Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

On fifth-generation wireless networks, a potential massive MIMO system is used to meet the ever-increasing request for high-traffic data rates, high-resolution streaming media, and cognitive communication. In order to boost the trade-off between energy efficiency (EE), spectral efficiency (SE), and throughput in wireless 5G networks, massive MIMO systems are essential. This paper proposes a strategy for EE 5G optimization utilizing massive MIMO technology. The massive MIMO system architecture would enhance the trade-off between throughput and EE at the optimum number of working antennas. Moreover, the EE-SE tradeoff is adjusted for downlink and uplink massive MIMO systems employing linear precoding techniques such as Multiple -Minimum Mean Square Error (M-MMSE), Regularized Zero Forcing (RZF), Zero Forcing (ZF), and Maximum Ratio (MR). Throughput is increased by adding more antennas at the optimum EE, according to the analysis of simulation findings. Next, utilizing M MMSE instead of RZF and ZF, the suggested trading strategy is enhanced and optimized. The results indicate that M-MMSE provides the best tradeoff between EE and throughput at the determined optimal ratio between active antennas and active users equipment’s (UE).
Go to article

Authors and Affiliations

Ibrahim Salah
1
Kamel Hussein Rahouma
2 3
Aziza I. Hussein
4
ORCID: ORCID
Mohamed M. Mabrook
5 1
ORCID: ORCID

  1. CCE Department, Faculty of Engineering, Nahda University, Beni-Suef, Egypt
  2. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
  3. Faculty of Computer Science, Nahda University, Beni-Suef, Egypt
  4. Electrical & Computer Eng. Dept., Effat University, Jeddah, KSA
  5. Faculty of Navigation Science & Space Technology, Beni-Suef University, Beni-Suef, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Multicarrier modulation (MCM) based schemes have been a major contributing factor in revolutionizing cellular networks due to their ability to overcome fading. One of the popular scheme orthogonal frequency division multiple access (OFDMA), having been part of 4G, is also adapted as part of 5G enhanced mobile broadband (eMBB). Though it has several advantages, spectral efficiency (SE) and peak to average power ratio (PAPR) have been two major concerns which have attracted lot of attention resulting in proposals of several other MCM schemes. But most of these studies have treated the two issues independently. This paper in particular studies the subcarrier filtering approach to improve the spectral efficiency of MCM scheme and its impact on the overall PAPR of such schemes. The analysis shows that the PAPR improvement is also achieved by such filters meant for spectral confinement and the simulation results validate the same provoking.
Go to article

Authors and Affiliations

Kiran V. Shanbhag
1
Dayakshini Sathish
2

  1. Dept. of ECE, Anjuman Institute of Technology and Management, Bhatkal and Visvesvaraya Technological University, India
  2. Dept. of ECE, St Joseph Engineering Collegee, Mangaluru and Visvesvaraya Technological University, India
Download PDF Download RIS Download Bibtex

Abstract

As day by day the population is increasing, the use of mobile phones and different applications is increasing which requires high data rate for transmission. Homogeneous cellular network cannot fulfill the demand of mobile users, so creating a heterogeneous cellular network (HCN) is a better choice for higher coverage and capacity to fulfil the increasing demand of upcoming 5G and ultra-dense cellular networks. In this research, the impact of antenna heights and gains under varying pico to macro base stations density ratio from 2G to 5G and beyond on two-tier heterogeneous cellular network has been analyzed for obtaining optimum results of coverage and area spectral efficiency. Furthermore, how the association of UEs affects the coverage and ASE while changing the BSs antenna heights and gains has been explored for the two-tier HCN network model. The simulation results show that by considering the maximum macro BS antenna height, pico BS antenna height equal to user equipment (UE) antenna height and unity gains for both macro and pico tiers, the optimum coverage and area spectral efficiency (ASE) for a two-tier fully loaded heterogeneous cellular network can be obtained.
Go to article

