Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the problem of the effect of discretization level and certain other parameters characterizing the measurement setup on accuracy of the process of determination of the sound radiation efficiency by means of the Discrete Calculation Method (DCM) described by Hashimoto (2001). The idea behind DCM consists in virtual division of an examined sound radiating structure into rectangular elements each of which is further assumed to contribute to the total radiation effect in the same way as a rigid circular piston having the surface area equal to this of the corresponding virtual element and vibrating in an infinite rigid baffle. The advantage of the method over conventional sound radiation efficiency measurement techniques consists in the fact that instead of acoustic pressure values, source (plate) vibration velocity amplitude values are measured in a selected number of regularly distributed points. In many cases, this allows to determine the sound radiation efficiency with sufficient accuracy, especially for the low frequency regime. The key part of the paper is an analysis of the effect of discretization level (i.e. the choice of the number of points at which vibration amplitude measurements are to be taken with the use of accelerometers) on results obtained with the use of the method and their accuracy. The problem of determining an optimum level of discretization for given excitation frequency range is a very important issue as the labor intensity (time-consuming aspect) of the method is one of its main flaws. As far as the technical aspect of the method is concerned, two different geometrical configurations of the measurement setup were tested.
Go to article

Authors and Affiliations

Karolina Kolber
Anna Snakowska
Michał Kozupa
Download PDF Download RIS Download Bibtex

Abstract

Vibro-acoustic response of an isotropic beam under the action of variable axial loads (VALs), is presented in the study. Effects of six different types of VALs and three types of end conditions on buckling, free vibration and sound radiation characteristics are investigated. Static buckling and free vibration behaviours using shear and normal deformable theorem and Ritz method. However, the forced vibration response is evaluated using modal superposition method and the acoustic radiation characteristics are obtained using Rayleigh integral. The nature of variation of VALs and end conditions are influencing buckling and free vibration characteristics remarkably. Results indicate that the acoustic response is highly sensitive to the nature of VAL and intensity of the VAL. In general, sound power at resonance decreases when the magnitude of VAL is increased.
Go to article

Authors and Affiliations

Somi Naidu Balireddy
1
Jeyaraj Pitchaimani
1
Lenin Babu Mailan Chinnapandi
2
V.S.N. Reddi Chintapalli
3

  1. National Institute of Technology Karnataka Surathkal, Mangalore 575 025, India
  2. Vellore Institute of Technology Chennai, Tamilnadu 600 127, India
  3. Aditya Engineering College, Surampalem, Andhra Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

Sound propagation from the vehicles moving on the city roundabout, with taking into account the wind is investigated. Solution of the problem for one moving sound source is found by means of the integral Fourier transforms extended over space variables and time. Inverse transforms are calculated approximately, using a stationary phase method and iterative technique. The solution for a general problem is obtained as a superposition of many partial solutions. The numerical analysis of noise characteristics is performed for the three-way Korfanty roundabout case in Łódź.

Go to article

Authors and Affiliations

Olexa Piddubniak
Nadia Piddubniak

This page uses 'cookies'. Learn more