate of 89%. Further, the use of the grid search algorithm has made this system a reliable and an accurate means for the classification of sleep apnea and can serve as a basis for the future development of its screening.
Go to article

Authors and Affiliations

K.K. Valavan
1
S. Manoj
1
S. Abishek
1
T.G. Gokull Vijay
1
A.P. Vojaswwin
1
J. Rolant Gini
1
K.I. Ramachandran
2

  1. Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
  2. Centre for Computational Engineering & Networking (CEN), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
Download PDF Download RIS Download Bibtex

Abstract

Recently, the analysis of medical imaging is gaining substantial research interest, due to advancements in the computer vision field. Automation of medical image analysis can significantly improve the diagnosis process and lead to better prioritization of patients waiting for medical consultation. This research is dedicated to building a multi-feature ensemble model which associates two independent methods of image description: textural features and deep learning. Different algorithms of classification were applied to single-phase computed tomography images containing 8 subtypes of renal neoplastic lesions. The final ensemble includes a textural description combined with a support vector machine and various configurations of Convolutional Neural Networks. Results of experimental tests have proved that such a model can achieve 93.6% of weighted F1-score (tested in 10-fold cross validation mode). Improvement of performance of the best individual predictor totalled 3.5 percentage points.
Go to article

Bibliography

  1.  “Kidney cancer statistics”, Cancer Research UK, (2020). [Online]. Available: https://www.cancerresearchuk.org/health-professional/ cancer-statistics/statistics-by-cancer-type/kidney-cancer. [Accessed: 05-Oct-2020].
  2.  L. Zhou et al., “A Deep Learning-Based Radiomics Model for Differentiating Benign and Malignant Renal Tumors”, Translational Oncology 12(2), 292‒300, (2019).
  3.  H. Coy et al., “Deep learning and radiomics: the utility of Google TensorFlowTM Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT”, Abdominal Radiology 44(6), 2009‒2020, (2019).
  4.  S. Tabibu, P.K. Vinod, and C.V. Jawahar, “Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning”, Scientific Reports 9(1), 10509, (2019).
  5.  S. Han, S.I. Hwang, and H.J. Lee, “The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method”, Journal of Digital Imaging 32, 638–643, (2019).
  6.  Q. Chaudry, S.H. Raza, A.N. Young, and M.D.Wang, “Automated renal cell carcinoma subtype classification using morphological, textural and wavelets based features”, Journal of Signal Processing Systems 55(1‒3), 15‒23, (2009).
  7.  B. Kocak et al., “Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation”, European Journal of Radiology, 107, 149‒157, (2018).
  8.  S.P. Raman, Y. Chen, J.L. Schroeder, P. Huang, and E.K. Fishman, “CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology”, Academic Radiology, 12, 1587‒1596, (2014).
  9.  W. Sun, B. Zheng, and W. Qian, “Computer aided lung cancer diagnosis with deep learning algorithms”, Proceedings of the International Society for Optics and Photonics Conference (2016).
  10.  H. Polat and D.M. Homay, “Classification of Pulmonary CT Images by Using Hybrid 3D-Deep Convolutional Neural Network Architecture”, Applied Sciences, 9(5), 940, (2019).
  11.  W. Alakwaa, M. Nassef, and A. Badr, “Lung cancer Detection and Classification with 3D Convolutional Neural Network (3DCNN)”, International Journal of Advanced Computer Science and Applications (IJACSA) 8(8), (2017).
