Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To determine speech intelligibility using the test suggested by Ozimek et al. (2009), the subject composed sentences with the words presented on a computer screen. However, the number and the type of these words were chosen arbitrarily. The subject was always presented with 18, similarly sounding words. Therefore, the aim of this study was to determine whether the number and the type of alternative words used by Ozimek et al. (2009), had a significant influence on the speech intelligibility. The aim was also to determine an optimal number of alternative words: i.e., the number that did not affect the speech reception threshold (SRT) and not unduly lengthened the duration of the test. The study conducted using a group of 10 subjects with normal hearing showed that an increase in the number of words to choose from 12 to 30 increased the speech intelligibility by about 0.3 dB/6 words. The use of paronyms as alternative words as opposed to random words, leads to an increase in the speech intelligibility by about 0.6 dB, which is equivalent to a decrease in intelligibility by 15 percentage points. Enlarging the number of words to choose from, and switching alternative words to paronyms, led to an increase in response time from approximately 11 to 16 s. It seems that the use of paronyms as alternative words as well as using 12 or 18 words to choose from is the best choice when using the Polish Sentence Test (PST).
Go to article

Authors and Affiliations

Magdalena Krenz
Andrzej Wicher
Aleksander Sęk
Download PDF Download RIS Download Bibtex

Abstract

This study sought to evaluate the effect of speech intensity on performance of the Callsign Acquisition Test (CAT) and Modified Rhyme Test (MRT) presented in noise. Fourteen normally hearing listeners performed both tests in 65 dB A white background noise. Speech intensity varied while background noise remained constant to form speech-to-noise ratios (SNRs) of -18, -15, -12, -9, and -6 dB. Results showed that CAT recognition scores were significantly higher than MRT scores at the same SNRs; however, the scores from both tests were highly correlated and their relationship for the SNRs tested can be expressed by a simple linear function. The concept of CAT can be easily ported to other languages for testing speech communication under adverse listening conditions.

Go to article

Authors and Affiliations

Misty Blue-Terry
Maranda McBride
Tomasz Letowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of sentence and logatome speech intelligibility measured in rooms with induction loop for hearing aid users. Two rooms with different acoustic parameters were chosen. Twenty two subjects with mild, moderate and severe hearing impairment using hearing aids took part in the experiment. The intelligibility tests composed of sentences or logatomes were presented to the subjects at fixed measurement points of an enclosure. It was shown that a sentence test is more useful tool for speech intelligibility measurements in a room than logatome test. It was also shown that induction loop is very efficient system at improving speech intelligibility. Additionally, the questionnaire data showed that induction loop, apart from improving speech intelligibility, increased a subject’s general satisfaction with speech perception
Go to article

Authors and Affiliations

Jędrzej Kociński
Edward Ozimek
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to measure subjective speech intelligibility in an enclosure with a long reverberation time and comparison of these results with objective parameters. Impulse Responses (IRs) were first determined with a dummy head in different measurement points of the enclosure. The following objective parameters were calculated with Dirac 4.1 software: Reverberation Time (RT), Early Decay Time (EDT), weighted Clarity (C50) and Speech Transmission Index (STI). For the chosen measurement points, a convolution of the IRs with the Polish Sentence Test (PST) and logatome tests was made. PST was presented at a background of a babble noise and speech reception threshold - SRT (i.e. SNR yielding 50% speech intelligibility) for those points were evaluated. A relationship of the sentence and logatome recognition vs. STI was determined. It was found that the final SRT data are well correlated with speech transmission index (STI), and can be expressed by a psychometric function. The difference between SRT determined in condition without reverberation and in reverberation conditions appeared to be a good measure of the effect of reverberation on speech intelligibility in a room. In addition, speech intelligibility, with and without use of the sound amplification system installed in the enclosure, was compared.
Go to article

Authors and Affiliations

Jędrzej Kociński
Edward Ozimek
Download PDF Download RIS Download Bibtex

Abstract

Reverberation time (RT) is an important indicator of room acoustics, however, most studies focus on the mid-high frequency RT, and less on the low-frequency RT. In this paper, a hybrid approach based on geometric and wave methods was proposed to build a more accurate and wide frequency-band room acoustic impulse response. This hybrid method utilized the finite-difference time-domain (FDTD) method modeling at low frequencies and the Odeon simulation at mid-high frequencies, which was investigated in a university classroom. The influence of the low-frequency RT on speech intelligibility was explored. For the low-frequency part, different impedance boundary conditions were employed and the effectiveness of the hybrid method has also been verified. From the results of objective acoustical parameters and subjective listening experiments, the smaller the low-frequency RT was, the higher the Chinese speech intelligibility score was. The syllables, consonants, vowels, and the syllable order also had significant effects on the intelligibility score.
Go to article

Authors and Affiliations

Wuqiong Huang
1 2
Jianxin Peng
1
Tinghui Xie
3

  1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
  2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China
  3. School of Architecture and Art, Shijiazhuang Tiedao University, Shijiazhuang, China
Download PDF Download RIS Download Bibtex

Abstract

Mosques are Islamic places of worship where speech and music rituals are performed. Since two different languages are spoken there, mosques are described as bilingual spaces. Among studies on the complex acoustic structure of mosques there are only few studies on speech intelligibility and none on the bilingual characteristics of the mosque. Therefore, a comprehensive study has been carried out to evaluate the acoustic comfort of the contemporary Turkish mosques (CTM) over speech intelligibility of Turkish and Arabic languages. In the study the CTM model providing optimum acoustic conditions recommended in the literature is examined on speech intelligibility by applying acoustic simulation and auralisation techniques, as well as word recognition tests. As a result, the acoustic condition in the model is found insufficient in terms of speech intelligibility of both languages. Also, with the decrease of Signal-to-Noise Ratio (SNR), the Turkish intelligibility ratio is observed to decrease at least two times faster than the Arabic ones.
This study is viewed as an outline for researchers to further study mosque acoustics in terms of speech intelligibility, and thus support the standardisation process of the acoustic comfort criteria for the mosques.
Go to article

Bibliography

1. Abdou A.A. (2003), Measurement of acoustical characteristics of mosques in Saudi Arabia, The Journal of the Acoustical Society of America, 113(3): 1505–1517, doi: 10.1121/1.1531982.
2. Ahmad Y., Din N.C., Othman R. (2013), Mihrab design and its basic acoustical characteristics of traditional vernacular mosques in Malaysia, Journal of Building Performance, 4(1): 44–51, http://spaj.ukm.my/ jsb/index.php/jbp/article/view/79.
3. Akın A. (2016), An essay about the function of mosques throughout the history [in Turkish: Tarihi Süreç Içinde Cami ve Fonksiyonlari Üzerine Bir Deneme], Hitit Üniversitesi Ilahiyat Fakültesi Dergisi, 15(29): 179–211.
4. Alic E. (2019), A study on speech intelligibility of mosque over Turkish and Arabic language [in Turkish: Camilerde Konusma Anlasilabilirliginin Türkçe ve Arapça Dilleri Üzerinden Incelenmesi], Master Thesis, Eskisehir Technical University.
5. Alic E., Ozcevik Bilen A. (2019), Determination of the characteristics of contemporary Turkish mosque and its acoustical properties, Proceedings of the 23rd International Congress on Acoustics, pp. 3989–3990, Aachen, Germany.
6. Alusi H.A., Hinchcliffe R., Ingham B., Knight J.J., North C. (1974), Arabic speech audiometry, International Journal of Audiology, 13(3): 212–230.
7. ANSI/ASA S3.2. (2009), Method for measuring the intelligibility of speech over communication systems, American National Standards Institute.
8. Audio Check (n.d.), Online audiogram hearing test, retrieved April 4, 2019, from https://www.audio check.net/testtones_hearingtestaudiogram.php.
9. Aydın T. (2010), The letters in Arabic and Turkish – contrastive analysi [in Turkish: Arapça ve Türkçe’de Sesler – Karsıtsal Çözümleme], EKEV Akademi Dergisi, pp. 321–334.
10. Baktır M. (n.d.), Khutbah [in Turkish: Hutbe], detrieved March 11, 2019, from Turkiye Diyanet Foundation, Encyclopaedia of Islam, https://islamansiklopedisi.org.tr/hutbe.
11. Bilingualism (n.d.), [in:] Cambridge Dictionary, retrieved November 15, 2019, from https://dictionary.cambridge.org/dictionary/english/bilingualism.
12. Bobran H.W. (1973), ABC of sound and heat protection technolog [in German: ABC der Schallund Wärmeschutztechnik: Eine Zusammenstellung der wichtigsten Begriffe des Schallschutzes, der Raumakustik und der Bauphysik. Mit Stoffwerten Konstruktionsdetails, Markennamen-Erläuterung gen sowie umfassendem Firmenverzeichnis], ABC-Redaktion.
13. Bradley J.S. (1986), Predictors of speech ıntelligibility in rooms, The Journal of the Acoustical Society of America, 80(3): 837–845, doi: 10.1121/1.393907.
14. BS 8233 (1999), Sound insulation and noise reduction for buildings – Code of Practice, London, UK.: British Standards Institution.
15. BS EN 60268-16 (2011), Sound system equipment – Part 16: Objective rating of speech intelligibility by speech transmission index, London, UK: British Standard Institute.
16. BS EN ISO 9921 (2003), Ergonomics – Assessment of Speech Communication, British Standards Institution, London, UK.
17. Carvalho A., Freitas C. (2011), Acoustical characterization of the central mosque of Lisbon, Forum Acusticum 2011.
18. ÇGDYY (2010), Environmental Noise Assessment and Management Regulation [in Turkish: Çevresel Gürültünün Degerlendirilmesi ve Yonetimi Yonetmeligi (2002/49/EC)], TC Çevre ve Orman Bakanlıgı, Resmi Gazete.
19. Cirit H. (n.d.), Sermon, [in Turkish: Vaaz], retrieved October 1, 2018, from Turkiye Diyanet Foundation, Encyclopaedia of Islam, https://islamansiklope disi.org.tr/vaaz#.
20. Elkhateeb A., Adas A., Atilla M., Balia Y. (2016), The acoustics of Masjids, looking for future design criteria, [in:] The 23rd International Congress on Sound and Vibration, pp. 10–14, Greece.
21. Erdem A. (1992), A Study on the acoustic characteristics of the Muradiye mosque [in Turkish: Muradiye camii’nin akustik karakteristikleri üzerine bir arastırma], Edirne: Doctoral Thesis, Trakya University.
22. Ez-Züvey A., Hanay N. (2013), The founder of the sound science El-Halil B. AHMED [in Turkish: Ses Bilimin Kurucusu El-Halil B. AHMED], Recep Tayyip Erdogan Üniversitesi Ilahiyat Fakültesi Dergisi, 4: 195– 227.
23. Fischer S.R. (2015), History of language [in Turkish: Dilin tarihi], trans. M. Güvenç, Kültür yayınevi. 24. Güler E., Hengirmen M. (2005), Sound science and diction [in Turkish: Ses bilimi ve diksiyon], Engin yayin evi.
25. Hafizah D., Putra A., Noor M.J., Py M.S. (2015), Double layered micro perforated panel as acoustic absorber in mosque, Proceedings of Mechanical Engineering Research Day, pp. 103–104.
