Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

There are currently large quantities of heterogeneous contaminated sites and the in-situ thermal conductive heating (TCH) technology have been widely used in soil remediation. Some engineering cases have shown that when soil remediation of heterogeneous sites use TCH technology, the gases carrying contaminants migrate laterally and contaminate clean areas. However, there are relatively few domestic studies on this phenomenon. Some international scholars have confirmed the occurrence of this phenomenon on the laboratory scale, but have not proposed an effective solution to the above scientific question. This study first introduced the heating mechanism and heating process of TCH. Meanwhile, the forms and transformation mechanism of organic contaminants were fully expounded during soil remediation by TCH. In addition, the formation, migration, accumulation, and lateral diffusion of gaseous contaminants were comprehensively reviewed during the in-situ thermal desorption of heterogeneous strata. Finally, arrangement methods of extraction pipes to effectively capture gas are provided for the heterogeneous contaminated soils remediated by TCH. The results of this study will provide theoretical and technical support for in-depth understanding of steam movement in heterogeneous formations and the remediation of heterogeneous contaminated sites by TCH technology.
Go to article

Bibliography

  1. Baker, R. & Heron, G. (2004). In-Situ delivery of heat by thermal conduction and steam injection for improved DNAPL remediation.TerraTherm, Inc., Fitchburg USA2004.
  2. Baker, R., Lachance, J. & Heron, G. (2006). In-pile thermal desorption of PAHs, PCBs and dioxins/furans in soil and sediment. Land Contamination & Reclamation, 14(2), pp. 620–624. DOI:10.2462/09670513.731
  3. Biache, C., Mansuy-Huault, L., Faure, P., Munier-Lamy, C. & Leyval, C. (2008). Effects of thermal desorption on the composition of two coking plant soils:impact onsolvent extractable organic compounds and metal bioavailability. Environmental Pollution, 3, pp. 671–677. DOI:10.1016/j.envpol.2008.06.020
  4. Bonnard, M., Devin, S., Leyval, C., Morel, J.L. & Vasseur, P. (2010). The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicology and Environmental Safety, 73, pp. 955–960. DOI:10.1016/j.ecoenv.2010.02.02
  5. Brooks, M.C., Wise, W.R. & Annable, M.D. (1999). Fundamental changes in in situ air sparging how patterns. Groundwater Monitoring & Remediation, 19(2), pp. 105–113. DOI:10.1111/j.1745-6592.1999.tb00211.x
  6. Burghardt, J.M. & Kueper, B.H. (2008). Laboratory study evaluating heating of tetrachloroethylene impacted soil. Groundwater Monitoring & Remediation, 28(4), pp. 95–106. DOI:10.1111/ j.1745-6592.2008.00214.x
  7. Carey, V.P. (2007). Liquid-Vapor Phase-change Phenomena, second ed. Taylor and Francis, New York 2007. Cébron, A., Cortet, J., Criquet, S., Biaz, A., Calvert, V., Caupert, C., Pernin, C. & Leyval, C. (2011). Biological functioning of PAHpolluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Research in Microbiology, 162, pp. 896–907. DOI:10.1016/j.resmic.2011.02.011
  8. Chiou, C.T., Porter, P.E. & Schmedding, D.W. (1983). Partition equilibria of nonionic organic compounds between soil organic matter and water. Environmental science & technology, 17, pp. 27–231, DOI:10.1021/es00110a009
  9. Chen, F., Freedman, D.L., Falta, R.W. & Murdochb, L.C. (2012). Henry’slaw constants of chlorinated solvents at elevated temperatures. Chemosphere, 86(2), pp. 156–165. DOI:10.1016/j. chemosphere.2011.10.004
  10. Geistlinger, H., Krauss, G., Lazik, D. & Luckner, L. (2006). Direct gas injection into saturated glass beads: Transition from incoherent to coherent gas flow pattern. Water Resources Research, 42, W07403. DOI:10.1029/2005WR004451