  12.  M.A. Hussain, G. Hamarneh, and R. Garbi, “Renal Cell Carcinoma Staging with Learnable Image Histogram-Based Deep Neural Network”, Lecture Notes in Computer Science, 11861, 533‒540, (2019).
  13.  O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, (2015).
  14.  K. Yin et al., “Deep learning segmentation of kidneys with renal cell carcinoma”, Journal of Clinical Oncology 37(15), (2019).
  15.  J. Kurek et al., “Deep learning versus classical neural approach to mammogram recognition”, Bul. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840, (2018).
  16.  A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz and M. Lorent, “Textural and deep learning methods in recognition of renal cancer types based on CT images”, Proceedings of the International Joint Conference on Neural Networks (IJCNN), (2020).
  17.  A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Combining texture analysis and deep learning in renal tumour classification task”, Proceedings of the Computational Problems of Electrical Engineering (CPEE), (2020).
  18.  R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), (1973).
  19.  A.F. Costa, G. Humpire-Mamani, and A.J.M. Traina, “An Efficient Algorithm for Fractal Analysis of Textures,”, Proceedings of 25th SIBGRAPI Conference on Graphics, Patterns and Images, 39‒46, (2012).
  20.  P. Shanmugavadivu and V. Sivakumar, “Fractal Dimension Based Texture Analysis of Digital Images”, Procedia Engineering, 38, 2981‒2986, (2012).
  21.  M. Unser, “Local Linear Transforms for Texture Analysis”, Proceedings of the 7th IEEE International Conference on Pattern Recognition (ICPR), II, 1206‒1208, (1984).
  22.  M. Unser, “Sum and difference histograms for texture classification”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 118‒125, (1986).
  23.  C. Cortes and V. Vapnik, “Support-vector network”, Machine Learning 20(3), 273‒297, (1995).
  24.  Y. Bengio, “Learning Deep Architectures for AI”, Foundations and Trends in Machine Learning 2 (1), 1–127, (2009).
  25.  Y. Bengio, Y. LeCun, and G. Hinton, “Deep Learning”, Nature 521, 436–444, (2015).
  26.  I. Goodfellow, Y. Bengio, and A. Courville: Deep Learning, MIT Press, 2016.
  27.  A. Krizhevsky, I. Sutskever, and G. Hinton, “Image net classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems 25, 1‒9, (2012).
  28.  K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 770‒778, (2016).
  29.  C. Szegedy et al., “Going deeper with convolutions”, Proceedings of the 28th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1‒9, (2015).
  30.  C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision”, Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2818‒2826, (2016).
  31.  C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inceptionv4, Inception-ResNet and the impact of residual connections on learning”, Proceedings of 31st Association for the Advancement of Artificial Intelligence on Artificial Intelligence (AAAI), 1‒12, (2016).
  32.  P.N. Tan, M. Steinbach, and V. Kumar: Introduction to Data Mining, Pearson Education, Boston, 2006.
  33.  H. Moch, A.L. Cubilla, P.A. Humphrey, V.E. Reuter, and T.M. Ulbright, “The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours”, European Urology, 70(1), 93‒105, (2016).
  34.  T. Gudbjartsson et al., “Renal oncocytoma: a clinicopathological analysis of 45 consecutive cases”, BJU International 96(9), 1275‒1279, (2005).
Go to article