Bibliography

[1] RYSAVY Research, “LTE to 5G: Cellular and Broadband Innovation,” 5G Americas white paper, 2017.
[2] J. Acharya, L. Gao, S. Gaur, “Heterogeneous Networks in LTE-Advanced,” John Wiley & Sons, 2014.
[3] H. S. Dhillon, R. K. Ganti, F. Baccelli, J. G. Andrews, “Modeling and analysis of K-tier downlink heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 30(3), 2012, pp. 550-560.
[4] J. Chen, P. Rauber, D. Singh, C. Sundarraman, P. Tinnakornsrisuphap, M. Yavuz, “Femtocells – Architecture & Network Aspects,” Qualcomm, 2010, pp. 1-6.
[5] M. Ghanbarisabagh, G. Vetharatnam, S. M. Giacoumidis, Malayer, “Capacity Improvement in 5G Networks Using Femtocell,” Wireless Personal Communications, vol. 105, 2019, pp. 1027–1038, https://doi.org/10.1007/s11277-019-06134-2
[6] F. Baccelli, B. Btaszczyszyn, “Stochastic Geometry and Wireless Networks: Volume I: Theory,” Foundations and Trends in Networking, Hanover, USA, 2009.
[7] M. Haenggi, “Stochastic Geometry for Wireless Networks,” Cambridge University Press, 2012.
[8] S. N. Chiu, D. Stoyan, W. Kendall, and J. Mecke, “Stochastic Geometry and its applications,” Wiley series in Probability and Statistics, John Wiley & Sons, 2013.
[9] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Transactions on Communications, vol. 59, no. 11, 2011, pp. 3122–3134.
[10] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of K-tier downlink heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, 2012, pp. 550–560.
[11] Y. Deng, L. Wang, M. Elkashlan, M. Di Renzo and J. Yuan, “Modeling and Analysis of Wireless Power Transfer in Heterogeneous Cellular Networks,” IEEE Transactions on Communications, vol. 64, no. 12, 2016, pp. 5290-5303.
[12] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis and J. G. Andrews, “User Association for Load Balancing in Heterogeneous Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, 2013, pp. 2706-2716.
[13] S. Singh, and H.S. Dhillon, “Offloading in Heterogeneous Networks: Modeling, Analysis, and Design Insights,” IEEE Transactions on Wireless Communications, vol. 12 (5), 2013, pp. 2484–2497.
[14] W. Wang and G. Shen, “Energy Efficiency of Heterogeneous Cellular Network,” IEEE 72nd Vehicular Technology Conference - Fall, Ottawa, 2010, pp. 1-5.
[15] X. Chen, J. Wu, Y. Cai, H. Zhang and T. Chen, “Energy-Efficiency Oriented Traffic Offloading in Wireless Networks: A Brief Survey and a Learning Approach for Heterogeneous Cellular Networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, 2015, pp. 627-640.
[16] X. Li, R. W. Heath Jr., K. Linehan, and R. Butler, “Impact of metro cell antenna pattern and downtilt in heterogeneous networks,” arXiv:1502.05782 [cs.IT], 2015. [Online] Available: http://arxiv.org/abs/1502.05782.
[17] L. Xiang, H. Chen, and F. Zhao, “Area Spectral Efficiency and Energy Efficiency Tradeoff in Ultradense Heterogeneous Networks,” Wireless Communications and Mobile Computing, Hindawi, vol. 2017.
[18] M. Ding and D. Lopez Perez, “Please Lower Small Cell Antenna Heights in 5G,” IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1-6.
[19] M. Ding and D. López-Pérez, “Performance Impact of Base Station Antenna Heights in Dense Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, 2017, pp. 8147-8161.
[20] M. M. Shaikh, M. C. Aguayo-Torres, “Joint Uplink/Downlink Coverage and Spectral Efficiency in Heterogeneous Cellular Network,” Springer, Wireless Personal Communications Journal, 2016, https://doi.org/10.1007/s11277- 016-3889-1.
[21] M. M. Shaikh, M. C. Aguayo-Torres, “Fairness and Rate Coverage of Symmetric Transmission over Heterogeneous Cellular Networks under Diverse Coupling and Association Criteria,” Springer Wireless Personal Communications Journal, 2017, https://doi.org/10.1007/s11277-017-4418-6.
[22] S. Mukherjee, “Analytical Modeling of Heterogeneous Cellular Networks: Geometry, Coverage, and Capacity,” Cambridge University Press, 2014.
[23] M. Ding, D. Lopez-Perez, H. Claussen, M. A. Kaafar, “On the Fundamental Characteristics of Ultra-Dense Small Cell Networks,” IEEE Network, vol. 32, no. 3, 2018, pp. 92-100.
[24] 3GPP, “TR 36.828 V11.0.0: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (Release 11),” 2012.
[25] 3GPP, “TR 36.814, V2.2.0: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects,” 2017.
Go to article

Authors and Affiliations

Anum Abbasi
1
M. Mujtaba Shaikh
1
Safia Amir Dahri
1
Sarfraz Ahmed Soomro
1
Fozia Aijaz Panhwar
1

  1. Department of Telecommunication Engineering, Quaid-e-Awam University of Engineering, Science & Technology (QUEST), Nawabshah, Sindh, Pakistan

This page uses 'cookies'. Learn more