  11. Hegele, P.R. & Mumford, K.G. (2014) Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene. Journal of Contaminant Hydrology, 165, pp. 24–36, DOI:10.1016/j.jconhyd.2014.07.002
  12. Heron, G., Bierschenk, J., Swift, R., Watson, R. & Kominek, M. (2016). Thermal DNAPL source zone treatment impact on a CVOC plume. Groundwater Monitoring & Remediation, 36(1), pp. 26–37. DOI:10.1111/gwmr.12148
  13. Heron, G., Carroll, S. & Nielsen, S.G. (2005). Full-scale removal of DNAPL constituents using steam enhanced extraction and electrical resistance heat. Groundwater Monitoring & Remediation, 25(4), pp. 92–107. DOI:10.1111/j.1745- 6592.2005.00060.x
  14. Heron, G., Lachance, J. & Baker R. (2013). Removal of PCE DNAPL from tight clays using in situ thermal desorption. Groundwater Monitoring & Remediation, 3(4), pp. 31–43. DOI:10.1111/ gwmr.12028
  15. Heron, G., Parker, K., Galligan, J. & Holmes, T.C. (2009). Thermal treatment of 8 CVOC source areas to near nondetect concentrations. Groundwater Monitoring & Remediation, 29(3), pp. 56–65. DOI:10.1111/j.1745-6592.2009.01247.
  16. Hicknell, B.N., Mumford, K.G. & Kueper, B.H. (2018). Laboratory study of creosote removal from sand at elevated temperatures. Contam Hydrol, 219, pp. 40–49. DOI:10.1016/j. jconhyd.2018.10.00
  17. Hiester, U., Muller, M., Koschitzky, H. & Trötschler, O. (2013). In situ thermal treatment for source zone remediation of soil and groundwater. British Medical Journal, 31, pp. 482–484.
  18. Janfada, T.S., Class, H., Kasiri, N. & Dehghani, M.R. (2020). Comparative experimental study on heat-up efficiencies during injection of superheated and saturated steam into unsaturated soil. International Journal of Heat and Mass Transfer, 158, 119235. DOI:10.1016/j.ijheatmasstransfer.2019.119235
  19. Jones, S.F., Evans, G.M. & Galvin K.P. (1999). Bubble nucleation from gas cavities – a review. Adv. Colloid Interfac, 80, pp. 27–50. DOI:10.1016/S0001-8686(98)00074-8
  20. Kueper, B.H. & McWhorter, D.B. (1991). The behaviour of dense, nonaqueous phase liquids in fractured clay and rock. Ground Water, 29(5), pp. 716–728. DOI:10.1111/j.1745-6584.1991. tb00563.
  21. Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E. & Pope, G.A. (2006). Remediation of elemental mercury using in situ thermal desorption(ISTD). Environmental Science & Technology, 40(7), pp. 2384–2389. DOI:10.1021/es050358
  22. Li, K. & Horne, R.N. (2002). A capillary model for geothermal reservoirs. Proceedings of the GRC 2002 Annual Meeting,September 23–25, 2002, Reno, USA: Geothermal Resources Council Trans.
  23. Magdalena. M.K., Mumford, K.G., Johnson, R.L. & Sleep, B.E. (2011) Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones. Advances in Water Resources, 34, PP. 537–549. DOI:10.1016/j. advwatres.2011.01.010
  24. Martin, E.J. & Kueper, B.H. (2011). Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions. Journal of Contaminant Hydrology, 126, pp. 291–300. DOI:10.1016/j.jconhyd.2011.09.004
  25. Martin, E.J., Mumford, K.G. & Kueper, B.H. (2016). Electrical resistance heating of clay layers in water-saturated sand. Groundwater Monitoring & Remediation, 36(1), pp. 54–61. DOI:10.1111/gwmr.12146
  26. Martin, E.J., Mumford, K.G, Kueper, B.H. & Siemens, G.A. (2017). Gas formation in sand and clay during electrical resistance heating. International Journal of Heat and Mass Transfer, 110, pp. 855–862. DOI:10.1016/j.ijheatmasstransfer.2017.03.056
  27. Mumford, K.G., Martin, E.J. & Kueper, B.H. (2021). Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation. Journal of Contaminant Hydrology, 243, 103892. DOI:10.1016/J. JCONHYD.2021.103892
  28. Mumford, K.G., Smith, J.E. & Dickson, S.E. (2008). Mass flux from a non-aqueous phase liquid pool considering spontaneous expansion of a discontinuous gas phase. Journal of Contaminant Hydrology, 98, pp. 85–96. DOI:10.1016/j.jconhyd.2008.02.007