Authors and Affiliations

Aleksandra Maria Osowska-Kurczab
1
ORCID: ORCID
Tomasz Markiewicz
1 2
ORCID: ORCID
Miroslaw Dziekiewicz
2
Malgorzata Lorent
2

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex operation mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine (LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% relative error in non-coordination tests under different heads.
Go to article

Bibliography

  1.  H.A. Menarin, H.A. Costa, G.L.M. Fredo, R.P. Gosmann, E.C. Finardi, and L.A. Weiss, “Dynamic Modeling of Kaplan Turbines Including Flow Rate and Efficiency Static Characteristics”, IEEE Trans. Power Syst. 34(4), 3026‒3034 (2019).
  2.  M.M. Shamsuddeen, J. Park, Y. Choi, and J. Kim, “Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner”, Renew. Energy 162, 861‒876 (2020).
  3.  P. Pennacchi, P. Borghesani, and S. Chatterton, “A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines”, Mech. Syst. Signal Process. 60‒61, 375‒390 (2015).
  4.  A. Javadi and H. Nilsson, “Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations”, Int. J. Heat Fluid Flow 63, 1‒13 (2017).
  5.  D. Kranjcic and G. Štumberger, “Differential Evolution-Based Identification of the Nonlinear Kaplan Turbine Model”, IEEE Trans. Energy Convert. 29(1), 178‒187 (2014).
  6.  Z. Krzemianowski, “Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method”, Bull. Pol. Acad. Sci. tech. Sci. 67(6), 1133–1147 (2019).
  7.  A.B. Janjua, M.S. Khalil, M. Saeed, F.S. Butt, and A.W. Badar, “Static and dynamic computational analysis of Kaplan turbine runner by varying blade profile”, Energy Sustain. Dev. 58, 90‒99 (2020).
  8.  Y. Wu, S. Liu, H. Dou, S. Wu, and T. Chen, “Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine”, Comput. Fluids 56, 128‒142 (2012).
  9. S.J. Daniels, A.A.M. Rahat, G.R. Tabor, J.E. Fieldsend, and R.M. Everson, “Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics”, Renew. Energy. 160, 112‒126 (2020).
  10.  F. Thiery, R. Gustavsson, and J.O. Aidanpää, “Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts”, Int. J. Mech. Sci. 99, 251‒261 (2015).
  11.  H. Quan, D. Srinivasan, and A. Khosravi, “Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals”, IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303‒315 (2014).
  12.  V. Marano, G. Rizzo, and F.A. Tiano, “Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage”, Appl. Energy. 97, 849‒859 (2012).
  13.  N. Yang and H.Chen, “Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands”, Int. J. Electr. Power Energy Syst. 96, 473‒483 (2018).
  14.  J. Park and K.H. Law, “Layout optimization for maximizing wind farm power production using sequential convex programming”, Appl. Energy. 151, 320‒334 (2015).
  15.  T. Ding, R. Bo, F. Li, Y. Gu, Q. Guo, and H. Sun, “Exact Penalty Function Based Constraint Relaxation Method for Optimal Power Flow Considering Wind Generation Uncertainty”, IEEE Trans. Power Syst. 30(3), 1546‒1547 (2015).
  16.  H. Kebriaei, B.N. Araabi, and A. Rahimi-Kian, “Short-Term Load Forecasting With a New Nonsymmetric Penalty Function”, IEEE IEEE Trans. Power Syst. 26 (4), 1817‒1825 (2011).
  17.  A.T. Eseye, J. Zhang, and D. Zheng, “ Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information”, Renew. Energy. 118, 357‒367 (2018).
  18.  Y. Li and X. Wnag, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679–685 (2019).
  19.  H. Koyuncu and R. Ceylan, “A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems”, J. Comput. Des. Eng. 6, 129‒142 (2019).
  20.  H. Liu, H.P. Wu, Y.F. Li, “Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction”, Energy Conv. Manag. 161, 266‒283 (2018).
  21.  M. Gratza, R. Witzmann, Ch.J. Steinhart, M. Finkel, M. Becker, T. Nagel, T. Wopperer, and H. Wackerl, “Frequency Stability in Island Networks: Development of Kaplan Turbine Model and Control of Dynamics”, in 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 2018, pp. 1‒7, doi: 10.23919/PSCC.2018.8442445.
  22.  M. Malvoni, M.G. D. Giorgi, and P.M. Congedo, “Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data”, Neurocomputing 211, 72‒83 (2016).
  23.  Y. Sun, Y. Liu, and H. Liu, “Temperature Compensation for a Six-Axis Force/Torque Sensor Based on the Particle Swarm Optimization Least Square Support Vector Machine for Space Manipulator”, IEEE Sensors Journal. 16(3), 798‒805 (2016).
  24.  X. Yan and N.A. Chowdhury, “Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach”, Int. J. Electr. Power Energy Syst. 53, 20‒26 (2013)
  25.  S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw. 69, 46‒61 (2014).
  26.  I.B.M. Taha and E.E. Elattar, “Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser”, IET Gener. Transm. Distrib. 12(14), 3421‒3434 (2018).
  27.  W. Long, J.J. Jiao, X.M. Liang, and M.Z. Tang, “Inspired grey wolf optimizer for solving large-scale function optimization problems”, Appl. Math. Model. 60, 112‒126 (2018).
  28.  Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 961–972 (2018).
  29.  D. Huang, S. He, X. He, and X. Zhu, “Prediction of wind loads on high-rise building using a BP neural network combined with POD”, J. Wind Eng. Ind. Aerodyn. 170, 1‒17 (2017).
  30.  A.L. Yang, W.D. Li, and X. Yang, “Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines”, Knowledge-Based Syst. 163, 159‒173 (2019).
  31.  N.A. Menad, Z. Noureddine, A. Hemmati-Sarapardeh, and S. Shamshirband, “Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes”, Fuel 242, 649‒663 (2019).
Go to article

