Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The suitability of a new wireless smart farming system for controlling irrigation and fertilization of horticultural plants was assessed in the study. The system (name: AGREUS®) includes sensors (soil moisture, salinity, weather data), executive modules (valve modules), and an application available on the web portal (accessed through computers and mobile devices). The studies were performed under laboratory and field conditions. Laboratory tests included appraisal of the precision of soil moisture and salinity measurements carried out with the soil probe (comparison with the results obtained by laboratory methods). Operational tests were conducted in field trials. In these trials, assessment of the possibility of practical control of irrigation and monitoring soil salinity was performed in an apple orchard. The conducted analyses have shown the usefulness of the system, not only for automatic control of irrigation but also for making decisions about the necessity to fertilize plants. The system enables continuous monitoring of changes in soil moisture and salinity, including the migration of minerals across the soil profile (using a probe with several measuring elements) as a result of the applied irrigation or rainfall. The system allows for automatic application of irrigation or fertigation depending on the adopted soil moisture and salinity thresholds. However, the tests showed that a salinity index calculated by the system does not directly correspond to the salinity values determined by laboratory methods. For this reason individual interpretation and determination of optimal ranges for plants is required.
Go to article

Authors and Affiliations

Waldemar Treder
1
ORCID: ORCID
Krzysztof Klamkowski
1
ORCID: ORCID
Anna Tryngiel-Gać
1
ORCID: ORCID
Katarzyna Wójcik
1
ORCID: ORCID

  1. The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In many regions of the world, including Egypt, water shortages threaten food production. An irrigation deficient strategy in dry areas has been widely investigated as a valuable and sustainable approach to production. In this study, the dry matter and grain yield of wheat was decreased by reducing the amount of irrigation water as well as the volume of the root system. As a result of this, there was an increase the soil moisture stress. This negatively affected the absorption of water and nutrients in the root zone of wheat plants, which ultimately had an effect on the dry matter and grain yield of wheat. The values of dry matter and grain yield of wheat increased with the ʻSakha 94ʼ variety compared to the ʻSakha 93ʼ class. It is possible that this was due to the increase in the genetic characteristic of the root size with the ʻSakha 94ʼ variety compared to the ʻSakha 93ʼ class, as this increase led to the absorption of water and nutrients from a larger volume of root spread. Despite being able to increase the water productivity of wheat by decreasing the amount of added irrigation water, the two highest grain yield values were achieved when adding 100% and 80% of irrigation requirements ( IR) needed to irrigate the wheat and no signif-icant differences between the yield values at 100% and 80% of IR were found. Therefore, in accordance with this study, the recommended irrigation for wheat is at 80% IR which will provide 20% IR. When comparing the water productivity of two wheat varieties in study, it becomes clear that ʻSakha 94ʼ was superior to ʻSakha 93ʼ when adding the same amount of irrigation water, and this resulted in increased wheat productivity for ʻSakha 94ʼ. The SALTMED results confirmed good accuracy (R2: 0.92 to 0.98) in simulating soil moisture, roots volume, water application efficiency, dry matter, and grain yield for two varieties of wheat under deficit irrigation conditions. Whilst using sprinkler irrigation system under sandy soils in Egypt.
Go to article

Authors and Affiliations

Ramadan E. Abdelraouf
1
Mohamed A. El-Shawadfy
1
Osama M. Dewedar
1
Mahmoud Hozayn
2