  29. Munholland, J.L. (2015) Electrical resistance heating of groundwater impacted by chlorinated solvents in heterogeneous sand. ProQuest Dissertations. Munholland, J.L., Mumford, K.G. & Kueper, B.H. (2016). Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. Journal of Contaminant Hydrology, 184, pp. 14–24. DOI:10.1016/j.jconhyd.2015.10.011
  30. Netzeva, T.I., Aptula, A.O., Chaudary, S.H., Duffy, J.C., Schultz, T.W., Schűrmann, G. & Cronin, M.T.D. (2003). Structure-Activity Relationships for the Toxicity of Substituted Poly-Hydroxylated. Benzenes to Tetrahymena Pyriformis: influence of Free Radical Formation. Qsar & Combinatorial Science, 22(6), pp. 575–582.
  31. Nilsson, B., Tzovolou, D., Jeczalik, M., TomaszKasela, T., Slack,W., Klint, K.E., Haeseler, F. & Tsakiroglou, D.C. (2011). Combining steam injection with hydraulic fracturing for the in-situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel. Journal of Environmental Management, 92. DOI:10.1016/j.jenvman.2010.10.004
  32. Oberle. D. & Kluger, M. (2015). In situ remediation of 1, 4-dioxane using electrical resistance heating. Remediation Journal, 25(2), pp. 35–42. DOI:10.1002/rem.21422
  33. O’Carroll, D.M. & Sleep, B.E. (2007). Hot water flushing for immiscible displacement of a viscous NAPL. Journal of Contaminant Hydrology, 91, pp. 47–266. DOI:10.1016/j.jconhyd.2006.11.003
  34. Schwarzenbach, R.P., Gschwend, P.M. & Imboden, D.M. (2003). Environmental Organic Chemistry, JohnWiley &Sons, New Jersey2003. Scriven, L.E. (1959). On the dynamics of phase growth. Chemical Engineering Science, 10, PP. 1–13, DOI:10.1016/0009- 2509(59)80019-1
  35. Sinnott, R.K. (2005). Coulson’s and Richardson’s Chemical Engineering, Chemical Engineering Design. Elsevier Inc., UK2005.
  36. Sleep, B.E. & Ma, Y.F. (1997). Thermal variation of organic fluid properties and impact on thermal remediation feasibility. Journal of Soil Contamination, 6(3), pp. 281–306. DOI:10.1080/15320389709383566
  37. Smith, J.M. & Van Ness, H.C. (1987). Introduction to Chemical Engineering Thermodynamics. Mc-Graw Hill, Inc., New York 1987.
  38. Sun, H., Yang, X.R., Xie, J.Y. & Zhao, Y.S. (2021). Remediation of Diesel-Contaminated Aquifers Using Thermal Conductive Heating Coupled With Thermally Activated Persulfate. Water Air Soil Pollut, 232: 293. DOI:10.1007/s11270-021-05240-x
  39. Suthersan. S.S., Horst. J., Schnobrich. M., Welty, N. & McDonough, J. (2016). Remediation Engineering-Design Concepts Second Edition, CRC Press, Boca Raton 2016.
  40. Tang, S., Wang, X., Mao, Y., Zhao, Y., Yang, H. & Xie, Y.F. (2015). Effect of dissolved oxygen concentration on iron efficiency: removal of three chloroacetic acids. Water Research, 73, pp. 342–352. DOI:10.1016/j.watres.2015.01.02
  41. Triplett Kingston,J.L., Dahlen, P.R. & Johnson, P.C. (2010). State-of- -the-practice review of in situ thermal technologies. Groundwater Monitoring & Remediation, 30 (4), pp. 64–72. DOI:10.1111/ j.1745-6592.2010.01305.x
  42. Triplett Kingston, J.L., Johnson, P.C., Kueper, B.H. & Mumford, K.G. (2014). In situ thermal treatment of chlorinated solvent source zones. Chlorinated Solvent Source Zone Remediation, 7, pp. 509–557.
  43. Udell, K.S. (1996). Heat and mass transfer in clean-up of underground toxic wastes. In Annual Reviews of Heat Transfer, 7, pp. 333–405. DOI:10.1615/AnnualRevHeatTransfer.v7.80.
  44. Vermeulen, F. & McGee, B. (2000). In situ electromagnetic heating for hydrocarbon recovery and environmental remediation. J Can. Pet. Technol, 39(8), pp. 24–28. DOI:10.2118/00-08-DAS
  45. Voort, M., Kempenaar, M., Driel, M., Raaijmakers, M.J. & Mendes, R. (2016). Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 19(4), pp. 375–382. DOI:10.1111/ele.12567
  46. Zhao, C., Mumford, K.G. & Kueper, B.H. (2014). Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment. Journal of Contaminant Hydrology, 164, pp. 49–58. DOI:10.1016/j.jconhyd.2014.05.008
Go to article