Authors and Affiliations

Fannie Kong
1
ORCID: ORCID
Jiahui Xia
1
ORCID: ORCID
Daliang Yang
1
ORCID: ORCID
Ming Luo
1
ORCID: ORCID

  1. School of Electrical Engineering, Guangxi University, Nanning, 530000, China
Download PDF Download RIS Download Bibtex

Abstract

Structural health monitoring (SHM) of bridges is constantly upgraded by researchers and bridge engineers as it directly deals with bridge performance and its safety over a certain time period. This article addresses some issues in the traditional SHM systems and the reason for moving towards an automated monitoring system. In order to automate the bridge assessment and monitoring process, a mechanism for the linkage of Digital Twins (DT) and Machine Learning (ML), namely the Support Vector Machine (SVM) algorithm, is discussed in detail. The basis of this mechanism lies in the collection of data from the real bridge using sensors and is providing the basis for the establishment and calibration of the digital twin. Then, data analysis and decision-making processes are to be carried out through regression-based ML algorithms. So, in this study, both ML brain and a DT model are merged to support the decision-making of the bridge management system and predict or even prevent further damage or collapse of the bridge. In this way, the SHM system cannot only be automated but calibrated from time to time to ensure the safety of the bridge against the associated damages.
Go to article

Authors and Affiliations

Asseel Za'al Ode Al-Hijazeen
1
ORCID: ORCID
Muhammad Fawad
1 2
ORCID: ORCID
Michael Gerges
3
ORCID: ORCID
Kalman Koris
1
ORCID: ORCID
Marek Salamak
2
ORCID: ORCID

  1. Budapest University of Technology and Economics, Faculty of Civil Engineering, Muegyetem rkp. 3, 1111 Budapest, Hungary
  2. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 2A, 44-100 Gliwice, Poland
  3. University of Wolverhampton, Wulfruna St, Wolverhampton WV1 1LY, the United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Bearings are one of the pivotal parts of rotating machines. The health of a bearing is responsible for the hassle-free operation of a machine. As vibration signatures give intimations of machine failure at an earlier stage, mostly vibration-based condition monitoring is used to monitor bearing’s health for avoiding the risk of failure. In this work, a simulation-based approach is adopted to identify surface defects at ball bearing raceways. The vibration data in time and frequency domain is captured by FFT analyzer from an experimental setup. The time frequency domain conversion of a raw time domain data was carried out by wavelet packet transform, as it takes into account the transients and spectral frequencies. The rotor bearing model is simulated in Ansys. Finally, most influencing statistical features were extracted by employing Principal Component Analysis (PCA), and fed to Multiclass Support Vector Machine (MSVM). To train the algorithm, the simulated data is used whereas the data acquired from FFT analyzer is used for testing. It can be concluded that the defects are characterized by Ball Pass Frequency (BPF) at inner race and outer raceway as indicated in the literature. The developed model is capable to monitor bearing’s health which gives an average accuracy of 99%.
Go to article

