Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Silurian Pelplin Formation is a part of a thick, mud-prone distal fill of the Caledonian foredeep, which stretches along the western margin of the East European Craton. The Pelplin Formation consists of organic carbon- rich mudstones that have recently been the target of intensive investigations, as they represent a potential source of shale gas. The Pelplin mudstones host numerous calcite concretions containing authigenic pyrite and barite. Mineralogical and petrographic examination (XRD, optical microscopy, cathodoluminoscopy, SEM-EDS) and stable isotope analyses (δ13Corg, δ13C and δ18O of carbonates, δ34S and δ18O of barite) were carried out in order to understand the diagenetic conditions that led to precipitation of this carbonate-sulfide-sulfate paragenesis and to see if the concretions can enhance the understanding of sedimentary settings in the Baltic and Lublin basins during the Silurian. Barite formed during early diagenesis before and during the concretionary growth due to a deceleration of sedimentation during increased primary productivity. The main stages of concretionary growth took place in yet uncompacted sediments shortly after their deposition in the sulfate reduction zone. This precompactional cementation led to preferential preservation of original sedimentary structures, faunal assemblages and early- diagenetic barite, which have been mostly lost in the surrounding mudstones during burial. These components allowed for the reconstruction of important paleoenvironmental conditions in the Baltic and Lublin basins, such as depth, proximity to the detrital orogenic source and marine primary productivity. Investigation of the concretions also enabled estimation of the magnitude of mechanical compaction of the mudstones and calculation of original sedimentation rates. Moreover, it showed that biogenic methane was produced at an early-diagenetic stage, whereas thermogenic hydrocarbons migrated through the Pelplin Formation during deep burial.

Go to article

Authors and Affiliations

Maciej J. Bojanowski
Artur Kędzior
Szczepan J. Porębski
Magdalena Radzikowska
Download PDF Download RIS Download Bibtex

Abstract

Measurements were made of sediment characteristics, benthic microbial activity and optimum temperature for sulfate reduction at Signy Island, South Orkney Islands, Antarctica . There was little evidence to support any seasonal variation in oxygen penetration of surface sediments. Oxygen penetrated to only 1.5 to 3 mm throughout the year, despite bioturbation from a dense amphipod population. The distribution of acid volatile sulfides increased with depth below 1 cm and above this, surface sediments were lighter in colour and contained fewer sulfides. The rates of sulfate reduction increased during winter under sea-ice cover, and remained high after ice break up. Seasonal water temperature was relatively constant between –1.8 and 0.5°C. Optimum temperature for anaerobic sediment respiration was investigated using different substrates and was found to be in the range 17–27°C, suggesting that sulfate reducing bacteria are psychrotolerant as they were inhibited by low temperatures.

Go to article

Authors and Affiliations

Tony R. Walker

This page uses 'cookies'. Learn more