Authors and Affiliations

Wei Ji
1
Rong-Bing Fu
1
Cai-Hong Gao
1
Jia-Bin Yao
1

  1. State Key Laboratory of Pollution Control and Resources Reuse,College of Environmental Science and Engineering, Tongji University, Shanghai 200092, ChinaCentre for Environmental Risk Management and Remediation of Soil and Groundwater,Tongji University, Shanghai 200092, China
Download PDF Download RIS Download Bibtex

Abstract

When exposed to high cadmium concentrations applied to the soil, the abiotic stress-tolerant, semi-halophytic C3/CAM (Crassulacean Acid Metabolism) photosynthetic intermediate plant Mesembryanthemum crystallinum L. demonstrates negligible poisoning symptoms with well-protected photochemical activity. Gas exchange analysis of the soil-grown plants exposed to Cd concentrations ranging from 0.01 to 10.0 mM revealed stimulation of net photosynthesis in the C 3 metabolic state, and this observation coincided with an increase in the transpiration level. The obtained results suggest that the initial action of Cd after the administration of this heavy metal is the stimulation of stomata opening.
Go to article

Bibliography

[1]. Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J. & Griffiths, H. (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). The New Phytologist, 138, 171–190. DOI:10.1046/j.1469-8137.1998.00111.x
[2]. Adamakis, I.-D.S., Sperdouli, I., Hanć, A., Dobrikova, A., Apostolova, E. & Moustakas, M. (2021). Rapid hormetic responses of photosystem II photochemistry of clary sage to cadmium exposure. International Journal of Molecular Sciences, 22, 41. DOI:10.3390/ijms22010041
[3]. Ali, H., Khan, E. & Sajad, M.A. (2013) Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881. DOI:10.1016/j.chemosphere.2013.01.075
[4]. Amari, T., Ghnaya, T., Debez, A., Taamali, M., Ben Youssef, N., Lucchini, G., Sacchi, G.A. & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171, 1634–1644. DOI:10.1016/j.jplph.2014.06.020
[5]. Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M. & Irshad, M.K. (2015). Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62(4), 533-546. DOI:10.1080/03650340.2015.1064903
[6]. Björkman, O. & Demming, B. (1987). Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77ºK among vascular plants of diverse origin. Planta, 170, 489–504. DOI:10.1007/BF00402983
[7]. Carvalho, M.E.A., Piotto, F.A., Franco, M.R., Rossi, M.L., Martinelli, A.P., Cuypers, A. & Azevedo R.A. (2019). Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. Journal of Environmental Management, 240, 84-92. DOI:10.1016/j.jenvman.2019.03.026
[8]. Chibuike, G.U. & Obiora, S.C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 1-13. DOI:10.1155/2014/752708
[9]. Cushman, J.C. & Borland, A.M. (2002). Induction of crassulacean acid metabolism by water limitation. Plant Cell & Environment, 25(2), 295-310. DOI:10.1046/j.0016-8025.2001.00760.x
[10]. Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B. & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35, 1281-1289. DOI:10.1007/s11738-012-1167-8
[11]. Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznik, M.S., Groppa, M.D. & Benavides, M.P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46. DOI:10.1016/j.envexpbot.2012.04.006
[12]. Gawrońska, K. & Niewiadomska, E. (2015). Participation of citric acid and isocitric acid in the diurnal cycle of carboxylation and decarboxylation in the common ice plant. Acta Physiologiae Plantarum, 37, 61. DOI:10.1007/s11738-015-1807-x
[13]. Gawroński S., Łutczyk G., Szulc W. & Rutkowska B. (2022) Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection 48(2),24-33 DOI:10.24425/aep.2022.140763