Bibliography

[1] Z. Taha and N.T. Dung. Rolling element bearing fault detection with a single point defect on the outer raceway using finite element analysis. The 11th Asia Pacific Industrial Engineering and Management Systems Conference and the 14th Asia Pacific Regional Meeting of International Foundation for Production Research, Melaka, Malaysia, 7-10 Dec. 2010.
[2] P. Jayaswal, S.N. Verma, and A.K. Wadhwani. Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis. Journal of Vibration and Control, 17(8):1131–1148, 2011. doi: 10.1177/1077546310361858.
[3] V.V. Rao and Ch. Ratnam. A comparative experimental study on identification of defect severity in rolling element bearings using acoustic emission and vibration analysis. Tribology in Industry, 37(2):176–185, 2015.
[4] S. Shah and A. Guha. Bearing health monitoring. Tribology in Industry, 38(3):297–307, 2016.
[5] C. Ratnam, N.M. Jasmin, V.V. Rao, and K.V. Rao. A comparative experimental study on fault diagnosis of rolling element bearing using acoustic emission and soft computing techniques. Tribology in Industry, 40(3):501–513, 2018. doi: 10.24874/ti.2018.40.03.15.
[6] K. Kappaganthu and C. Nataraj. Modelling and analysis of outer race defects in rolling element bearings. Advances in Vibration Engineering, 11(4):371–384, 2012.
[7] P.K. Kankar, S.C. Sharma, and S.P. Harsha. Fault diagnosis of ball bearings using continuous wavelet transform. Applied Soft Computing, 11(2):2300–2312, 2011. doi: 10.1016/j.asoc.2010.08.011.
[8] A. Sharma, M. Amarnath, and P.K. Kankar. Feature extraction and fault severity classification in ball bearings. Journal of Vibration and Control, 22(1):176–192, 2014. doi: 10.1177/1077546314528021.
[9] V. Hariharan and P.S.S. Srinivasan. Vibration analysis of parallel misaligned shaft with ball bearing system. Sonklanakarin Journal of Science and Technology, 33(1):61–68, 2011.
[10] J.D. Wu and C.H. Liu. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network. Expert Systems with Applications, 36(3):4278–4286, 2009. doi: 10.1016/j.eswa.2008.03.008.
[11] J.S. Rapur and R.Tiwari. Experimental fault diagnosis for known and unseen operating conditions of centrifugal pumps using MSVM and WPT based analyses. Measurement, 147:106809, 2019. doi: 10.1016/j.measurement.2019.07.037.
[12] C. Cortes and V. Vapnik. Support vector network. Machine Learning, 20(3):273–297, 1995. doi: 10.1007/BF00994018.
[13] S. Damuluri, K. Islam, P. Ahmadi, and N.S. Qureshi. Analyzing navigational data and predicting student grades using support vector machine. Emerging Science Journal, 4(4):243–252, 2020. doi: 10.28991/esj-2020-01227.
[14] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, 2017. doi: 10.1201/9781315230962.
[15] V.C. Handikherkar and V.M. Phalle. Gear fault detection using machine learning techniques -- A simulation-driven approach. International Journal of Engineering, 34(1):212–223, 2021. doi: 10.5829/IJE.2021.34.01A.24.
[16] S. Patil and V. Phalle. Fault detection of anti-friction bearing using ensemble machine learning methods. International Journal of Engineering, 31(11):1972–1981, 2018.
[17] A.S. Minhas, G. Singh, J. Singh, P.K. Kankarand, and S. Singh. A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy. Measurement,154:107441, 2020. doi: 10.1016/j.measurement.2019.107441.
[18] www.mfpt.org
Go to article

Authors and Affiliations

Pallavi Khaire
1 2
ORCID: ORCID
Vikas Phalle
1

  1. Veermata Jijabai Technological Institute, Mumbai, India
  2. Fr. C. Rodrigues Institute of Technology, Navi Mumbai, India
Download PDF Download RIS Download Bibtex

Abstract

This article presents a study on music genre classification based on music separation into harmonic and drum components. For this purpose, audio signal separation is executed to extend the overall vector of parameters by new descriptors extracted from harmonic and/or drum music content. The study is performed using the ISMIS database of music files represented by vectors of parameters containing music features. The Support Vector Machine (SVM) classifier and co-training method adapted for the standard SVM are involved in genre classification. Also, some additional experiments are performed using reduced feature vectors, which improved the overall result. Finally, results and conclusions drawn from the study are presented, and suggestions for further work are outlined.
Go to article

Authors and Affiliations

Aldona Rosner
Bożena Kostek
Bjӧrn Schuller
Download PDF Download RIS Download Bibtex

Abstract

Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM) was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE), Non Dominated Sorting Genetic Algorithm (NSGA II) and Simulated Annealing (SA). It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.

Go to article

Authors and Affiliations

Deepak Kumar
Sudheer Ch
Shashi Mathur
Jan Adamowski
Download PDF Download RIS Download Bibtex

Abstract

Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods.

Go to article

Authors and Affiliations

Xin Xia
Xiaofeng Liu
Jichao Lou

This page uses 'cookies'. Learn more