Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A numerical method is developed for estimating the acoustic power of any baffled planar structure, which is vibrating with arbitrary surface velocity profile. It is well known that this parameter may be calculated with good accuracy using near field data, in terms of an impedance matrix, which is generated by the discretization of the vibrating surface into a number of elementary radiators. Thus, the sound pressure field on the structure surface can be determined by a combination of the matrix and the volume velocity vector. Then, the sound power can be estimated through integration of the acoustic intensity over a closed surface. On the other hand, few works exist in which the calculation is done in the far field from near field data by the use of radiation matrices, possibly because the numerical integration becomes complicated and expensive due to large variations of directivity of the source. In this work a different approach is used, based in the so-called Propagating Matrix, which is useful for calculating the sound pressure of an arbitrary number of points into free space, and it can be employed to estimate the sound power by integrating over a finite number of pressure points over a hemispherical surface surrounding the vibrating structure. Through numerical analysis, the advantages/disadvantages of the current method are investigated, when compared with numerical methods based on near field data. A flexible rectangular baffled panel is considered, where the normal velocity profile is previously calculated using a commercial finite element software. However, the method can easily be extended to any arbitrary shape. Good results are obtained in the low frequency range showing high computational performance of the method. Moreover, strategies are proposed to improve the performance of the method in terms of both computational cost and speed.

Go to article

Authors and Affiliations

Mario A. González-Montenegro
Roberto Jordan
Arcanjo Lenzi
Jorge P. Arenas
Download PDF Download RIS Download Bibtex

Abstract

A set of sound power assessments was performed to determine measurement precision in specified conditions by the comparison method in a reverberation room with a fixed position array of six microphones. Six blenders (or mixers) and, complementary, a reference sound source were the noise sources. Five or six sound power calculations were undertaken on each noise source, and the standard deviation (sr) was computed as “measurement precision under repeatability conditions” for each octave band from 125 Hz to 8 kHz, and in dB(A). With the results obtained, values of sr equal 1.0 dB for 125 Hz and 250 Hz, 0.8 dB for 500 Hz to 2 kHz, and 0.5 dB for 4 kHz and 8 kHz. Those can be considered representative as sound power precision for blenders according to the measurement method used. The standard deviation of repeatability for the A-weighted sound power level equals 0.6 dB. This paper could be used for house or laboratory tests to check where their uncertainty assessment for sound power determination is similar or not to those generated at the National Metrology Institute.

Go to article

Authors and Affiliations

Rodrigo P.B. Costa-Felix
Download PDF Download RIS Download Bibtex

Abstract

In this study, the modified Sauer cavitation model and Kirchhoff-Ffowcs Williams and Hawkings (K-FWH) acoustic model were adopted to numerically simulate the unsteady cavitation flow field and the noise of a threedimensional NACA66 hydrofoil at a constant cavitation number. The aim of the study is to conduct and analyze the noise performance of a hydrofoil and also determine the characteristics of the sound pressure spectrum, sound power spectrum, and noise changes at different monitoring points. The noise change, sound pressure spectrum, and power spectrum characteristics were estimated at different monitoring points, such as the suction side, pressure side, and tail of the hydrofoil. The noise characteristics and change law of the NACA66 hydrofoil under a constant cavitation number are presented. The results show that hydrofoil cavitation takes on a certain degree of pulsation and periodicity. Under the condition of a constant cavitation number, as the attack angle increases, the cavitation area of the hydrofoil becomes longer and thicker, and the initial position of cavitation moves forward. When the inflow velocity increases, the cavitation noise and the cavitation area change more drastically and have a superposition tendency toward the downstream. The novelty is that the study presents important calculations and analyses regarding the noise performance of a hydrofoil, characteristics of the sound pressure spectrum, and sound power spectrum and noise changes at different monitoring points. The article may be useful for specialists in the field of engineering and physics.
Go to article

Authors and Affiliations

He Xiaohui
1
Liu Zhongle
2
Yang Chao
1
Yuan Zhiyong
2

  1. Jiangnan Industry Group Co., Ltd., Wuyi Village, China
  2. Naval University of Engineering, Wuhan, China
Download PDF Download RIS Download Bibtex

Abstract

Applying rigorous analytical methods, formulas describing the sound radiation have been obtained for the wedge region bounded by two transverse baffles with a common edge and bottom. It has been assumed that the surface sound source is located at the bottom. The presented formulas can be used to calculate the sound pressure and power inside the wedge region. They are valid for any value of the wedge angle and represent a generalization of the formulas describing the sound radiation inside the two and three-wall corner region. Moreover, the presented formulas can be easily adapted for any case when more than one sound source is located at the bottom. To demonstrate their practical application, the distribution of the sound pressure modulus and the sound power have been analyzed in the case of a rectangular piston located at the wedge’s bottom. The influence of the transverse baffle on the sound power has been investigated. Based on the obtained formulas, the behaviour of acoustic fields inside a wedge can be predicted.
Go to article

Authors and Affiliations

Krzysztof Szemela

This page uses 'cookies'. Learn more