[14]. Haag-Kerwer, A., Schäfer, H.J., Heiss, S., Walter, C. & Rausch, T. (1999). Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50, 1827–1835. DOI:10.1093/jxb/50.341.1827
[15]. Jia, L., Liu, Z., Chen, W., Ye, Y., Yu, S. & He, X. (2015). Hormesis effects induced by cadmium on growth and photosynthetic performance in hyperaccumulator Lonicera japonica Thunb. Journal of Plant Growth Regulation, 34, 13-21. DOI:10.1007/s00344-014-9433-1
[16]. Kholodova, V., Volkov, K. & Kuznetsov, V. (2005). Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russian Journal of Plant Physiology, 52, 748–757. DOI:10.1007/s11183-005-0111-9
[17]. Larsson, F.H., Bornman, J.F. & Asp, H. (1998). Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany, 49, 1031-1039. DOI:10.1093/jxb/49.323.1031
[18]. Liang, L., Liu,W., Sun, Y., Huo, X., Li, S. & Zhou, Q. (2017) Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environmental Reviews, 25, 269–281. DOI:10.1139/er-2016-0063
[19]. Lösch, R. & Köhl, K.I. (1999). Plant respiration under influence of heavy metals, [In:] Prasad, M.N.V. & Hagemeyer, J. (Eds): Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg, 139-156.
[20]. Małachowska-Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 4, 104-114. DOI:10.1515/aep-2015-0045
[21]. Moradi, L. & Ehsanzadeh, P. (2015). Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53(4), 506-518. DOI:10.1007/s11099-015-0150-1
[22]. Moustakas, M., Moustakas, J. & Sperdouli I. (2022). Hormesis in photosystem II: a mechanistic understanding. Current Opinion in Toxicology, 29, 57-64. DOI:10.1016/j.cotox.2022.02.003[
[23]. Nosek, M., Kaczmarczyk, A., Śliwa, M., Jędrzejczyk, R., Kornaś, A., Supel, P., Kaszycki, P. & Miszalski, Z. (2019). The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to elevated cadmium concentrations. Journal of Plant Physiology, 240, 153005. DOI:10.1016/j.jplph.2019.153005
[24]. Nosek, M., Kaczmarczyk, A., Jędrzejczyk, R.J., Supel, P., Kaszycki, P. & Miszalski, Z. (2020). Expression of genes involved in heavy metal trafficking in plants exposed to salinity stress and elevated Cd concentrations. Plants, 9, 475. DOI:10.3390/plants9040475
[25]. Prasad, M.N.V., Malec, P., Waloszek, A., Bojko, M. & Strzałka, K. (2001). Physiological responses of Lemma trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 161, 881-889. DOI:10.1016/S0168-9452(01)00478-2
[26]. Śliwa-Cebula, M., Kaszycki, P., Kaczmarczyk, A., Nosek, M., Lis-Krzyścin, A. & Miszalski, Z. (2020). The common ice plant (Mesembryanthemum crystallinum L.) – phytoremediation potential for cadmium and chromate-contaminated soils. Plants, 9, 1230. DOI:10.3390/plants9091230
[27]. Śliwa-Cebula, M., Koniarz, T., Szara-Bąk, M., Baran A., Miszalski Z. & Kaszycki, P. (2023). Phytoremediation of metal-contaminated bottom sediments by the common ice plant (Mesembryanthemum crystallinum L.) in Poland. Journal of Soils and Sediments, 23, 1065-1082. DOI:10.1007/s11368-022-03401-x
[28]. Tokarz, K., Piwowarczyk, B., Wysocka, A., Wójtowicz, T., Makowski, W. & Golemiec, E. (2019). Response of grass pea (Lathyrus sativus L.) photosynthetic apparatus to short-term intensive UV-A: red radiation. Acta Physiologiae Plantarum, 41, 168. DOI:10.1007/s11738-019-2962-2
Go to article

Authors and Affiliations

Adriana Maria Kaczmarczyk
1
ORCID: ORCID
Michał Nosek
2
Paweł Kaszycki
3
ORCID: ORCID
Paulina Supel
3
ORCID: ORCID
Zbigniew Miszalski
1

  1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
  2. Institute of Biology, University of the National Education Comission Kraków, Poland
  3. Department of Plant Biology and Biotechnology, University of Agriculture in Kraków

This page uses 'cookies'. Learn more