Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Upper Greensand Formation, mostly capped by the Chalk, crops out on the edges of a broad, dissected

plateau in Devon, west Dorset and south Somerset and has an almost continuous outcrop that runs from the Isle

of Purbeck to the Vale of Wardour in south Wiltshire. The Formation is well exposed in cliffs in east Devon and

the Isle of Purbeck, but is poorly exposed inland. It comprises sandstones and calcarenites with laterally and

stratigraphically variable amounts of carbonate cement, glauconite and chert. The sedimentology and palaeon-

tology indicate deposition in marginal marine-shelf environments that were at times subject to strong tidal and

wave-generated currents. The formation of the Upper Greensand successions in the region was influenced by

penecontemporaneous movements on major fault zones, some of which are sited over E-W trending Variscan

thrusts in the basement rocks and, locally, on minor faults. Comparison of the principal sedimentary breaks in

the succession with the sequence boundaries derived from world-wide sea-level curves suggests that local tec-

tonic events mask the effects of any eustatic changes in sea level. The preserved fauna is unevenly distributed,

both laterally and stratigraphically. Bivalves, gastropods and echinoids are common at some horizons but are

not age-diagnostic. Ammonites are common at a few stratigraphically narrowly defined horizons, but are rare

or absent throughout most of the succession. As a result, the age of parts of the succession is still poorly known

Go to article

Authors and Affiliations

Ramues Gallois
Hugh Owen
Download PDF Download RIS Download Bibtex

Abstract

During geomorphologic mapping of northern seashore of Hornsund (Spitsbergen) a geomorphologic map of Revdalen and Fuglebergsletta was prepared in the scale of 1: 10 000. Distinct outwash routes and a moutonnee area was noted to the south of Rewatnet; at the same time, the destroyed marine terraces in the upper part of the valley and an occurrence of a ground moraine there, prove a Holocene glacier advance in Revdalen (about 2 400 years B. P.). The glaciers of that time slightly overcrossed a zone of the present southern limit of the Rev Lake but they did not fill entirely the middle part of the Revdalen.

Go to article

Authors and Affiliations

Andrzej Karczewski
Andrzej Kostrzewski
Leszek Marks
Download PDF Download RIS Download Bibtex

Abstract

Three tectonic units occur in folded stratified volcanic sequence on Barton Peninsula. Fossil flora (Del Valle et al. 1984) occurs in the basal part of the upper unit which age is not younger than Paleocene. The rocks of the middle and lower units are older, possibly Mesozoie.

Go to article

Authors and Affiliations

Antoni K. Tokarski
Władysław Danowski
Ewa Zastawniak
Download PDF Download RIS Download Bibtex

Abstract

The sedimentary environment, sediment characteristics and age−depth models of sediment sequences from Arctic lakes Revvatnet and Svartvatnet, located near the Polish Polar Station in Hornsund, southern Svalbard (77 ° N), were studied with a view to establishing a basis for paleolimnological climate and environmental reconstructions. The results indicate that catchment−to−lake hydroclimatic processes probably affect the transportation, distribution and accumulation of sediments in different parts of lakes Revvatnet and Svartvatnet. Locations with continuous and essentially stable sedimentary environments were found in both lakes between water depths of 9 and 26 m. We used several different dating techniques, including 137 Cs, 210 Pb, AMS 14 C, and paleomagnetic dating, to provide accurate and secured sediment chronologies. A recovered sequence from the northern basin of Revvatnet spans more than one thousand years long with laminated stratigraphy in the upper part of the sediment. Based on AMS 14 C dates, it is possible to suppose that Revvatnet basin was not occupied by a valley glacier during the Little Ice Age. The dates were supported by 137 Cs chronologies, but not confirmed with other independent dating methods that extent beyond the last 50 years. A sedimentary sequence from the northern basin of Svartvatnet provides a potential archive for the study of climate and environmental change for the last ca. 5000 years. Based on the stratigraphy and a Bayesian age−depth model of AMS 14 C and paleosecular variation (PSV) dates, the recovered sediment sections represent a continuous and stable sedimentation for the latter half of the Holocene.
Go to article

Authors and Affiliations

Marek Zajączkowski
Antti E.K. Ojala
Laura Arppe
Tomi P. Luoto
Lukas Wacker
Eija Kurki
Joanna Pawłowska
Mateusz Damrat
Mimmi Oksman
Download PDF Download RIS Download Bibtex

Abstract

What is a Global Stratotype Section and Point (GSSP) benchmark, and what role does it play in delineating geological boundaries?
Go to article

Authors and Affiliations

Andrzej Wierzbowski
1

  1. Faculty of Geology, University of Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The Lower Devonian (Emsian) and Middle Devonian of Belarus contain assemblages of biostratigraphically useful faunal and floral microremains. Surface deposits are few, with most material being derived from borehole cores. Acanthodian scales are particularly numerous and comparison with scales from other regions of the Old Red Sandstone continent (Laurussia), specifically the Orcadian Basin of Scotland, the Baltic Region, Spitsbergen, and Severnaya Zemlya have demonstrated a lot of synonymy of acanthodian species between these areas. This is especially the case between Belarus, the Orcadian Basin and the Baltic Region, which has allowed us to produce an interregional biostratigraphic scheme, as well as to postulate marine connection routes between these areas. The acanthodian biostratigraphy of Belarus is particularly important as it is associated with spores and marine invertebrates, so giving the potential of more detailed correlations across not only the Old Red Sandstone continent, but elsewhere in the Devonian world. We also demonstrate that differences in preservation (e.g., wear and how articulated a specimen is) is one of the main reasons for synonymy.
Go to article

Authors and Affiliations

Dmitry P. Plax
1
Michael Newman
2
ORCID: ORCID

  1. Belarusian National Technical University (BNTU), Nezavisimosti Avenue 65, 220013 Minsk, Republic of Belarus
  2. Vine Lodge, Vine Road, Johnston, Haverfordwest, SA62 3NZ Pembrokeshire, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The δ18O data for the last 8000 years in the Greenland NGRIP1, GRIP, DYE-3 and GISP2 ice cores have been analyzed stratigraphically in search of potentially meaningful boundaries and units. Pattern matching of the profiles is supported by using graphical display enhancements, calculating spectral trend curves and generating a compound profile. Techniques routinely used in subsurface geology have been applied in correlating the profiles. Four major stratigraphic units are identified (8.1–4.9, 4.9–3.3, 3.3–1.9 and 1.9–0.1 ka b2k), resulting in an improved understanding of the climate change after the Holocene Climate Optimum. Correlatable higher-order boundaries are identified within these units. The layers between the boundaries show δ18O patterns which generally are similar in character, the differences being ascribed to lateral variations in the factors that control the isotope content of the ice. The layering forms a series of short-lived low-amplitude aperiodic oscillations on a centennial time scale. The suggestion is that these higher-order boundaries and δ18O oscillations have climatic significance. Equivalent units are tentatively identified in ice-core data from the Agassiz and Renland ice caps. Comparison with other climate proxies or stratigraphies from the Northern Hemisphere is expected to render support for the here proposed scheme. It will then serve to guide and constrain the analysis of the dynamics of the climatic fluctuations for the study period.

Go to article

Authors and Affiliations

Matheus G.G. De Jong
Arie C. Seijmonsbergen
Leo W.S. De Graaff
Download PDF Download RIS Download Bibtex

Abstract

Attempt of correlation of raised marine beaches and glacial episodes in West Spitsbergen is presented for the Middle and the Late Quaternary. A model of predominating Barents Sea shelf ice sheet during the Saalian and of co-existing distinct local ice domes during the Vistulian is postulated on the basis of varying land uplift. Glacial episodes in Spitsbergen are referred to the ones in continental Europe and North America. Rough prognosis of climatic trends is introduced.

Go to article

Authors and Affiliations

Leszek Lindner
Leszek Marks
Download PDF Download RIS Download Bibtex

Abstract

Studies of the Quaternary evolution of the Hornsund Region in Spitsbergen focused in nine key areas, in which detailed fieldworks with mapping and sampling to radiocarbon and thermoluminescence analyses have been done. Glacial history of the Hornsund Region is known from the Torellkjegla (Holsteinian) Interglacial up to the recent times. The Wedel Jarlsberg Land (Saalian) Glaciation was the most widespread in this part of Spitsbergen and consisted of two stades(?). It was followed by considerable glacier retreat during the Bogstranda (Eemian) Interglacial, the latter being represented by development of soils. Four glacier advances (the two younger ones are the Lisbetdalen and the Slaklidalen stages) occurred during the Sörkapp Land (Vistulian) Glaciation. Three glacier advances (Gronfjorden and Revdalen stages, followed by the Little Ice Age) were recognized for the Holocene. The oldest and highest (although somewhat questionable) raised marine beaches come presumably from the Wedel Jarlsberg Land Glaciation. The beaches 80-100 m a.s.l. were formed during the Bogstranda (Eemian) Interglacial. The beaches 20-60 m a.s.l. are correlated with the Sórkapp Land Glaciation. All the lower marine beaches were formed during the Holocene.