26. Harris C.M. (1991), Handbook of Acoustical Measurements and Noise Control, McGraw-Hill.
27. Houtgast T., Steeneken H. (1984), A multilanguage evaluation of the RASTI-method for estimating speech intelligibility in auditoria, Acta Acustica united with Acustica, 54(4): 185–199.
28. Ismail M.R. (2013), A parametric investigation of the acoustical performance of contemporary mosques, Frontiers of Architectural Research, 2(1): 30–41, doi: 10.1016/j.foar.2012.11.002.
29. Karabiber Z. (2000), New Approach to an Ancient Subject: CAHRISMA Project, Proceedings of the 7th ICSV Conference.
30. Karabiber Z., Erdogan S. (2002), Comparison of the acoustical properties of an ancient and recent mosque, Forum Acusticum.
31. Kavraz M. (2014), The acoustic characteristics of the Çarsı Mosque in Trabzon, Turkey, Indoor and Built Environment, 25(1): 128–136, doi: 10.1177/1420 326X14541138.
32. Kayılı M. (1988), Evaluation of acoustic data in Mimar Sinan’s Mosques, Chief Architect Koca Sinan: His Age and Works [in Turkish: Mimar Sinan’ın Camilerindeki Akustik Verilerin Degerlendirilmesi, Mimarbası Koca Sinan: Yasadıgı Çag ve Eserleri], T.C. Basbakanlık Vakıflar Genel Müdürlügü, Istanbul, pp. 545–555.
33. Kayili M. (2005), Acoustic Solutions in classic Ottoman architecture, Foundation for Science, Technology and Civilisation, Publication ID: 4087.
34. Kılıncarslan A.S. (1986), Standardization of phonetically balanced monosyllabic word lists developed for the Turkish language [in Turkish: Türk Diliiçin Gelistirilmis Fonetik Dengeli Tek Heceli Kelime Listelerinin Standardizasyonu], Master Thesis, Hacettepe University, Ankara.
35. Kitapçı K. (2016), Speech ıntelligibility in multilingual spaces, Doctoral Thesis, Heriot-Watt University. 36. Kitapçi K., Galbrun L. (2014), Comparison of speech intelligibility between English, Polish, Arabic and Mandarin, Proceeding of Forum Acusticum, Krakow, Poland.
37. Kuttruff H. (2009), Room Acoustics, 5th ed., CRC Press.
38. Long M. (2006), Architectural Acoustics, Elsevier Academic Press.
39. ODEON, (2015), Odeon Application Note – Auralisation and how to calibrate the sound level for presentations, JHR.
40. Orfali W.A. (2007), Sound parameters in mosque, Proceedings of Meeting on Acoustics, 1(1): 035001, doi: 10.1121/1.2829306.
41. Parkin P.H., Cowell J.R., Humphreys H.R. (1979), Acoustics, Noise, and Buildings, 4th ed., Faber and Faber: Boston MA.
42. Pilancı H. (2011), Turkish phonetics [in Turkish: Türkçe ses bilgisi], Anadolu Üniversitesi basımevi.
43. Presidency of Religious Affairs (2016), 2016 4-B Contracted Islamic Preacher Recruitment (SÖZPER-2016- III) [in Turkish: 2016 Yılı 4-B Sözlesmeli Imam-Hatip Alımı (SÖZPER-2016-III)], Retrieved November 15, 2019, from https://insankaynaklari.diyanet.gov.tr/De tay/315/2016-y%C4%B1l%C4%B1-4-b-s%C3%B6zle %C5%9Fmeli-imam-hatip-al%C4%B1m%C4%B1-(s% C3%B6zper-2016-%C4%B1%C4%B1%C4%B1.
44. Prodi N., Marsilio M. (2003), On the effect of domed ceiling in worship spaces: a scale model study of a mosque, Building Acoustics, 10(2): 117–134, doi: 10.1260/135101003768965979.
Go to article

Authors and Affiliations

Elma Alic
1
Asli Ozcevik Bilen
1

  1. Department of Architecture, Eskisehir Technical University, Eskisehir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the relationship between Chinese speech intelligibility (CSI) scores of the elderly aged 60–69 and over 70 years old, and speech transmission index (STI) were investigated through the auralization method under different reverberation time and background noise levels (BNL, 40 dBA and 55 dBA). The results show that the CSI scores of the elderly are significantly worse than those of young adults. For the elderly over 70, the CSI scores become much lower than those of young adults. To be able to achieve the same CSI, the elderly, especially those over 70, need much higher STI and greater SNR than the young. The elderly aged 60–69 and over 70 need to improve their STI by 0.419 and 0.058 respectively under BNL 40 dBA, as well as 0.282 and 0.072 respectively under BNL 55 dBA, so as to obtain the same CSI scores as the young adults.
Go to article

Authors and Affiliations

Jianxin Peng
1 2
Jiazhong Zeng
3
Yuezhe Zhao
2

  1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, China, 510640
  2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong, China, 510640
  3. School of Architecture, South China University of Technology, Guangzhou, Guangdong, China, 510640

This page uses 'cookies'. Learn more