  1. National Research Center, Department of Field Irrigation and Water Relations, 33 EL Bohouth St., Dokki, Giza, 12622, Egypt
  2. National Research Center, Field Crops Research Department, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Atmospheric precipitation is the major input to the soil water balance. Its amount, intensity, and temporal distribution have an indubitable influence on soil moisture. The aim of the study (conducted in the years 2010–2013) was to evaluate soil water balance in an apple orchard as determined by daily rainfall. The amount and intensity of rainfall and daily evapotranspiration were measured using an automatic weather station. Changes in soil water content was carried out using capacitance probes placed at a depth of 20, 40 and 60 cm. The most common were single events of rainfall of up to 0.2 mm, while 1.3–3.6 mm rains delivered the greatest amount of water. A significant correlation was found between the amount of daily rainfall and changes in water content of individual soil layers. The 15–45 cm and 15–65 cm layers accumulated the greatest amount of high rainfall. The study showed a significant influence of the initial soil moisture on changes in the water content of the analysed layers of the soil profile. The lower its initial moisture content was, the more rainwater it was able to accumulate.
Go to article

Authors and Affiliations

Waldemar Treder
1
ORCID: ORCID
Krzysztof Klamkowski
1
ORCID: ORCID
Anna Tryngiel-Gać
1
ORCID: ORCID
Katarzyna Wójcik
1
ORCID: ORCID

  1. The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Today, the uncontrolled abstraction of surface water and groundwater resources has created adverse consequences, which include: extinction of living organisms, land subsidence, salinity of coastal aquifers, increased pumping energy. Therefore, the need to manage available water resources is felt more than ever. Among the various water uses (agriculture, drinking, and industry), agriculture accounts for the bulk of water consumption. Due to the climate change and the growing population, determining the appropriate strategy and technology for irrigation is necessary. In the current study, a simulation model is used to numerically simulate the dynamics of daily soil moisture during the potato crop growing season and to estimate crop production and economic benefits. For climatic data, daily observations of a meteorological station have been used. Results and analyses have been presented for all cases of micro and traditional irrigation methods and agricultural management strategies of non-stress irrigation, low irrigation, and rainfed cultivation. The results showed that in the non-stress irrigation method, crop production and net profit are almost equal in both traditional and micro methods. In the low irrigation method, microtechnology has made crop production and net profit 1.75 times more than traditional technology, which indicates the impact of irrigation technology on crop production.
Go to article

Authors and Affiliations

Ngakan Ketut Acwin Dwijendra
1
ORCID: ORCID
Mahmood Salih Salih
2
ORCID: ORCID
Maria Jade Catalan Opulencia
3
ORCID: ORCID
Larisa Morozova
4
Elena S. Sergushina
5
ORCID: ORCID
Muhammad Noor Asnan
6
ORCID: ORCID
Mustafa Mohammed Kadhim
7 8
ORCID: ORCID
Manoharan Kavitha
9
ORCID: ORCID

  1. Udayana University, Faculty of Engineering, Kampus Bukit, Jl. Raya Kampus Unud Jimbaran, Kec. Kuta Sel., Kabupaten Badung, Bali 80361, Indonesia
  2. University of Anbar, Upper Euphrates Basin Developing Center, Ramadi, Iraq
  3. College of Business Administration, Ajman University, Ajman, United Arab Emirates
  4. Kurgan State Agricultural Academy by T.S. Maltsev, Faculty of Biotechnology, Lesnikovo village, Russia
  5. National Research Ogarev Mordovia State University, Republic of Mordovia, Saransk, Russia
  6. Universitas Muhammadiyah Kalimantan Timur, Faculty of Science and Engineering, Samarinda, Indonesia
  7. Al-Kut University College, Kut, Iraq
  8. The Islamic University, College of Technical Engineering, Najaf, Iraq
  9. Saveetha University, Saveetha School of Engineering, Department of ECE, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

The accumulation of moisture from autumn and winter precipitation in poorly draining soil for plants in arid conditions during the initial stage of the vegetation period in the northern region of Kazakhstan was a severe production problem. Research methods included theoretical and experimental studies. In theoretical studies, the area of the treated surface by a chain harrow is determined. Then, the design of an improved harrow is proposed, including how the tooth chain tillage tools are positioned. Either as a “single action disc harrow” type with mounting four teeth on each chain link, or as a serial harrow with the tooth chain tillage tools located in a “diamond-shaped” double-action scheme with two teeth on each chain link. Experimental studies show that an improved harrow steadily performs the early spring harrowing process with a quality that meets normative requirements. In doing, so the working capacity is 4–5% higher than a serial harrow with a 4–5% lower fuel consumption. Furthermore, it is revealed that the early spring soil harrowing performed by tooth chain harrows allows the loss of productive moisture in the spring pre-sowing period by 1.8–1.9 times to be reduced compared to the untreated background.
Go to article

Authors and Affiliations

Vladimir L. Astafyev
1
ORCID: ORCID
Alexandr A. Kurach
1
ORCID: ORCID
Maxat A. Amantayev
1
ORCID: ORCID

  1. Kostanay Branch of “Scientific Production Center of Agricultural Engineering” LLC, 110011, Abai Avenue, 34, Kostanay, 110011, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the course of variability of the moisture content of the top layers in shallow (45 cm) and medium-deep (90 cm) peat-moorsh soil profiles in the years 2015–2019 against the background of the same meteorological conditions and a similar level of the groundwater table. The relative precipitation index ( RPI) classifies the years 2015 and 2016 as dry, 2017 as wet, and 2018 and 2019 as average. For periods of atmospheric droughts, the average daily climatic water balance ( CWB) ranged from –5.30 to –1.35 mm∙d –1. The water table did not fall below 90 cm b.g.l. during the entire study period, and the range of its fluctuations was 8 cm greater in the shallow than in the medium-deep profile. The range of moisture at different depths varied significantly and ranged from approx. 6% in periods of drought to about 80% in wet periods. Soil moisture throughout the measurement period was above the plant available water range (p F > 4.2). The occurrence of soil drought in the shallow peat-moorsh soil profile had a range of up to 40 cm, and in the medium-deep profile of up to 30 cm. The sequence of no-precipitation days and the maximum amount of daily evapotranspiration during them determine the possible timing of drought; however, it is the precipitation distribution in individual months, considered in the current CWB values, that ultimately determine the formation of soil water resources at the research site.
Go to article

Authors and Affiliations

Ryszard Oleszczuk
1 2
Jan Jadczyszyn
3
Janusz Urbański
2
ORCID: ORCID
Ewelina Zając
4
ORCID: ORCID
Andrzej Brandyk
5
Jacek Niedźwiecki
3

  1. Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Warsaw, Poland
  3. Institute of Soil Science and Plant Cultivation – State Research Institute, Puławy, Poland
  4. University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Land Reclamation and Environmental Development, Al. Mickiewicza 21, 31-120 Kraków, Poland
  5. Warsaw University of Life Sciences – SGGW, Water Center, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Drought is an extreme event that causes great economic and environmental damage. The main objective of this study is to evaluate sensitivity, characterization and propagation of drought in the Upper Blue Nile. Drought indices: standardized precipitation index (SPI) and the recently developed standardized reconnaissance drought index (RDIst) are applied for five weather stations from 1980 to 2015 to evaluate RDIst applicability in the Upper Blue Nile. From our analysis both SPI and RDIst applied for 3-, 6-, 12 month of time scales follow the same trend, but in some time steps the RDIst varies with small-er amplitude than SPI. The severity and longer duration of drought compared with others periods of meteorological drought is found in the years 1984, 2002, 2009, 2015 including five weather stations and entire Upper Blue Nile. For drought rela-tionships the correlation analysis is made across the time scales to evaluate the relationship between meteorological drought (SPI), soil moisture drought (SMI), and hydrological drought (SRI). We found that the correlation between three indices (SPI, SMI and SRI) at different time scales the 24-month time scale is dominant and are given by 0.82, 0.63 and 0.56.

Go to article

Authors and Affiliations

Abebe Kebede
Jaya Prakash Raju
Diriba Korecha
Samuel Takele
Melessew Nigussie

This page uses 'cookies'. Learn more