Go to article

Authors and Affiliations

Leszek Lindner
Leszek Marks
Download PDF Download RIS Download Bibtex

Abstract

During the late Oligocene to early Miocene the residual Magura Basin was located along the front of the Pieniny Klippen Belt (PKB). This basin was supplied with clastic material derived from a south-eastern direction. In the Małe (Little) Pieniny Mts. in Poland, the late Oligocene/ early Miocene Kremna Fm. of the Magura Nappe (Krynica subunit) occurs both in front of the PKB as well as in the tectonic windows within the PKB. Lenses of exotic conglomerates in the Kremna Fm. contain frequent clasts of Mesozoic limestones (e.g. limestones with “filaments” microfacies and Urgonian limestones) and Eocene shallow-water limestones. Fragments of crystalline and volcanic rocks occur subordinately. The provenance of these exotic rocks could be probably connected with Eocene exhumation and erosion of the SE part of the Dacia and Tisza Mega-Units.

Go to article

Authors and Affiliations

Nestor Oszczypko
Marta Oszczypko-Clowes
Barbara Olszewska
Download PDF Download RIS Download Bibtex

Abstract

In Butkov Quarry, ammonites of the families Holcodiscidae Spath, 1923 and Barremitidae Breskovski, 1977 occur in the pelagic Lower Cretaceous pelagic deposits of the Manín Unit. This contribution discusses the taxonomy of both families and presents their distribution in the layered sequences of the quarry. The genus Spitidiscus Kilian, 1910 classified as a member of the Superfamily Perisphinctoidea Steinmann in Steinmann and Döderlein, 1890 is an important representative of the Holcodiscidae from a stratigraphic point of view. In areas where the zonal index Acanthodiscus radiatus (Bruguière, 1789) does not occur, as in Butkov Quarry, the first representatives of Spitidiscus indicate the base of the Hauterivian. The genus Plesiospitidiscus Breistroffer, 1947 was long regarded as a member of the Superfamily Desmoceratoidea Zittel, 1895. This superfamily was based on its type species, Eodesmoceras celestini (Pictet and Campiche, 1860), which is not Valanginian in age, as now clearly proven. As a consequence, this superfamily is considered invalid. Vermeulen and Lahondère (2011) proposed an alternative by selecting a suitable initial genus, namely Plesiospitidiscus, for the Family Barremitidae, Superfamily Barremitoidea Breskovski, 1977 ( nom. transl. Vermeulen and Lahondère, 2011).
Go to article

Bibliography

Aguirre Urreta, M.B. and Rawson, P.F. 2003. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: the Hauterivian genus Holcoptychites. Cretaceous Research, 24, 589–613.
Arkell, W.J., Kummel, B. and Wright, C.W. 1957. Mesozoic Ammonoidea. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology, part L, Mollusca 4, Cephalopoda, Ammonoidea, 80–437. The Geological Society of America & The University of Kansas Press; New York & Lawrence.
Avram, E. 1995. Representantives of the family Holcodiscidae Spath, 1924 (Ammonitina) in Rumania. Memoire descrittive della Carta Geologica d’Italia, 51, 11–45.
Avram, E. and Grădinaru, E. 1993. A peculiar Upper Valanginian cephalopod fauna from the Carpathian Bend (Codlea Town Area), Romania): biostratigraphic and paleobistratigraphic implications. Jahrbuch der Geologischen Bundesanstalt, 136, 665–700.
Besaire, H. 1936. Recherches géologiques à Madagascar 1. La geologie du Nord-Ouest. Mémoires de l’Academie Malgache, 21, 1–259.
Borza, K., Michalík, J. and Vašíček, Z. 1987. Lithological, biofacial and geochemical characterization of the Lower Cretaceous pelagic carbonate sequence of Mt. Butkov (Manín Unit, Western Carpathians). Geologický Zborník Geologica Carpathica, 38, 323–348.
Breistroffer, M. 1947. Sur les zones d’ammonites de l’Albien de France et d’Angleterre. Travaux du Laboratoire de Géologie de la Faculté des Sciences de l’Université de Grenoble, 26, 17–104.
Breskovski, S. 1977. Sur la classification de la famille Desmoceratidae Zittel, 1895 (Ammonoidea, Crétacé). Comptes Rendu de l’Académie bulgare des Sciences, 30 (6), 891–894.
Bruguière, J.G. 1789. Histoire naturelle des Vers et des Mollusques. Encyclopédie méthodique, part 1, 344 pp. Panckoucke; Paris.
Bulot, L.G., Thieuloy, J.-P., Blanc, E. and Klein, J. 1993. Le cadre stratigraphique du Valanginien supérieur et de l’Hauterivien du Sud-Est de la France: Définition des biochronozones et caracterisation de nouveaux biohorizons. Géologie Alpine, 68 (1992), 13–56.
Busnardo, R., Charollais, J.-J., Weidmann, M. and Clavel, B. 2003. Le Crétacé inférieur de la Veveyse de Châtel (Ultrahelvétique des Préalpes externes; canton de Fribourg, Suisse). Revue de Paléobiologie, 22, 1–174.
Busnardo, R. and Thieuloy, J.-P. 1989. Les ammonites de l’Hauterivien Jurassien: révision des faunes de la region de l’étage Hauterivien. Mémoires de la Société Neuchâteloise des Sciences Naturelles, 11, 101–147.
Cecca, F., Faraoni, P. and Marini, A. 1998. Latest Hauterivian (Early Cretaceous) ammonites from Umbria-Marche Apennines (Central Italy). Palaeontographia Italica, 85, 61–110.
Cooper, M.R. 1981. Revision of the late Valanginian Cephalopoda from the Sundays River Formation of South Africa, with special reference to the genus Olcostephanus. Annals of the South African Museum, 83, 147–366.
Dimitrova, N. 1967. Les fossils de Bulgarie IV. Crétacé in férieur, Cephalpoda (Nautiloidea et Ammonoidea), 124 pp. B’lgarska Akademiya na Naukite; Sofia. [In Bulgarian]
Duraj, M., Filák, P. and Vašíček, Z. 1990. Ammoniten des Desmoceratentyps aus Ablagerungen der Hauterive-Barréme- Grenze von der Lokalität Lietavská Lúčka bei Žilina (Westkarpaten, Krížna-Decke). Knihovnička Zemního plynu a nafty, 9a, 55–68.
Fallot, P. and Termier, H. 1923. Ammonites nouvelles des Iles Baléares. Trabajos del Museo Nacional de Ciencias Naturales, Madrid, Serie Geológica, 32, 1–85.
Fischer, J.-C. and Gauthier, H. (Eds). 2006. Révision critique de la Paléontologie française d’Alcide d’Orbigny, incluant la réedition de l’original, vol. IV – Céphalopodes Crétacés, 35 pp. Backhuys Publishers; Leiden.
Főzy, I. and Janssen, N.N.M. 2006. The stratigraphic position of the ammonites bearing limestone bank of the Márvány-bánya quarry (Zirc, Bakony Mts, Hungary) and these of the Borzavár Limestone Formations. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2006 (1), 41–64.
Gorn, N.K. 1969. Almella almensis – new ammonite from the Barremian deposits of Crimea. Vestnik Leningradskogo Univerziteta, Geologiya – Geografiya, 12, 84–90. [In Russian]
Haug, E. 1889. Beitrag zur Kenntniss der oberneocomen Ammonitenfauna der Puezalpe bei Corvara (Südtirol). Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 7, 193–321.
Hoedemaeker, Ph.J. 1995. Ammonite desitribution around the Hauterivian–Barremian boundary along Río Argos (Caravaca, SE Spain). Géologie Alpine, Mémoire Hors Série, 20 (for 1994), 219–277.
Honnorat-Bastide, É.F. 1891. Sur une forme nouvelle ou peu connue de Céphalopodes du Crétacé inférieur des Basses Alpes (Ammonites Julianyi, nov. sp.). L’association scientifique de France, Compte Rendu de la 19me Session, Limoges 1890, second partie, Notes et Memoires, 387–389. Imprimerie Chaix; Paris.
Hyatt, A. 1900. Cephalopoda. In: Zittel, K.A. von, Textbook of Paleontology, 1st English edition, translated by C.R. Eastman, 502–592. Macmillan; London & New York.
Immel, H. 1987. Die Kreideammoniten der nördlichen Kalkalpen. Zitteliana, 15, 3–163.
Karakasch, N.I. 1907. Le Crétacé inférieur de la Crimée et sa faune. Trudy imperatorskago S.-Peterburskago obshchestva estestvoispytatelei, Otdelenie Geologii i Mineralogii, 32 (5), 1–482. [In Russian]
Kemper, E., Rawson, P.F. and Thieuloy, J.-P. 1981. Ammonites of Tethyan ancestry in the early Lower Cretaceous of northwest Europe. Palaeontology, 24, 251–311.
Kilian, W. 1910. Erste Abteilung: Unterkreide (Palaeocretacicum). Lieferung 2: Das bathyale Palaeocretacicum im südostlichen Frankreich; Valendis-Stufe; Hauterive-Stufe; Barreme-Stufe; Apt-Stufe. In: Frech, F. (Ed.), Lethaea Geognostica, II. Das Mesozoikum, Band 3 (Kreide), 169–288. Schweitzerbart; Stuttgart.
Kilian, W. and Reboul, P. 1915. Contribution à l’étude des faunes paléocrétacés du Sud-Est de la France. II. Sur quelques ammonites de l’Hauterivien de la Bégude (La Begüe) (Basses Alpes). Matériaux pour l’étude de la faune de l’Hauterivien des environs de Moustiers-Sainte-Marie, La Palud et Châteauneuf-les-Moustiers (Basses Alpes). Mémoires pour servir a l’éxplication de la carte géologique détaillée de la France, 225–296. Imprimerie Nationale; Paris.
Klein, J. 2005. Lower Cretaceous Ammonites I, Perisphinctaceae 1 – Himalayitidae, Olcostephanitidae, Holcodiscidae, Neocomitidae, Oosterellidae. Fossilium Catalogus, I: Animalia, pars 139, pp. 484. Backhuys Publishers; Leiden.
Klein, J. and Vašíček, Z. 2011. Lower Cretaceous Ammonites V, Desmoceratoidea. Fossilium Catalogus, I: Animalia, pars 148, 311 pp. Backhuys Publishers, Margraf Publishers; The Netherlands.
Mandov, G.K. 1976. L’étage Hauterivien dans les Balkanides occidentales (Bulgarie de l’ouest) et sa faune d’ammonites. Annuaire de l’Université de Sofia, Livre 1, Géologie, 67, 11–99.
Michalík, J. and Vašíček, Z. 1987. Geology and stratigraphy of the Lower Cretaceous limestone deposists (Manín Unit, Middle Váh Valley, Western Slovakia). Mineralia Slovaca, 19, 115–134. [In Slovakian]
Michalík, J., Vašíček, Z. (Eds), Boorová, D., Golej, M., Halásová, E., Hort, P., Ledvák, P., Lintnerová, O., Reháková, D., Schlögl, J., Skupien, P., Smrečková, M., Soták, J., Šimo, V., Šimonová, V. and Zahradníková, B.B. 2013. The Butkov Hill – a stone archive of Slovakian mountains and the Mesozoic sea life history, 164 pp. Veda; Bratislava.
Mutterlose, J., Rawson, P., Reboulet, S., Baudin, F., Bulot, L., Emmanuel, L., Gardin, S., Martinez, M. and Renard, M. 2020. The Global Boundary Stratotype and Point (GSSP) for the base of the Hauterivian Stage (Lower Cretaceous), La Charce, southeast France. Episodes, doi: 10.18814/epiiugs/2020/020072.
Nagy, I. 1968. Unterkretazische Cephalopoden aus dem Gerecse-Gebirge II. Annales historico-naturales Musei Nationalis Hungarici, 60, 41–59.
Nikolov, T.G. and Breskovski, S. 1969. Abrytusites – nouveau genre d’ammonites Barrémiennes. Bulletin of the Geological Institute (série Palaeontology), 18, 91–96.
Orbigny, A. d’. 1840–1842. Paléontologie française. Description zoologique et géologique de tous les animaux mollusques et rayonnés fossiles de France. Terrain Crétacés, vol. 1, Céphalopodes, 121–430 (1841). Masson; Paris.
Paquier, V.L. 1900. Recherches géologiques dans le Diois et les Baronnies orientales. Bulletin de la Société de Statistique des Sciences Naturelles et des Arts Industriels de Departement de l’Isere, Grenoble (series 4), 5, 77–476. (Appendice paléontologique I–VII).
Pictet, F.J. and Campiche, G. 1860. Description des fossiles du terrain Crétacé des environs de Sainte Croix, part 1. Matériaux pour la Paleontologie Suisse (series 2), 209– 380. J. Kessmann & H. Georg; Genève.
Rawson, P.F. and Aguirre-Urreta, M.B. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: The Hauterivian genus Spitidiscus. Cretaceous Research, 33, 97–105.
Reboulet, S. 1996. L’évolution des ammonites du Valanginien– Hauterivien inférieur du bassin vocontien et de la plateforme provençale (Sud-Est de la France): relations avec la stratigraphie séquentielle et implications biostratigraphiques. Documents des Laboratoires de Géologie Lyon, 137 (for 1995), 1–371.
Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Frau, C., Kakabadze, M.V., Klein, J., Moreno- Bedmar, J.A., Lukender, A., Pictet, A., Ploch, I., Raisossadat, S.N., Vašíček, Z., Baraboshkin, E.J. and Mitta, V.V. 2018. Report on the 6th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Vienna, Austria, 20th August 2017). Cretaceous Research, 91, 100–110.
Rodighiero, A. 1919. Il sistena Cretaceo del Veneto occidentale compreso fra l’Adige e il Piave, con speciale riguardo al Neocomiano dei Sette Comuni. Palaentographia Italica, Memoire di Paleontologia, 25, 39–125. Salfeld, H. 1921.
Kiel- und Furchenbildung auf der Schalenaussenseite der Ammonoideen in ihrer Bedeutung für die Systematik und Festlegung von Biozonen. Zentralblatt für Mineralogie, Geologie und Paläontologie, 1921, 343–347.
Sarasin, Ch. and Schöndelmayer, Ch. 1901. Étude monographique des ammonites du Crétacique inférieur de Chatel-Saint- Denis. Mémoires de la Société Paléontologique Suisse, 28, 1–91.
Sowerby, J. de C. 1827. The Mineral Conchology of Great Britain, part 98. In: Sowerby, J. and Sowerby, J. de C. (1812– 1846), The Mineral Conchology of Great Britain, vol. 6, 133–140. Meredith; London.
Spath, L.F. 1922. On the Senonian ammonite fauna of Pondoland. Transactions of the Royal Society of South Africa, 10, 113–148. Spath, L.F. 1923. A Monograph of the Ammonoidea of the Gault. Part 1, 72 pp. Palaeontographical Society; London.
Spath, L.F. 1930. On the Cephalopoda of the Uitenhage Beds. Annals of the South African Museum, 28, 131–157. Steinmann, G. 1890. Cephalopoda. In: Steinmann, G. and Döderlein, L. (Eds), Elemente der Paläontolologie, 848 pp. Wilhelm Engelmann; Leipzig.
Thieuloy, J.-P. 1972. Biostratigraphie des lentilles a peregrinelles (brachiopodes) de l’Hauterivien de Rottier (Drome, France). Géobios, 5 (1), 5–53.
Thomel, G. 1980. Ammonites, 227 pp. Serre; Nice. Tzankov, V. and Breskovski, S. 1985. Ammonites des familles Holcodiscidae Spath, 1924 et Astieridiscidae Tzankov et Breskovski, 1982, II. Description paléontologique. Geologica Balcanica, 15 (5), 3–51.
Vašíček, Z. 2002. Lower Cretaceous Ammonoidea in the Podbranč quarry (Pieniny Klippen Belt, Slovakia). Bulletin of the Czech Geological Survey, 77 (3), 187–200.
Vašíček, Z. 2006. A remarkable assemblage of Early Barremian ammonites in the Central Western Carpathians (Butkov Quarry, Slovakia). Acta Geologica Polonica, 56, 421–440.
Vašíček, Z. 2010. Early Cretaceous ammonites from the Butkov Quarry (Manín Unit, Central Western Carpathians, Slovakia). Acta Geologica Polonica, 60 (3), 393–415.
Vašíček, Z. 2020a. Tescheniceras gen. nov. (Ammonoidea) and the definition of the Valanginian/Hauterivian boundary in Butkov Quarry (Central Western Carpathians, Slovakia). Acta Geologica Polonica, 70, 569–584.
Vašíček, Z. 2020b. Early Cretaceous ammonites of the superfamily Bochianitoidea from the Butkov Quarry (Central Western Carpathains, Slovakia). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 298 (1), 78–85.
Vašíček, Z. and Michalík, J. 1986. The Lower Cretaceous ammonites of the Manín Unit (Mt. Butkov, West Carpathians). Geologický Zborník Geologica Carpathica, 37 (4), 449–481.
Vašíček, Z. and Michalík, J. 1999. Early Cretaceous ammonoid paleobiogeography of the West Carpathian part of the Paleoeuropean shelf margin. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 212 (1–3), 241–262.
Vašíček, Z., Michalík, J. and Reháková, D. 1994. Early Cretaceous stratigraphy, palaeogeography and life in the Western Carpathians. Beringeria, 10, 3–169.
Vašíček, Z., Rabrenović, D., Radulović, V.J., Radulović, B.V. and Mojsić, I. 2013. Ammonoids (Desmoceratoidea and Silesitoidea) from the Late Barremian of Boljetin, eastern Serbia. Cretaceous Research, 41, 39–54.
Vermeulen, J. 2005. Sur quatre espèces particulières d’ammonites du Barrémien du sud-est de la France. Annales du Muséum d’Histoire Naturelle de Nice, 20, 1–24.
Vermeulen, J. 2007a. Boundaries, ammonite fauna and main subdivisions of the stratotype of the Barremian. Géologie Alpine, 2005 (Corrected reprint), série spéciale “Colloques et excursions”, 7, 147–173.
Vermeulen, J. 2007b. Nouvelles données sur l’évolution et la classification des Holcodiscidae Spath, 1923 (Ammonitida, Ammonitina, Silesitoidea). Annales du Muséum d’Histoire Naturelle de Nice, 22, 87–100.
Vermeulen, J., Clement, A. and Autran, G. 1999. Un nouveau repère biostratigraphique dans l’Hauterivien supérieur du Sud-Est de la France: l’horizon à Subsaynella begudensis. Riviéra Scientifique, 1999 (1), 71–78.
Vermeulen, J. and Lahondère, J.-C. 2011. Sur quelques espèces d’ammonites du Barremien utra-tellien de la région de Constantine, Algérie. II. Holcodiscidae et Astieridiscidae (Ammonitina). Annales du Muséum d’Histoire Naturelle de Nice, 26, 17–46.
Vermeulen, J., Lazarin, P., Lépinay, P., Leroy, L. and Mascarelli, E. 2014. Ammonites du Barrémien du Sud-Est de la France (Ammonitina, Ancyloceratina, Turrilitina). Strata, série 2, mémoires, 50, 1–95.
Vermeulen, J., Lazarin, P., Lépinay, P., Leroy, L. and Mascarelli, E. 2017. Sur quelques Holcodiscidae (Ammonitina, Barremitoidea) du Barrémien du Sud-Est de la France. Riviéra Scientifique, 101, 65–80.
Vermeulen, J. and Thieuloy, J.-P. 1999. Conceptions nouvelles de l’évolution et de la classification de la famille Holcodiscidae Spath, 1923 (Ammonoidea, Desmocerataceae). Comptes Rendus Académie des Sciences Paris, Sciences de la terre et des planètes, 329, 363–367.
Weber, E. 1942. Beitrag zur Kentniss der Rossfeldschichten und ihrer Fauna. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage Band, B 86, 247–281.
Winkler, G.G. 1868. Versteinerungen aus dem bayerischen Alpengebiet mit geognostischen Erläuterungen. I. Die Neocomformation der Urschlauerachenthales bei Traunstein mit Rücksicht auf ihre Grenzschichten, 48 pp. Verlag der J. Lindauer’schen Buchhandlung; München.
Wippich, M.G.E. 2001. Die tiefe Unter-Kreide (Berrias bis Unter- Hauterive) im südwestmarokkanischen Becken: Ammonitenfauna, Bio- und Sequenzstratigraphie, 142 pp. Unpublished Thesis, Universität Bochum.
Wright, C.W. 1955. Notes on Cretaceous ammonites – II. The phylogeny of the Desmocerataceae and the Hoplitidae. The Annals and Magazine of Natural History (twelfth series), 92, 561–575.
Wright, C.W., Callomon, J.H. and Howarth, M.K. 1996. Cretaceous Ammonoidea. Treatise on Invertebrate Paleontology, part L, Mollusca 4 Revised, 362 pp. The Geological Society of America & The University of Kansas Boulder; Colorado & Lawrence, Kansas.
Wright, C.W. and Kennedy, W.J. 1984. The Ammonoidea of the Lower Chalk, Part 1. Monograph of the Palaeontographical Society, 137 (1983), 1–126.
Zittel, K.A. von 1895. Grundzüge der Paläontologie, 971 pp. Oldenburg; München, Leipzig.
Go to article

Authors and Affiliations

Zdeněk Vašíček
1
Jaap Klein
2

  1. Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, CZ-708 00 Ostrava-Poruba, Czech Republic
  2. Demmerik 12, NL-3645 EC Vinkeveen, The Netherlands
Download PDF Download RIS Download Bibtex

Abstract

Several closely-spaced phosphorite beds stand out at the Albian–Cenomanian transition in the mid-Cretaceous transgressive succession at the northeastern margin of the Holy Cross Mountains, central Poland. They form a distinctive condensed interval of considerable stratigraphical, palaeontological, and economic value. Here, we correlate the classical section at Annopol with a recently investigated section at Chałupki. We propose a new stratigraphic interpretation of the phosphorite interval, based on lithological correlations, Rare Earth Elements and Yttrium (REE+Y) signatures of phosphorites, age-diagnostic macrofossils, and sequence stratigraphic patterns. This interval has long been considered as exclusively Albian in age. However, new macrofossil data allow us to assign the higher phosphorite levels at Annopol and Chałupki, which were the primary target for the phosphate mining, to the lower Cenomanian. In terms of sequence stratigraphy, the phosphorite interval encompasses the depositional sequence DS Al 8 and the Lowstand System Tract of the successive DS Al/Ce 1 sequence. The proposed correlation suggests that lowstand reworking during the Albian–Cenomanian boundary interval played an important role in concentrating the phosphatic clasts and nodules to exploitable stratiform accumulations. Our conclusions are pertinent to regional studies, assessments of natural resources (in view of the recent interest in REE content of the phosphorites), and dating of the fossil assemblages preserved in the phosphorite interval. On a broader scale, they add to our understanding of the formation of stratiform phosphorite deposits.
Go to article

Authors and Affiliations

Marcin Machalski
1
Danuta Olszewska-Nejbert
2
Markus Wilmsen
3

  1. Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL 00-818 Warszawa, Poland
  2. University of Warsaw, Faculty of Geology, ul. Żwirki i Wigury 93, PL 02-089 Warszawa, Poland
  3. Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Konigsbrücker Landstr. 159, D-01109 Dresden, Germany
Download PDF Download RIS Download Bibtex

Abstract

Loess is an important component of cave deposits. Loess and loess-like strata in caves and rock shelters may serve as stratigraphic correlative units and paleoclimate indicators. For the Polish Jura (southern Poland), one of the key regions of cave deposits studies in Europe, the published information concerning the stratigraphic importance of loess is limited to the sequences from around the Last Glacial Maximum (LGM). In this paper, a review of the archival data about loess deposits situated below the LGM strata in caves and rock shelters of the Polish Jura is presented. The paper discusses the occurrence, lithology, stratigraphy, chronology and paleoecology of the pre-LGM cave loess. The most important sites of the pre-LGM cave loess in the region include: Biśnik Cave, Nietoperzowa Cave, Mamutowa Cave, and Ciemna Cave (only the outer zones). The loess strata in these sites correlate with cold Marine Isotope Stages (MIS): mid-3, 4, 5b–d, 6, and possibly 10. They represent all the main facies of cave loess: typical eolian loess, colluviated loess-like deposits, loess with bedrock debris, and loams of complex grain-size composition but with the predominance of a loess component. Stratigraphic correlations with loess-paleosol sequences are proposed.
Go to article

Authors and Affiliations

Maciej T. Krajcarz
1

  1. Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The lithostratigraphy, biostratigraphy, sequence stratigraphy, ammonite and inoceramid faunas of the Upper Albian, Cenomanian, and Lower Turonian Karai Formation, the highest unit of the Uttatur Group in the Pondicherry Sub-Basin of the Cauvery Basin in Tamil Nadu, south India, are documented. Detailed logs and descriptions of sections between Karai and Kulakkalnattam, Odiyam and Kunnam, and north-west of Garudamangalam are presented. They provide the evidence for an ammonite zonal scheme that can be correlated in detail with sequences developed in Europe, with successive Upper Albian zones of Pervinquieria (Subschloenbachia) rostrata and P. (S.) perinflata (the latter on slight evidence), Cenomanian zones of Mantelliceras mantelli, Cunningtoniceras cunningtoni, Calycoceras (Newboldiceras) asiaticum, Pseudo calycoceras harpax, Euomphaloceras septemseriatum and Pseudspidoceras footeanum. The Lower Turonian is represented by a Neoptychites cephalotus–Mytiloides borkari fauna. Over 120 ammonite species are described, of which Puzosia (Bhimaites) falx, Protacanthoceras parva, Watinoceras elegans, Euomphaloceras varicostatum, Kamerunoceras multinodosum, and Carthaginites multituberculatus are new. The new genus Kunnamiceras, with Ammonites tropicus Kossmat, 1865 as type species, is interpreted as a paedomorphic dwarf derivative of Pseudocalycoceras harpax (Stoliczka, 1864). Ammonite faunas from shales are dominated by feebly-ornamented taxa: leiostraca; those from sandstones by strongly ornamented taxa: trachyostraca, differences interpreted as reflecting the preferred habits of adults in life. 15 species of inoceramid bivalves, including a newly described species Inoceramus chiplonkari, are recognised, with a mixed East African–Euramerican–North Pacific affinity. On the basis of the stratigraphic framework developed, a sequence stratigraphic interpretation of the Karai Formation is proposed, and correlated with those recognised in Europe, Morocco, and the United States Gulf Coast and Western Interior.

Go to article

Authors and Affiliations

Andrew S. Gale
William J. Kennedy
Ireneusz Walaszczyk
Download PDF Download RIS Download Bibtex

Abstract

Butkov Quarry provides the best exposed stratigraphic sequence of marly limestones with Early Cretaceous ammonites in the Manín Nappe of the Central Western Carpathians. The presented paper deals with the sporadically occurring zonal ammonites, or ammonites of guiding character, from the Lower Valanginian to Upper Hauterivian. Sixteen species are taxonomically elaborated here in detail. More attention is given to the basic taxonomy of the Subfamily Crioceratitinae Gill, 1871. The species described here, like most of the previously published species from Butkov Quarry, are representatives of the Mediterranean bioprovince and are close to the ammonite association from the Vocontian Basin.
Go to article

Authors and Affiliations

Zdeněk Vašíček
1

  1. Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, CZ-70800 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

This paper presents discussion on the results of subfossil Cladocera analyses from five lakes in Poland (Przedni Staw Lake, Perespilno Lake, Gościąż Lake, Imiołki- fossil lake and Ostrowite Lake). The Cladocera are represented in sediments by remains of planktonic (Bosminidae, Daphnidae) and littoral (Chydoridae) forms. Cladoceran assemblage phases ("ecostratigraphy") were determined on the basis of changes in dominance of indicator species and past ecological conditions were reconstructed. The results are being discussed from the viewpoint of climate change and anthropogenic activity and their role in the lake evolution. Moreover, an attempt to use the cladoceran phases for stratigraphic division of the Late Glacial and Holocene was made. During the Bolling/Allerod interstadial, distinguished on the basis of Pollen analysis, Cladocera indicated short phase of bad condition (dry or cold?), probably as the Old Dryas climate results. The beginning of Holocene are characterized, in mountain and lowland lakes, by high increase in the number of species and specimens of Cladocera. This described clear warming and marked the boundary Late Glacial/Holocene. It was indicated that the "ecostratigraphy" based on Cladocera can be useful for climatostratigraphy, if climate was the major factor controlling the development of freshwater lakes.
Go to article

Authors and Affiliations

Krystyna Szeroczyńska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of studies focused on occurrence and correlation of four main horizons of Younger Loesses: Lowest Younger Loess (LMn – after Maruszczak, 2001), Lower Younger Loess (LMd), Middle Younger Loess (LMs), and Upper Younger Loess (LMg) recorded in five sections (Politów, Wąchock, Nietulisko Małe, Komorniki and Bodzechów) in the Holy Cross Mountains area. All analysed loesses were accumulated during the Vistulian Glaciation (Weichselian). The horizons were distinguished based on separating interstadial tundra soils, coupled with thermoluminescence dating, and correlated with marine oxygen-isotope stages MIS 5d−2. The Lowermost Younger Loess (LMn) covers the Nietulisko I soil complex (Jersak, 1973), developed on deposits of the Odranian Glaciation (MIS 6) and representing a forest soil of the Eemian Interglacial (MIS 5e) and the Brørup warming (MIS 5c). A thin horizon of the Oldest Younger Loess and a thin sandy horizon, both probably corresponding to the Herning cooling phase (MIS 5d) at the boundary with the Eemian Interglacial, were distinguished within this complex. Based on previously performed grain-size and heavy mineral analysis of the Upper Younger Loess (LMg) and a topographic position of the loesses in four loessy islands of diverse regional extent, accumulation of this loess in the Holy Cross Mountains area is found to have been stimulated by the western winds. The proposed model of loess accumulation takes into account the influence of the topography of the area and its geological structure.

Go to article

Authors and Affiliations

Jan Dzierżek
Leszek Lindner
Download PDF Download RIS Download Bibtex

Abstract

Geological investigations of the 4th Polish Geodynamic Expedition to West Antarctica, summer 1990/91, covered the following topics: volcanological studies and mapping at Deception Island; stratigraphic, palaeonotological and sedimentological studies, and mapping of Tertiary glacial and glacio-marine strata on King George Island; sedimentological and mesostructural studies, and mapping at Hurd Peninsula, Livingston Island; and palaeontological sampling of Jurassic (Mount Flora Formation) and Trinity Peninsula Group deposits at Hope Bay, Trinity Peninsula.

Go to article

Authors and Affiliations

Krzysztof Birkenmajer
Download PDF Download RIS Download Bibtex

Abstract

Geological investigations of the 3rd Polish Geodynamic Expedition to West Antarctica, 1987—1988, covered the following topics: sedimentological and mesostructural studies of the Trinity Peninsula Group (?Carboniferous — Triassic) at Hope Bay, Cape Legoupil and Andvord Bay, Antarctic Peninsula, and at South Bay. Livingston Island (South Shetland Islands); late Mesozoic plant-bearing terrestrial sediments at Hope Bay; Antarctic Peninsula Volcanic Group, Andean-type plutons and systems of acidic and basic dykes (Upper Cretaceous and ?Tertiary) at Trinity Peninsula and around Gerlache Strait (Arctowski Peninsula, Anvers and Brabant islands); basalts and hyaloclastites within Tertiary glacigenic successions of King George Island; volcanic succession of the Deception Island caldera.

Go to article

Authors and Affiliations

Krzysztof Birkenmajer
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to establish the stratigraphic extent of a putative Tournaisian Stage within the Carboniferous succession in the Lublin Basin. The oldest part of the succession, known as the Huczwa Formation and comprising depositional sequences 1–4, was investigated based on lithofacies analysis, sequence stratigraphy and petrographic studies. The article provides descriptions of depositional sequences, parasequences (cyclothems) and lithofacies that were formed in a range of environments (elements of depositional architecture) and as a result of volcanic processes – lava and pyroclastic eruptions and chemical weathering of their products. Correlation of the sequence stratigraphy to the West European and global Carboniferous chronostratigraphic divisions, as well as to the Khoriv suite in the Lviv-Volyn Basin in adjacent Ukraine, indicates a putative late Tournaisian age for sequence 1, and a late Visean age for sequences 2–4. There is a stratigraphic gap between sequences 1 and 2, spanning probably the uppermost Tournaisian and the lower and middle Visean. The upper Tournaisian is represented by the FRST-LST deposits of sequence 1, comprising mainly volcaniclastic conglomerates and sandstones developed in braided-river channels and incised valleys with hyperconcentrated flow processes. These deposits are represented by polymictic paraconglomerate and lithic/sublithic/subarkose arenites or sublithic wackes, and contain predominantly grains of acidic and alkaline volcanic and igneous rocks. This material probably came from the Łuków-Wisznice Elevation and the Volynian Polesia region, located to the NE and E of the Lublin Basin. In the uppermost part of sequence 1, volcanic rocks and tuffs appear which developed during the activity of at least three volcanic cones in the Lublin Basin. The volcanoes were the source of alkaline lavas in the central and SW areas of the basin, and of acidic lavas in the SE area, previously undescribed. The Visean sequences 2–4 consist of the FRST-LST sediments deposited within incised valleys. The TST and HST deposits accumulated mainly in a shallow ramp-type carbonate shelf, shallow clayey shelf and deltaic environments.
Go to article

Bibliography

Al-Mashaikie, S.Z.A.K. and Al-Hawbanie, A.M. 2010. Petrography and geochemical study of the Perlite Rocks from Bait Al-Qeyarie, Kawlan Area, Yemen. Earth Science, 21 (2), 195–217.
Arnott, R.W.C and Hand, B.M. 1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology, 59 (6), 1062–1069.
Ashley, G.M. and Sheridan, R.E. 1994. Depositional model for valley fills on a passive continental margin. In: Dalrymple, R.W., Boyd, R. and Zaitlin, B.A. (Eds), Incised-Valley Systems: Origin and Sedimentary Sequences. Society of Economic Paleontologists and Mineralogists Special Publication, 51, 285–301. Tulsa, Oklahoma.
Baldwin, B. and Butler, C.O. 1985. Compaction Curves. American Association of Petroleum Geologists Bulletin, 69 (4), 622–626.
Batalla, R.J., De Jong, C., Ergenzinger, P. and Sala, M. 1999. Field observations on hyperconcentrated flows in mountain torrents. Earth Surface Processes and Landforms, 24, 247–253.
Bojkowski, K. and Dembowski, Z. 1988. Paleogeography of Carboniferous in the Lublin Coal Basin at the background of paleogeography of Carboniferous in Poland. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 18–26; 227–228.
Bojkowski, K. and Musiał, Ł. 1978. Stratygrafia makrofaunistyczna karbonu. In: Niemczycka, T. (Ed.), Profile Głębokich Otworów Wiertniczych Instytutu Geologicznego, 45, 129–131.
Catuneanu, O. 2006. Principles of Sequence Stratigraphy, 375 pp. Elsevier; Amsterdam.
Cebulak, S. 1988a. Petrographic characteristics of Carboniferous deposits. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 77–88; 231–232. [In Polish with English summary]
Cebulak, S. 1988b. Geological outline of sub-Carboniferousbasement. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 31–34. [In Polish with English summary]
Cebulak, S. 1989. Badania petrograficzne osadów karbonu. In: Krassowska, A. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 66, 180–189.
Cebulak, S., Porzycki, J., Laskowski, M., Różkowski, A., Rudzińska, T., Szewczyk, J., Karwasiecka, M. and Waksmundzka, M.I. 2011. Badania surowcowe boksytów i węgli występujących w utworach karbonu. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 116–122. [In Polish with English summary]
Coleman, J.M. and Wright, L.D. 1975. Modern river deltas: variability of processes and sand bodies. In: Broussard, M. L. (Ed.), Deltas, models for exploration, 99–150. Houston Geological Society; Houston.
Davydov, V.I., Korn, D. and Schmitz, M.D. 2012. The Carbonifeous Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The Geologic Time Scale, 603–651. Elsevier, Amsterdam.
Depciuch, T. 1974. Rocks of the Precambrian Platform in Poland. Part 2 – Sedimentary cover. In: Łaszkiewicz, A. (Ed.), Prace Instytutu Geologicznego, 74, 81–83. [In Polish with English summary]
Duff, McL.D. and Walton, E.K. 1962. Statistical basis for cyclothems: a quantitative study of the sedimentary succession in the East Pennine Coalfield. Sedimentology, 1 (4), 235–255.
Einsele, G. 1992. Sediment of Marine Delta Complexes, Depositional Rhythms and Cyclic Sequences. In: Einsele, G. (Ed.), Sedimentary Basins. Evolution, Facies and Sediment, 147– 160; 271–310. Springer-Verlag; Berlin, Heidelberg.
Elliott, T. 1974. Interdistributary bay sequence and their genesis. Sedimentology, 21 (4), 611–622.
Elliott, T. 1975. The sedimentary history of a delta lobe from a Yoredale (Carboniferous) cyclothem. Proceedings of the Yorkshire Geological Society, 40 (4), 505–536.
Elliott, T. 1976a. Sedimentary sequences from the Upper Limestone Group of Northumberland. Scottish Journal of Geology, 12 (2), 115–124.
Elliott, T. 1976b. Upper Carboniferous sedimentary cycles produced by river-dominated, elongate deltas. Journal of the Geological Society of London, 132, 199–208.
Elliott, T. 1978. Deltas. In: Reading, H.G. (Ed.), Sedimentary envinronments and facies, 97–142. Blackwell Scientific Publications; Oxford.
Fisher, R.V. and Schmincke, H.U. 1984. Pyroclastic rocks, 471 pp. Springer-Verlag; Berlin, Heidelberg, New York, Tokyo.
Flügel, E. 2004. Depositional Models. Facies Zones and Standard Microfacies. In: Flügel, E. (Ed.), Microfacies of Carbonate Rocks Analysis, Interpretation and Application, 657–723. Springer-Verlag; Berlin, Heidelberg.
Francis, P. and Oppenheimer, C. 2004. Volcanoes, 536 pp. Oxford University Press; Oxford.
Galets’kyi, L.S. 2007. An Atlas of the Geology and Mineral Deposits of Ukraine 1:5 000 000. Section IV. Geological slice maps: Pre-Carboniferous. National Academy of Science of Ukraine; Kyiv and Toronto.
Gastaldo, R., Denko, T. and Liu, Y. 1993. Application of sequence and genetic stratigraphic concepts to carboniferous coal-bearing strata: an example from the Black Warrior Basin, USA. Geologische Rundschau, 82 (2), 212–226.
Godyń, K. 2011. Volcaniclasts of Lower Carboniferous rock formations in Western Pomerania. Biuletyn Państwowego Instytutu Geologicznego, 444, 55–64. [In Polish with English summary]
Grocholski, A. and Ryka, W. 1995. Carboniferous magmatism of Poland. In: Zdanowski, A. and Żakowa, H. (Eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148, 181–190.
Hajdenrajch, M. 2010. Stratygrafia sekwencji i sedymentacja utworów karbonu rejonu Niedrzwicy (płd.-zach. Lubelszczyzna), 68 pp. Unpublished M.Sc. thesis, University of Warsaw; Warszawa.
Hampson, G., Stollhofen, H. and Flint, S. 1999. A sequence stratigraphic model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr district, north-west Germany. Sedimentology, 46 (6), 1199–1231.
Hein, F.J. and Walker, R.G. 1977. Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. Canadian Journal of Earth Sciences, 14 (4), 562–570.
Helland-Hansen, W. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 94, 95–97.
Helland-Hansen, W. and Gjelberg, J.G. 1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology, 92 (1–2), 31–52.
Jaworowski, K., 1987. Kanon petrograficzny najczęstszych skał osadowych. Przegląd Geologiczny, 35 (4), 205–209.
Kędzior, A., 2016. Reconstruction of an Early Pennsylvanian fluvial system based on geometry of sandstone bodies and coal seams: the Zabrze Beds of the Upper Silesia Coal Basin, Poland. Annales Societatis Geologorum Poloniae, 86 (4), 437–472.
Kmiecik H., 1988. Miospore stratigraphy of the Carboniferous deposits. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 131–141; 235–237. [In Polish with English summary]
Kmiecik, H. and Trzepierczyńska, A. 2007. Wyniki badań palinologicznych utworów karbonu. In: Waksmundzka, M.I. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 119, 119–126. [In Polish with English summary]
Korejwo, K. 1974. The Carboniferous of the Abramów structure. Acta Geologica Polonica, 24 (4), 631–661. [In Polish with English summary]
Korejwo, K. 1986. Biostratigraphy of the Carboniferous deposits of the Świdnik blocks (Lublin Coal Basin). Acta Geologica Polonica, 36 (4), 337–346.
Korejwo, K. and Teller, L. 1968. The Carboniferous of the western part of the Lublin Basin. Acta Geologica Polonica, 18 (1), 154–177. [In Polish with English summary]
Korejwo, K. and Teller, L. 1972. The Carboniferous of the Kock elevation. Acta Geologica Polonica, 22 (4), 655–675. [In Polish with English summary]
Kostyk, I.O., Matrofailo, M.M., Lelyk, B.I. and Korol, M.D. 2016. New data about sequence formation, compound and capacity of the coal-bearing formation of Carbon of the Lviv-Volyn Basin. Naukovyi visnik NGU, 1 (1), 19–31.
Kozłowska, A. and Waksmundzka, M.I. 2020. Diagenesis, sequence stratigraphy and reservoir quality of the Carboniferous deposits of the southeastern Lublin Basin (SE Poland). Geological Quarterly, 64 (2), 422–459.
Krassowska, A. (Ed.) 1989. Profile głębokich otworów wiertniczych Państwowego Instytutu Geologicznego, 66, 1–250.
Krzywiec, P. 2007. Tectonics of the Lublin area (SE Poland) – new views based on results of seismic data interpretation. Biuletyn Państwowego Instytutu Geologicznego, 422, 1–18.
Krzywiec, P., Mazur, S., Gągała, Ł., Kufrasa, M., Lewandowski, M., Malinowski, M. and Buffenmyer, V. 2017. Late Carboniferous thin-skinned compressional deformation above the SW Edge of the East European craton as revealed by seismic reflection and potential field data – Correlation with the Variscides and the Appalachians. In: Law, R.D., Thigpen, J.R., Merschat, A.J. and Stowell, H.H. (Eds), Linkages and Feedbacks in Orogenic Systems. Geological Society of America Memoir, 213, 353–372.
Krzywiec, P. and Narkiewicz M., 2003. O stylu strukturalnym kompleksu dewońskokarbońskiego Lubelszczyzny w oparciu o wyniki interpretacji danych sejsmicznych. Przegląd Geologiczny, 51 (9), 795–797.
Kufrasa, M., Stypa, A., Krzywiec, P. and Słonka, Ł., 2019. Late Carboniferous thin-skinned deformation in the Lublin Basin, SE Poland: results of combined seismic data interpretation, structural restoration and subsidence analysis. Annales Societatis Geologorum Poloniae, 89 (2), 175–194.
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P.A., Schmid, R., Sørensen, H., Streckeisen, A., Wooley, A.R. and Zanettin, B. 1989. A classification of ignous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommision on the Systematic of Ignous Rocks. Blackwell Scientific Publications, Oxford.
Łydka, K. 1996. Diageneza wulkanoklastyków. Przegląd Geologiczny, 44 (6), 619–620.
Martinsen, O.J. 1994. Evolution of an incised-valley fill, the Pine Ridge Sandstone of Southeastern Wyoming, U.S.A.: systematic sedimentary response to relative sea-level change, In: Dalrymple, R.W., Boyd, R. and Zaitlin, B.A. (Eds), Incised-valley Systems: Origin and Sedimentary Sequences. Society of Economic Paleontologists and Mineralogists Special Publication, 51, 109–128.
Matyja, H. 2008. Pomeranian basin (NW Poland) and its sedimentary evolution during Mississippian times. Geological Journal, 43 (2-3), 123–150.
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic T. 2006. The Variscan orogen in Poland. Geological Quarterly, 50 (1), 89–119.
Mazur, S., Aleksandrowski, P., Turniak, K., Krzemiński, L., Mastalerz, K., Górecka-Nowak, A., Kurowski, L., Żelaźniewicz, A. and Fanning, M.C. 2010. Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland. International Journal of Earth Sciences, 99 (1), 47–64.
Miall, A.D. 1977. A Review of the braided-river depositional environment. Earth Science Reviews, 13 (1), 1–62.
Miall, A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (Ed.), Fluvial sedimentology. Canadian Society of Petroleum Geologists Memoir, 5, 597–604.
Miall, A.D. 1986. Deltas. In: Walker, R.G. (Ed.), Facies Models 2nd Edition, Geoscience Canada Reprint Series 1, 105–118.
Miall, A.D. 1996. The Geology of Fluvial Deposits Sedimentary Facies, Basin Analysis, and Petroleum Geology, 26–30; 40–41. Springer; Berlin, Heidelberg.
Michum, Jr R.M. 1977. Seismic Stratigraphy and Global Changes of Sea Level, Part 11: Glossary of Terms used in Seismic Stratigraphy: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. In: Payton, E. (Ed) Seismic Stratigraphy – Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26, 205–212.
Miłaczewski, L. 2010. Subcrop map of the sub-Carboniferous unconformity. In: Modliński Z. (Ed.), Paleogeological Atlas of the sub-Permian Paleozoic of the East-European Craton in Poland and neighbouring areas. PIG-PIB; Warszawa. [In Polish with English summary]
Miłaczewski, L. and Niemczycka, T. 1967. Geological structure of the Niedrzwica region. Kwartalnik Geologiczny, 11 (3), 557–571. [In Polish with English summary]
Migier, T. 1988. Macrofloral stratigraphy of the Carboniferous deposits. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 120–131; 234–235. [In Polish with English summary]
Musiał, Ł. and Tabor, M. 1979. Stratygrafia karbonu Lubelskiego Zagłębia Węglowego na podstawie makrofauny. In: Migier, T. (Ed.), Stratygrafia Węglonośnej Formacji Karbońskiej w Polsce, II Sympozjum Sosnowiec, 4–5 maja 1977, 35–43. Wydawnictwa Geologiczne; Warszawa.
Musiał, Ł. and Tabor, M. 1988. Macrofaunal stratigraphy of Carboniferous. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 88–122; 232–233. [In Polish with English summary]
Musiał, Ł. and Tabor, M. 1989. Stratygrafia karbonu na podstawie makrofauny. In: Krassowska, A. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 66, 105–108.
Muszyński, A., Biernacka, J., Lorenc, S., Protas, A., Urbanek, Z. and Wojewoda, J. 1996. Petrology and a depositional environment of Lower Carboniferous rocks near Dygowo and Kłanino (the Koszalin-Chojnice zone). Geologos, 1, 93–126. [In Polish with English summary]
Narkiewicz, M. 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51 (3), 231–256.
Narkiewicz, M. 2020. The Variscan foreland in Poland revisited: new data and new concepts. Geological Quarterly, 64 (2), 377–401.
Narkiewicz, M., Miłaczewski, L., Krzywiec, P. and Szewczyk, J. 1998. Outline of the Devonian depositional architecture in the Radom-Lublin area. In: Narkiewicz, M. (Ed.), Sedimentary basin analysis of the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 165, 57–72.
Nemec, W. and Postma, G. 1993. Quaternary alluvial fans in south-western Crete: sedimentation processes and geomorphic evolution. In: Marzo, M. and Puigdefabregas, C. (Eds), Alluvial Sedimentation. International Association of Sedimentologists, Special Publication, 17, 235–276.
Nemec, W. and Steel, R.J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Koster, E.H. and Steel, R.J. (Eds), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoir, 10, 1–31.
Niemczycka, T. (Ed.) 1978. Profile Głębokich Otworów Wiertniczych Instytutu Geologicznego, 45, 1–292.
Nosova, A.A., Veretennikov, N.V. and Levskii, L.K. 2005. Nature of the mantle source and specific features of crustal contamination of Neoproterozoic flood basalts of the Volhynia Province (Nd-Sr Isotopic and ICP-MS Geochemical Data). Doklady Earth Sciences, 401A, 429–433. Translated from Doklady Earth Sciences, 401, 521–525.
Pańczyk, M. and Nawrocki, J. 2015. Tournaisian 40Ar/39Ar age from alkaline basalts from the Lublin Basin (SE Poland). Geological Quarterly, 59 (3), 473–478.
Pettijohn, F.J., Potter, P.E. and Siever, R. 1972. Sand and Sandstone, 583 pp. New York, Springer.
Popek, T., 1986. Przejawy wulkanizmu w górnym wizenie na obszarze lubelskim. Przegląd Geologiczny, 4, 212–215.
Porzycki, J. 1979. Litostratygrafia osadów karbonu Lubelskiego Zagłębia Węglowego. In: Migier, T. (Ed.), Stratygrafia węglonośnej formacji karbońskiej w Polsce. II Sympozjum, Sosnowiec, 19–27. Wydawnictwa Geologiczne; Warszawa.
Porzycki, J. 1988. History of geological survey and discovery of the Lublin Coal Basin. Lithologic and sedimentologic characteristics of Carboniferous deposits, In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 9–18; 40–76; 226–227; 229–231. [In Polish with English summary]
Porzycki, J. and Zdanowski, A. 1995. Southeastern Poland (Lublin Carboniferous Basin), In: Zdanowski, A. and Żakowa, H. (Eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 168, 102–109.
Postma, G. 1990. An analysis of the variation in delta architecture. Terra Nova, 2 (2), 124–130.
Posamentier, H.W. and Allen, G.P. 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. Society of Economic Paleontologists and Mineralogists Concepts in Sedimentology and Paleontology, 7, 1–210.
Posamentier, H.W., Jervey, M.T. and Vail, P.R. 1988. Eustatic controls on clastic deposition. I – conceptual framework. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C. (Eds), Sea-Level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists Special Publication, 42, 110–124.
Porębski, S.J. and Steel R.J. 2003. Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands. Earth-Science Reviews, 62, 283–326.
Pożaryski, W. and Dembowski, Z. 1983. Geological Map of Poland and Neighbouring Countries without Cenozoic, Mesozoic and Permian Deposits. Warszawa, Poland, Geological Instytute, scale 1:1,000,000.
Pulham, A.J. 1989. Controls on internal structure and architecture of sandstone bodies within Upper Carboniferous fluvial- dominated deltas, County Clare, western Ireland. In: Whateley, M.K.G. and Pickering, K.T. (Eds), Deltas: Sites and Traps for Fossil Fuels. Geological Society Special Publication, 41, 179–203. Ramsbottom, W.H.C. 1977. Major cycles of transgression and regression (mesothems) in the Namurian. Proceedings of the Yorkshire Geological Society, 41 (3), 261–291.
Ramsbottom, W.H.C. 1978. Namurian mesothems in South Wales and northern France. Journal of the Geological Society, 135 (3), 307–312.
Reading, H.G. 1978. Facies. In: Reading, H.G. (Ed.), Sedimentary Environments and Facies, 4–14. Blackwell Science; Oxford.
Rottella, M. and Simandl, G.J. 2004. Marilla perlite – volcanic glass occurrence, British Columbia, Canada. In: Simandl, G.J., McMillan, W.J. and Robinson, N. (Eds), British Columbia Ministry of Energy Mines and Petroleum Resources, Paper 2004-2, 265–272. Geological Survey Branch; Victoria.
Rust, B.R. 1978. A classification of alluvial channel systems. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir, 5, 187–198.
Ryka, W. and Maliszewska, A. (Eds) 1991. Słownik petrograficzny. II wyd., 415 pp. Wydawnictwa Geologiczne; Warszawa.
Scruton, P.C. 1960. Delta building and the deltaic sequence. In: Shepard, F.P., Phleger, F.B. and Angel, T.H. (Eds), Recent sediments, northwest Gulf of Mexico, 82–102. American Association of Petroleum Geologists Special Publication; Tulsa.
Segerstrom, K. 1950. Erosion studies of Paricutin, State of Michoacan, Mexico. U. S. Geological Survey Bulletin, 965-A, 1–164.
Shulga, V.F., Zdanovski, A., Zayceva, L.B., Yvanova, A.V., Yvanyna, A.V., Korol, N.D., Kotasova, A., Kotas, A., Kostyk, I.O., Lelyk, B.I., Migier, T., Manycev, B.Y., Matrofailo, M.M., Ptak, B., Savcuk, V.S., Sedayeva, G.M. and Stepanenko, J.G. 2007. Correlation of the Carboniferous coal-bearing formations of the Lviv-Volyn and Lublin Basins, 428 pp. National Academy of Sciences of Ukraine Institute of Geological Sciences Polish State Geological Institute Upper Silesian Branch; Kiev. [In Russian with English and Polish summaries]
Shumlyanskyy, L.V. 2014. Geochemistry of the Osnisk-Mikashevichy Volcanoplutonic Complex of the Ukrainian Shield. Geochemistry International, 52 (11), 912–924.
Siemaszko, E. 1978. Permian effusive rocks from SW part of the Fore-Sudetic Monocline. Kwartalnik Geologiczny, 22 (3), 571–590. [In Polish with English summary]
Skompski S. 1988. Limestone microfacies and facies position of Upper Visean sediments in north-eastern part of the Lublin Coal Basin. Przegląd Geologiczny, 36 (1), 25–30. [In Polish with English summary]
Skompski, S. 1995. Succession of limestone microfacies as a key to the origin of the Yoredale-type cyclicity (Viséan/ Namurian, Lublin Basin, Poland). XIII International Congress Carboniferous–Permian, Kraków, Abstracts, 133.
Skompski, S. 1996. Stratigraphic position and facies significance of the limestone bands in the subsurface Carboniferous succession of the Lublin Upland. Acta Geologica Polonica, 46 (3), 171–268.
Skompski, S. 1998. Regional and global chronostratigraphic correlation levels in the late Visean to Westphalian succession of the Lublin Basin (SE Poland). Geological Quarterly, 42, 121–130.
Skompski, S. 2011. Wykształcenie facjalne wapieni dolnokarbońskich w rejonie otworu Parczew IG 10. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 111–116. [In Polish with English summary]
Skompski, S. and Soboń-Podgórska, J. 1980. Foraminifers and conodonts in the Viséan deposits of the Lublin Upland. Acta Geologica Polonica, 30, 87–96.
Smith, D.G. 1983. Anastomosed fluvial deposits: modern examples from Western Canada. In: Collinson, J. and Lewin, J. (Eds), Modern and Ancient Fluvial Systems. Special Publication of the International Association of Sedimentologists, 6, 155–168.
Soboń-Podgórska, J. 1988. Microfaunal stratigraphy of the Carboniferous deposits (foraminifers). In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 112–120; 233– 234. [In Polish with English summary]
Soboń-Podgórska, J. and Tomaś, A. 1995. Foraminifera. In: Zdanowski, A. and Żakowa, H. (Eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148, 44–47.
Svendsen, J., Stollhofen, H., Krapf, C.B.E. and Stanistreet, I.G. 2003. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology, 160 (1-3), 7–31.
Szulczewski, M., Bełka, Z. and Skompski, S. 1996. The drowning of carbonate platform: an example from the Devonian– Carboniferous of the southwestern Holy Cross Mountains, Poland. Sedimentary Geology, 106 (1-2), 21–49.
Środoń, J., Paszkowski, M., Drygant, D., Anczkiewicz, A. and Banaś, M. 2013. Thermal history of Lower Paleozoic rocks on the Peri-Tornquist margin of the East European Craton (Podolia, Ukraine) inferred from combined XRD, K-Ar, and AFT data. Clays and Clay Minerals, 61 (2), 107–132.
Tomaszczyk, M. and Jarosiński, M. 2017. The Kock Fault Zone as an indicator of tectonic stress regime changes at the margin of the East European Craton (Poland). Geological Quarterly, 61, 908–925.
Tunbridge, I.P. 1981. Sandy high-energy flood sedimentation – some criteria for recognition, with an example from the Devonian of SW England. Sedimentary Geology, 28 (2), 79–95.
Turner, B.R. and Whateley, M.K.G. 1983. Structural and sedimentological controls of coal deposition in the Nongoma graben, northern Zululand, South Africa. In: Collinson, J.D. and Lewin, J. (Eds), Modern and ancient fluvial systems. Special Publication of the International Association of Sedimentologists, 6, 457–471. Vail, P.R., Todd, R.G. 1981. Northern North Sea Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy. In: Illing, L.V. and Hobson, G.D. (Eds), Petroleum Geology of the Continental Shelf of North West Europe, 216–235. Heyden and Son Ltd.; London.
VanWagoner, J.C. 1985. Reservoir facies distribution as controlled by sea-level change. Society of Economic Paleontologists and Mineralogists Mid-Year Meeting Abstracts, Golden, Colorado, August 11–14, 91–92. Society of Economic Paleontologists and Mineralogists; Tulsa.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M. Jr, Vail, P.R., Sarg, J.F., Loutit, T.S. and Hardenbol, J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus, K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C. (Eds), Sea-Level Changes – An Integrated Approach. Society of Economic Paleontologists and Mineralogists Special Publication, 42, 39–45.
Waksmundzka, M.I. 1998. Depositional architecture of the Carboniferous Lublin Basin. In: Narkiewicz, M. (Ed.), Sedimentary basin analysis of the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 165, 89–100. [In Polish with English summary]
Waksmundzka, M.I. 2007. Karbon. Litologia, stratygrafia i sedymentologia. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 118, 124–130. [In Polish with English summary]
Waksmundzka, M.I. 2008. Correlation and origin of the Carboniferous sandstones in the light of sequence stratigraphy and their hydrocarbon potential in the NW and Central parts of the Lublin Basin. Biuletyn Państwowego Instytutu Geologicznego, 429, 215–224. [In Polish with English summary]
Waksmundzka, M.I. 2010a. Sequence stratigraphy of Carboniferous paralic deposits in the Lublin Basin (SE Poland). Acta Geologica Polonica, 60 (4), 557–597.
Waksmundzka, M.I. 2010b. Lithofacies-paleothickness and worm’s eye maps of Carboniferous. Plates 21–24, 33–35. In: Modliński, Z. (Ed.), Paleogeological Atlas of the sub- Permian Paleozoic of the East-European Craton in Poland and neighbouring areas. PIG-PIB Warszawa. [In Polish with English summary] Waksmundzka, M.I. 2011. Karbon. Litologia, sedymentologia i stratygrafia. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 101–108. [In Polish with English summary]
Waksmundzka, M.I. 2012. Braided-river and hyperconcentrated- flow deposits from the Carboniferous of the Lublin Basin (SE Poland) – a sedimentological study of core data. Geologos, 18 (3), 135–161.
Waksmundzka, M.I. 2013. Carboniferous coarsening-upward and non-gradational cyclothems in the Lublin Basin (SE Poland): palaeoclimatic implications. In: Gąsiewicz, A. and Słowakiewicz, M. (Eds), Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact. Geological Society, London, Special Publications, 376, 141–175.
Waksmundzka, M.I. and Buła, Z. 2020. Geological Map of Poland without Cenozoic, Mesozoic and Permian deposits 1:2,5000,000. In: Nawrocki, J. and Becker, A. (Eds), Geological Atlas of Poland, 28–29. PIG-PIB; Warszawa.
Walker, R.G. 1992. Facies, facies models, and modern stratigraphic concepts. In: Walker, R.G. and James, N.P. (Eds), Facies Models: Response to Sea Level Change, 1–14. Geological Association of Canada; St. John’s.
Walker, G.P.L. 1973. Lengths of lava flows. Philosophical Transactions of the Royal Society London, 274 (1238), 107–118.
Winchester, J.A. and Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.
Wiszniewska, J. and Tołkanowicz, E. 2015. Raw rock resources of the Volhynia Province during the period of Second Republic of Poland and their utilization. Przegląd Geologiczny, 63 (9), 525–530. [In Polish with English summary]
Woszczyńska, S. 2011. The Carboniferous micropalaeontology based on Foraminifera and Ostracoda. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 109–110. [In Polish with English summary]
Wright, L.D. 1977. Sediment transport and deposition at river mouths: a synthesis. Geological Society of America Bulletin, 88 (6), 857–868.
Wright, LD. and Coleman, J.M. 1974. Mississippi river mouth processes: effluent dynamics and morphologic development. Journal of Geology, 82 (6), 751–778.
Zieliński, T. 1992a. Marginal moraines of NE Poland – sediments and depositional conditions. Prace Naukowe Uniwersytetu Śląskiego, 1325, 7–95.
Zieliński, T. 1992b. Proglacial valleys facies of the Silesian Upland – genetic factors and their sedimentological effects. Geologia Sudetica, 26 (1–170), 83–118.
Zieliński, T. 1995. Kod litofacjalny i litogenetyczny – konstrukcja i zastosowanie. In: Mycielska-Dowgiałło, E. and Rutkowski, J. (Eds), Badania osadów czwartorzędowych, Wybrane metody i interpretacja wyników, 220–235. Uniwersytet Warszawski; Warszawa.
Zieliński, T. 2015. Sedymentologia. Osady rzek i jezior, 594 pp. Wydawnictwo Naukowe UAM; Poznań. Żelichowski, A.M. 1969. Karbon. In: Depowski, S. (Ed.), Ropoi gazonośność obszaru lubelskiego na tle budowy geologicznej – część I: Budowa geologiczna obszaru lubelskiego. Prace Geostrukturalne Instytutu Geologicznego, 70–85.
Żelichowski, A.M. 1972. Evolution of the geological structure of the area between the Góry Świętokrzyskie and the River Bug. Biuletyn Instytutu Geologicznego, 263, 7–97; 91–97. [In Polish with English summary]
Żelichowski, A.M. 1987. Development of the Carboniferous of the SW margin of the East European Platform in Poland. Przegląd Geologiczny, 35 (5), 230–237. [In Polish with English summary]
Żelichowski, A.M. and Kozłowski, S. (Eds) 1983. Atlas of geological structure and mineral deposits in the Lublin region. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Żelichowski, A.M., Porzycki, J., Cebulak, S., Musiał, Ł., Tabor, M., Migier, T. and Waksmundzka, M.I. 2011. Profil litologiczno- stratygraficzny Karbon. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 20–39. [In Polish with English summary]
Go to article

Authors and Affiliations

Maria I. Waksmundzka
1
Aleksandra Kozłowska
1
Magdalena Pańczyk
1

  1. Polish Geological Institute – National Research Institute, Rakowiecka 4, PL-00-975 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A novel stratigraphical scheme within the Folge Concept is described for the Cenomanian Chalk of England that is particularly suitable for investigating the regional changes in the lithofacies, diagenesis, geochemistry, and mineralogy of the sediments of the Chalk Sea leading up to the Cenomanian–Turonian Oceanic Anoxic Event. It is based on “isochronous” marker bands defined largely by calcitic macrofossil assemblages, and it avoids problems caused by the poor or non-preservation of ammonite assemblages and lateral changes in chalk lithofacies. Eight folgen are based on one, two, or more marker bands. Their sequences, lithologies and calcitic macrofossil assemblages are described from 33 exposures in the Northern Chalk Province of England. The folgen are named, in ascending order, the Belchford, Stenigot, Dalby, Bigby, Candlesby, Nettleton, Louth and Flixton, after villages in Lincolnshire and Yorkshire, England. The folgen are traced throughout the Transitional and Southern Chalk provinces of England. They are present in the Cenomanian chalk of northern Germany and northwest France. Regionally, an individual folge may display considerable vertical and lateral variation in general lithology and lithofacies whilst still maintaining their defining marker bands. The possibility of further refinement to the scheme is discussed.
Go to article

Authors and Affiliations

Christopher Vincent Jeans
1

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Download PDF Download RIS Download Bibtex

Abstract

This study is a detailed lithofacies analysis of the Wiar and Leszczyny members of the deep-marine Ropianka Formation (Campanian–Paleocene) exposed in the Hucisko Jawornickie section of the Skole Nappe, Polish Carpathian Flysch. The sedimentary succession (>400 m thick) represents a channelized lobe complex that prograded at the base of submarine slope. Seven sedimentary facies are recognized as a record of the principa modes of sediment deposition. Based on their stratigraphic grouping and grain-size trends, six facies associations are distinguished as representing specific sub-environments of the depositional system: distributary channels, channel-mouth lobes, channel levees, crevasses and interlobe basin plain with crevasse splays. The individual facies associations are characterized statistically and their internal facies organization is analysed by the method of embedded Markov chains to reveal the time pattern of depositional processes. The environmental changes indicated by the vertical succession of facies associations are attributed to the autogenic processes of the distributary channel shifting within an aggrading lobe area and the lateral switching of depositional lobes. Eustatic influences are likely, but difficult to ascertain with poor biostratigraphic data. The bulk basinward advance of the base-of-slope system was probably due to a pulse of the tectonic narrowing of the synclinal Skole Basin.

Go to article

Authors and Affiliations

Piotr Łapcik

This page uses 'cookies'. Learn more