Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The method of solid-phase extraction on TENAX TA beads was applied in order to assess the content of potentially bioavailable PAH fractions in soils highly contaminated with these compounds. The extraction was carried out at 20°C and 60°C to enable separation of two fractions: ,,easily bioavailable" and ,.hardly bioavailable", correspondingly. The data obtained indicated a relatively low content of potentially bioavailable PAHs in soils with 4 and 5+6-ringed compounds as dominant groups.
Go to article

Authors and Affiliations

Bożena Smreczak
Barbara Maliszewska-Kordybach
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to assess soil contamination with toxic metals in the area of Piekary Śląskie (Silesian Voivodeship), taking into consideration various land use patterns. The scope of research covered the determination of lead and cadmium concentration in soil in the following areas: allotment gardens, fallow lands and kindergarten playgrounds. The lead and cadmium concentrations in soil samples were determined using a flame atomic absorption spectrometry technique, after the aqua regia extraction in a MDS 2000 microwave digestion system. The metal contents in the analyzed soil samples varied remarkably, depending on the sampling location and its distance from the main emitter of toxic metals in Piekary Śląskie, i.e. "Orzel Bialy" Non-Ferrous Metal Smelter. Metal concentrations determined in all soil samples significantly exceeded the concentration levels accepted in Poland for arable lands and residential areas. The lead and cadmium concentrations in soil should become the basis for stopping edible plants cultivation in the area of Piekary Śląskie. The contaminated soil in kindergarten playgrounds can be an important source of lead and cadmium contamination, posing hazard to the children's health. Contamination of playgrounds with toxic metals should stimulate undertaking actions aimed at modernization of playgrounds and reduction of the children's contact with soil. In the context of the applied result assessment criteria the soil concentrations of these metals observed in the region of Piekary Śląskie should arouse great concern among its users and local authorities.
Go to article

Authors and Affiliations

Elżbieta Kulka
Jadwiga Gzyl
Download PDF Download RIS Download Bibtex

Abstract

Soil contamination with petroleum hydrocarbons is a serious problem. In the soil in the location of highways, fuel pumping station and airfields high pollutant concentrations are found. The contents of total hydrocarbons (THC) and 16 polycyclic aromatic hydrocarbons (PAHs) were analysed in the surface (0-20 cm) soil samples from airfields in Dęblin Marked differences in the pollution level of the above areas were noted. The PAH contents ranged from 113 to 5638 μg/kg and THC contents range from 40 to 430 mg/kg. The analysis was carried out by reverse phase HPLC (PAHs) and SOXTEC apparatus according to Polish norm PN-86/C-04573/01.
Go to article

Authors and Affiliations

Stanisław Baran
Patryk Oleszczuk
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the degree of soil contamination by PAHs in the area of charcoal kiln basis, located in the East Carpathian Biosphere Reserve. The concentrations of PAH in soil samples derived from various sampling locations pointed to a strong or a very strong contamination of the ecosystem by these compounds (8,95 μgxg·'-283,53 ugxg'). PAH concentrations in the soil differed significantly between the sampling locations. Analysis of samples from different soil layers (to 30 cm) pointed to a threat of washing out into groundwater. The highest concentrations of PAH corresponded to soil samples collected near kilns (distance of 1.5 m), and were in the range of 17.81 ugxg' - 435.54 ugxg'. PAH content in soil gradually decreased with increasing distance from the kilns to values < I μgxg-'. The analysis of the data from three sampling periods (June-August) pointed to higher concentrations of PAHs in soil collected in the middle of the burning season, what was probably due to their more intense emission and a relatively small amount of precipitation.
Go to article

Authors and Affiliations

Ewa Lisowska
Download PDF Download RIS Download Bibtex

Abstract

The aims of the current study are the physicochemical characterization, spatial assessment and monitoring of hydrocarbon contamination in quagmire of three sites (Agreb, Gassi and Zotti) in the Hassi Messaoud region (Algerian Sahara), as a result of the presence of an important oil industry rejecting industrial wastewater. Samples were obtained from three different depths for each site. Total Hydrocarbons (THC) were determined by a gravimetric method, and the four (F1:C6-C10), (F2:C10-C16), (F3:C16-C34) and F4>C34) hydrocarbon fractions and BTEX (Benzene, Toluene, Ethyl-benzene and Xylene) were determined by using gas chromatography (FID). The results obtained show a high contamination with hydrocarbons in different sites and depths. The concentrations of THC, four hydrocarbon fraction and BTEX recorded on Agreb site in different depth were in this order: 51200–120000 mg/kg d.w.; <LOD – 59500 mg/kg d.w.; 2.4–90.8 mg/kg d.w. respectively; and for Gassi site, in this order: 59600–70300 mg/kg d.w.; < LOD – 43000 mg/kg d.w.; 8.5–112 mg/kg d.w. Finely they were in the following order: 18100–19200 mg/kg d.w.; <LOD – 9130 mg/kg d.w.; 2.75–65 mg/kg d.w. for Zotti site. Statistical analysis demonstrated an important site effect of THC and the three hydrocarbon fractions except for F4. However, there is no site and depth effect for BTEX. On the other hand the depth effect is significant just for THC, F1 and F2 of hydrocarbons. This variation can be attributed to the difference of physicochemical parameters between studied sites.
Go to article

Bibliography

  1. Adebiyi, F. M. & Afedia, M. O. (2011). The ecological impact of used petrochemical oils on soil properties with special reference to physicochemical and total petroleum hydrocarbon contents of soils around automobile repair workshops. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 33 No. 16, pp. 1556-1565. DOI:10.1080/15567030903397883
  2. Alvarez, P. J. J. & Illman, W. A. (2005). Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models, 1st ed., Wiley-Interscience, New Jersy. DOI:10.1002/047173862x
  3. Arocena, J. M. & Rutherford, P. M. (2005). Properties of hydrocarbon- and salt contaminated flare pit soils in northeastern British Columbia (Canada). Chemosphere, Vol. 60, pp. 567-575. DOI:10.1016/J.CHEMOSPHERE.2004.12.077
  4. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and smusels of the western Mediterranean sea. Environmental Toxicology and Chemistry, Vol. 17, pp.765–776. DOI:10.1002/ETC.5620170501
  5. Belahmadi, M. S. O., Abdessemed, A., Gherib, A., Charchar, N., Houali, K. & Houhamdi, M. (2021). Spatiotemporal assessment and monitoring of hydrocarbons contamination of water and sediments in skikda bay (Algeria). International Journal of Environmental Analytical Chemistry, pp. 1-19. DOI:10.1080/03067319.2021.1879801
  6. CCME (2001). Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in soil. CCME Council of Ministers.
  7. Clark, J.D., Serdar, B., Lee, D.J., Arheart, K., Wilkinson, J.D. & Fleming, L.E. (2012). Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environmental Research, Vol. 117, pp. 132-137. DOI:10.1016/j.envres.2012.04.012
  8. Colin C. (2000). Localized pollution of soils and subsoils by hydrocarbons and chlorinated solvents. Report of the Academy of Sciences n° 44, Technique and Documentation, 1st ed., Lavoisier, Paris.
  9. Fusey, P. & Oudot, J. (1973). Note sur l’accélération de la biodégradation d’un pétrole brut par des bactéries. Material Organismen, Vol. 8, pp. 158-163.
  10. Fusey, P. & Oudot, J. (1976). Comparaison de deux méthodes d’évaluation de la biodégradation des hydrocarbures in vitro. Material Organismen. Vol. 4, pp. 241-251.
  11. Fusey, P., Lampin, M.F. & Oudot, J. (1981). Recherche sur l’élimination des hydrocarbures par voie biologique. Material Organismen. Vol. 2, pp. 109.
  12. Greene, E.A., Kay, J.G., Jaber, K., Stehmeier, L.G. & Voordouw, G. (2000). Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Applied and Environmental Microbiology, Vol. 66, pp. 5282-5289.
  13. Jiang, Z., Huang, Y., Xu, X., Liao, Y., Shou, L., Liu, J., Quan-zhen, C. & Zeng J. (2010). Advance in the toxic effects of petroleum water accommodated fraction on marine plankton. Acta Ecologica Sinica, Vol. 30, pp. 8-15. DOI:10.1128/AEM.66.12.5282-5289.2000. DOI:10.1016/J.CHNAES.2009.12.002
  14. Jung, K.H., Hsu, S.-I., Yan, B., Moors, K., Chillrud, S.N., Ross, J. & Wang, S. (2012). Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environment International, Vol. 45, pp. 44-50. DOI:10.1016/j.envint.2012.03.012
  15. Khairy, M.A., Weinstein, M.P. & Lohmann, R. (2014). Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a Tidal Rive. Environmental Science & Technology, Vol. 48, pp. 12533–12542. DOI:10.1021/es502886n
  16. Langlois, P.H., Hoyt, A.T., Lupo, P.J., Lawson, C.C., Waters, M.A., Desrosiers, T.A., Shaw, G.M., Romitti, P.A. & Lammer, E.J. (2013). Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of oral cleft-affected pregnancies. The Cleft Palate-Craniofacial Journal, Vol. 50, pp. 337-346. DOI:10.1597/12-104
  17. Mauricio-Gutiérrez A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C. & Sánchez-Alonso, M.P. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, Vol. 46, pp. 59-69. DOI:10.24425/aep.2020.135765
  18. Moscoso, F., Deive, F.J., Longo, M.A., & Sanromán, M.A. (2012). Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresource Technology, Vol. 104, pp. 81-89. DOI:10.1016/j.biortech.2011.10.053
  19. Mozo, I., Stricot, M., Lesage, N. & Spérandio, M. (2011). Fate of hazardous aromatic substances in membrane bioreactors. Water research, Vol. 45, pp. 4551-4561. DOI:10.1016/j.watres.2011.06.005
  20. Neff, J., M., Ostazeski, S., Gardiner W. & Stejskal, I. (2000). Effects of weathering on the toxicity of three off shore Australian crude oils and a diesel fuel to marine animals. Environmental Toxicology and Chemistry, Vol. 19, No. 7, pp. 1809-1821. DOI:10.1002/ETC.5620190715
  21. Official Journal of the Algerian Republic (OJAR). Number 36, April 2006. Limit values of industrial liquid effluent discharge parameters.
  22. Ozcan, S. & Aydin, M. E. (2009). Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in urban air of Konya, Turkey. Atmospheric Research, Vol. 93, pp. 715–722. DOI:10.1016/J.ATMOSRES.2009.02.012
  23. Paliulis, D. (2021). Experimental investigations of dynamic sorption of diesel from contaminated water. Archives of Environmental Protection, Vol. 47, pp. 30-39. DOI:10.24425/aep.2021.139500
  24. Park, J.H., Zhao, X. & Voice, T.C. (2001). Biodegradation of non-desorbable naphthalene in soils. Environmental Science and Technology, Vol. 35, pp. 2734-2740. DOI:10.1021/ES0019326
  25. Ping, L., Zhang, C., Zhu, Y., Wu, M., Hu, X., Li, Z. & Zhao, H. (2011). Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2. Biotechnology and Bioprocess Engineering, Vol. 16, No. 5, pp. 1000–1008. DOI:10.1007/S12257-010-0435-Y
  26. Rosa, M.J., Jung, K.H., Perzanowski, M.S., Kelvin, E.A., Darling, K.W., Camann, D.E. & Chillrud, S.N. (2011). Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respiratory Medicine, Vol. 105, pp. 869-876. DOI:10.1016/j.rmed.2010.11.022
  27. Rota, M., Bosetti, C., Boccia, S., Boffetta, P. & La Vecchia, C. (2014). Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: An updated systematic review and a meta-analysis to 2014. Archives of Toxicology, Vol. 88, pp. 1479-1490. DOI: 10.1007/s00204-014-1296-5
  28. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Archives of Environmental Protection, Vol. 43, pp. 73-79. DOI:10.1515/aep-2017-0004
  29. Xu, X.H., Cook, R.L., Ilacqua, V.A., Kan, H.D., Talbott, E.O. & Kearney, G. (2010). Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Science of the Total Environment, Vol. 408, pp. 4943-4948. DOI:10.1016/j.scitotenv.2010.07.034
  30. Zappelini, C., Alvarez-Lopez, V., Capelli N., Guyeux, C. & Chalot, M. (2018). Streptomyces Dominate the Soil Under Betula Trees That Have Naturally Colonized a Red Gypsum Landfill. Frontiers in Microbiology, Vol. 9, pp. 1772. DOI:10.3389/fmicb.2018.01772
Go to article

Authors and Affiliations

Samia Kout
1
Abdessemed Ala
2
ORCID: ORCID
Mohamed Seddik Oussama Belahmadi
2
Amina Hassaine
1
Ouahiba Bordjiba
1
Ali Tahar
1

  1. Université Badji Mokhtar-Annaba Faculté des Sciences Département de Biologie, Algeria
  2. Biotechnology Research Centre (C.R.Bt), Algeria
Download PDF Download RIS Download Bibtex

Abstract

The linuron contaminated soil was subjected to remediation using ozone as an oxidant. The experiments were performed both in laboratory and pilot plant installations. Kinetics of linuron degradation was determined for both systems. Moreover, main linuron metabolites were identified, and possible degradation pathway was proposed. The soil remediation was found to be successful, which was verified by chemical and biological tests. The half-life time of linuron in the pilot scale installation was no more than 7.5 h. To verify the efficiency of soil detoxification, a toxicity test was performed, which utilized Eisenia foetida earthworm. The test organisms were exposed for 14 days to the linuron contaminated soil prior and after the remediation procedure. It was observed that in the control group and the group of organisms exposed to the ozonated soil, the survivability was 100%, whereas the earthworms exposed to the linuron contaminated soil that was not ozonated did not survive at all.
Go to article

Bibliography

  1. Abu Ghalwa, N., Hamada, M., Abu Shawish, H. M. & Shubair O. (2016). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arabian Journal of Chemistry 9, pp. 821–828. DOI:10.1016/j.arabjc.2011.08.006
  2. Antos, P., Józefczyk, R., Kisała, J. & Balawejder, M. (2012). Remediation of imidacloprid contaminated soil - comparison of two different reactors for the ozone treatment. Xe-nobiotics, Soil, Food and Human Health Interactions, Rzeszów ISBN 978-83-7338-785-0, pp. 147-158
  3. