Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Biosynthesis of lovastatin (a polyketide metabolite of Aspergillus terreus) in bioreactors of different working volume was studied to indicate how the change of scale of the process influences the formation of this metabolite. The experiments conducted in shake flasks of 150 ml working volume allowed to obtain lovastatin titres at the level of 87.5 mg LOV l-1, when two carbon sources, namely lactose and glycerol were used. The application of the same components in a large stirred-tank bioreactor of 5.3-litre working volume caused a decrease of lovastatin production by 87% compared to the shake flask culture. The deficiency of nitrogen in this bioreactor did not favour the formation of lovastatin, in contrast to the small bioreactor of 1.95-litre working volume, in which lovastatin titres comparable to those in the shake flasks could be achieved, when organic nitrogen concentration was two-fold decreased. When the control of pH and/or pO2 was used simultaneously, an increase in lovastatin production was observed in the bioreactors. However, these results were still slightly lower than lovastatin titres obtained in the shake flasks.

Go to article

Authors and Affiliations

Marta Pawlak
Stanisław Ledakowicz
Marcin Bizukojć
Download PDF Download RIS Download Bibtex

Abstract

The effect of multiple Rushton impellers configurations on hydrodynamics and mixing performance in a stirred tank has been investigated. Three configurations defined by one, two and three Rushton impellers are compared. Results issued from our computational fluid dynamics (CFD) code are presented here concerning fields of velocity components and viscous dissipation rate. These results confirm that the multi-impellers systems are necessary to decrease the weaken zones in each stirred tanks. The experimental results developed in this work are compared with our numerical results. The good agreement validates the numerical method.

Go to article

Authors and Affiliations

Zied Driss
Sarhan Karray
Wajdi Chtourou
Hedi Kchaou
Mohamed Salah Abid
Download PDF Download RIS Download Bibtex

Abstract

The aim of the investigation was liquid mixing time measurement in a laboratory scale stirred tank equipped with a metal Maxblend impeller and comparison with the corresponding mixing time obtained with other conventional impellers. The data are collected by Electrical Resistance Tomography, whose applicability in this case is non-trivial, because of the electrical interferences between the large paddles of the impeller and the measuring system. The raw data treatment methodology purposely developed for obtaining the homogenization dynamics curve is presented.Arobust approach for a fine and lowcost investigation of the mixing performances of close-clearance impellers in opaque systems is suggested. The analysis of the local and averaged conductivity time traces reveals the effect of important variables, such as the fluid viscosity and the vessel configuration, on the mixing time under various agitation conditions. The data collection and post processing procedures open the way to the application of the technique to multiphase and non-Newtonian fluids stirred with close-clearance impellers.
Go to article

Bibliography

Ameur H., 2015. Energy efficiency of different impellers in stirred tank reactors. Energy, 93, 1980–1988. DOI: 10.1016/j.energy.2015.10.084.
Ameur H., Bouzit M., Helmaoui M., 2012. Hydrodynamic study involving a maxblend impeller with yield stress fluids. J. Mech. Sci. Technol., 26, 1523–1530. DOI: 10.1007/s12206-012-0337-3.
Dickin F., Wang M., 1996. Electrical resistance tomography for process applications. Meas. Sci. Technol., 7, 247–260. DOI: 10.1088/0957-0233/7/3/005.
Fradette L., Thomé G., Tanguy P.A., Takenaka K., 2007. Power and mixing time study involving a Maxblend® impeller with viscous Newtonian and non-Newtonian fluids. Chem. Eng. Res. Des., 85, 1514–1523. DOI: 10.1205/cherd07051.
Grenville R.K., Nienow A.W., 2004. Blending of miscible liquids, In: Paul E.L., Atiemo-Obeng V.A., Kresta S.M. (Eds.). Handbook of industrial Mixing: Science and practice. John Wiley & Sons, Inc. Chapter 9, 507–542. DOI: 10.1002/0471451452.ch9.
Guntzburger Y., Fontaine A., Fradette L., Bertrand F., 2013. An experimental method to evaluate global pumping in a mixing system: Application to the Maxblend™for Newtonian and non-Newtonian fluids. Chem. Eng. J., 214, 394–406. DOI: 10.1016/j.cej.2012.10.041.
Hosseini S., Patel D., Ein-Mozaffari F., Mehrvar M., 2010. Study of solid-liquid mixing in agitated tanks through electrical resistance tomography. Chem. Eng. Sci., 65, 1374–1384. DOI: 10.1016/j.ces.2009.10.007.
Jairamdas K., Bhalerao A., Machado M.B., Kresta S.M., 2019. Blend time measurement in the confined impeller stirred tank. Chem. Eng. Technol., 42, 1594–1601. DOI: 10.1002/ceat.201800752.
Maluta F., Montante G., Paglianti A., 2020. Analysis of immiscible liquid-liquid mixing in stirred tanks by Electrical Resistance Tomography. Chem. Eng. Sci., 227, 115898. DOI: 10.1016/j.ces.2020.115898.
Mishra P., Ein-Mozaffari F., 2016. Using tomograms to assess the local solid concentrations in a slurry reactor equipped with a Maxblend impeller. Powder Technol., 301, 701–712. DOI: 10.1016/j.powtec.2016.07.007.
Montante G., Carletti C., Maluta F., Paglianti A., 2019. Solid dissolution and liquid mixing in turbulent stirred tanks. Chem. Eng. Technol., 42 (8), 1627–1634. DOI: 10.1002/ceat.201800726.
Montante G., Coroneo M., Paglianti A., 2016. Blending of miscible liquids with different densities and viscosities in static mixers. Chem. Eng. Sci., 141, 250–260. DOI: 10.1016/j.ces.2015.11.009.
Paglianti A., Carletti C., Montante G., 2017. Liquid mixing time in dense solid-liquid stirred tanks. Chem. Eng. Technol., 40, 862–869. DOI: 10.1002/ceat.201600595.
Patel D., Ein-Mozaffari F., Mehrvar M., 2013. Using tomography to characterize the mixing of non-Newtonian fluids with a Maxblend impeller. Chem. Eng. Technol., 36, 687–695. DOI: 10.1002/ceat.201200425.
Sharifi M., Young B., 2013. Electrical Resistance Tomography (ERT) applications to Chemical Engineering. Chem. Eng. Res. Des., 91, 1625–1645. DOI: 10.1016/j.cherd.2013.05.026.
Stobiac V., Fradette L., Tanguy P.A., Bertrand F., 2014. Pumping characterisation of the maxblend impeller for Newtonian and strongly non-Newtonian fluids. Can. J. Chem. Eng., 92, 729–741. DOI: 10.1002/cjce.21906.
Go to article

Authors and Affiliations

Suzuka Iwasawa
1
Honami Kubo
1
Katsuhide Takenaka
1
Sandro Pintus
2
Francesco Maluta
3
Giuseppina Montante
3
Alessandro Paglianti
3

  1. Sumitomo Heavy Industries Process Equipment Co., Ltd. 1501, Imazaike, Saijo City, Ehime, Japan
  2. Retired from University of Pisa, Via Giunta Pisano 28, 56126 Pisa, Italy
  3. Department of Industrial Chemistry, University of Bologna, viale Risorgimento 4,40136 Bologna, Italy
Download PDF Download RIS Download Bibtex

Abstract

The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Go to article

Bibliography

  1.  M.J. Mahmoodabadi, R.A. Maafi, and M. Taherkhorsandi, “An optimal adaptive robust PID controller subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems”, Appl. Soft Comput. 52(1), 1191‒1199 (2017).
  2.  C. Lorenzini, A.S. Bazanella, L.F. Alves Pereira, and G.R. Gonçalves da Silva, “The generalized forced oscillation method for tuning PID controllers”, ISA Trans. 87(1), 68‒87 (2019).
  3.  S.K. Valluru and M. Singh, “Performance investigations of APSO tuned linear and nonlinear PID controllers for a nonlinear dynamical system”, J. Electr. Syst. Inf. Technol. 5(3), 442‒452 (2018).
  4.  M. Kumar, D. Prasad, B.S. Giri, and R.S. Singh, “Temperature control of fermentation bioreactor for ethanol production using IMC-PID controller”, Biotechnol. Rep. 22(1), e00319 (2019).
  5.  D.B. Santosh Kumar and R. Padma Sree, “Tuning of IMC based PID controllers for integrating systems with time delay”, ISA Trans. 63(1), 242‒255 (2016).
  6.  J. Prakash and K. Srinivasan, “Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor”, ISA Trans. 48(3), 273‒282 (2009).
  7.  M. Hamdy and I. Hamdan, “Robust fuzzy output feedback controller for affine nonlinear systems via T–S fuzzy bilinear model: CSTR benchmark”, ISA Trans. 57(1), 85‒92 (2015).
  8.  V. Ghaffari, S. VahidNaghavi, and A.A. Safavi, “Robust model predictive control of a class of uncertain nonlinear systems with application to typical CSTR problems”, J. Process Control. 23(4), 493‒499 (2013).
  9.  W.-D. Chang, “Nonlinear CSTR control system design using an artificial bee colony algorithm”, Simul. Modell. Pract. Theory 31(1), 1‒9 (2013)
  10.  Y.P. Wang, N.R. Watson, and H.H. Chong, “Modified genetic algorithm approach to design of an optimal PID controller for AC–DC transmission systems”, Int. J. Electr. Power Energy Syst. 24(1), 59‒69 (2002).
  11.  S.S. Jadon, R. Tiwari, H. Sharma, and J.C. Bansal, “Hybrid Artificial Bee Colony algorithm with Differential Evolution”, Appl. Soft Comput. 58(1), 11‒24 (2017).
  12.  D. Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Optimization”, Technical Report-TR06, Department of Computer Engineering, Engineering Faculty, Erciyes University (2005).
  13.  J. Zhou, X.Yao, F.T.S. Chan, Y. Lin, H. Jin, L. Gao, X. Wang, “An individual dependent multi-colony artificial bee colony algorithm”, Inf. Sci. 485(1), 114‒140 (2019).
  14.  X. Chen, H. Tianfield, and K. Li, “Self-adaptive differential artificial bee colony algorithm for global optimization problems”, Swarm Evol. Comput. 45(1), 70‒91 (2019).
  15.  Y. Zhang, S. Cheng, Y. Shi, D.-Wei Gong, and X. Zhao, “Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm”, Expert Syst. Appl. 137(1), 46‒58 (2019).
  16.  R. Szczepanski, T. Tarczewski, and L.M. Grzesiak, “Adaptive state feedback speed controller for PMSM based on Artificial Bee Colony algorithm”, Appl. Soft Comput. 83(1), 105644 (2019).
  17.  Q. Wei, Z. Guo, H.C. Lau, and Z. He, “An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern”, Appl. Soft Comput. 76(1), 629‒637 (2019).
  18.  T. Sen and H.D. Mathur, “A new approach to solve Economic Dispatch problem using a Hybrid ACO–ABC–HS optimization algorithm”, Electr. Power Energy Syst. 78(1), 735–744 (2017).
  19.  X. Li , Z. Peng , B. Dub, J. Guo, W. Xu, and K. Zhuang, “Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems”, Comput. Ind. Eng. 113(1), 10–26 (2017).
  20.  S. Lua, X. Liua, J. Peia, M.T. Thai, and P.M. Pardalos, “A hybrid ABC-TS algorithm for the unrelated parallel-batchingmachines scheduling problem with deteriorating jobs and maintenance activity”, Appl. Soft Comput. 66(1), 168–182 (2018).
  21.  S. Goudarzi et.al., “ABC-PSO for vertical handover in heterogeneous wireless networks”, Neurocomputing 256(1), 63–81 (2017).
  22.  M.A. Awadallah, A.L. Bolaji, and M.A. Al-Betar, “A hybrid artificial bee colony for a nurse rostering problem”, Appl. Soft Comput. 35(1), 726‒739 (2015).
  23.  X. Yan, Y. Zhu, W. Zou, and L. Wang, “A new approach for data clustering using hybrid artificial bee colony algorithm”, Neurocomputing, 97(1), 241‒250 (2012).
  24.  W.-F. Gao and S.-Y. Liu, “A modified artificial bee colony algorithm”, Eng. Appl. Artif. Intell. 39(1), 3, 687‒697 (2012).
  25.  P. Pramanik and M.K. Maiti, “An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach”, Biotechnol. Rep. 85(1), 194–207 (2019).
  26.  V. Hajisalem and S.Babaie, “A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection”, Comput. Networks 136(1), 37–50 (2018).
  27.  W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz, “A comparison of nature inspired algorithms for the quadratic assignment problem”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 513‒522 (2017).
  28.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679‒685 (2019).
  29.  R. Gao, A. O’dywer, and E. Coyle, “A Nonlinear PID control for CSTR using local model networks”, Proceedings of 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002.
  30.  K. Vijayakumar and M. Thathan, “Enhanced ABC Based PID Controller for Nonlinear Control Systems”, Indian J. Sci. Technol. 8(1), 1‒9 (2015).
  31.  D. Ustuna and A. Akdagli, “Design of band–notched UWB antenna using a hybrid optimization based on ABC and DE algorithms”, Int. J. Electron. Commun. 87(1), 10–21 (2018).
  32.  D. Zhang, R. Dong, Y.-W. Si, F. Ye, Q. Cai, “A hybrid swarm algorithm based on ABC and AIS for 2L-HFCVRP”, Appl. Soft Comput. 64(1), 468–479 (2018).
  33.  S. Surjanovic and D. Bingham, “Virtual Library of Simulation Experiments: Test Functions and Datasets” [Online]. Available: http:// www.sfu.ca/~ssurjano [Accessed: January 21, 2021].
  34.  D. T. Pham and M. Castellani, “Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms”, Soft Comput. (18), 871–903 (2014).
  35.  Y. Zhang, P. Wang, L. Yang, Y. Liu, Y. Lu, and X. Zhu, “Novel Swarm Intelligence Algorithm for Global Optimization and Multi-UAVs Cooperative Path Planning: Anas Platyrhynchos Optimizer”, Appl. Sci. 10(14), 4821, 1‒29 (2020).
  36.  K. Anbarasan and K. Srinivasan, “Design of RTDA controller for industrial process using SOPDT model with minimum or non-minimum zero”, ISA Trans. 57, 231–244 (2015).
Go to article

Authors and Affiliations

Nedumal Pugazhenthi P
1
S. Selvaperumal
1
ORCID: ORCID
K. Vijayakumar
2

  1. Department of EEE, Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India
  2. Department of electronics and instrumentation, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, India

This page uses 'cookies'. Learn more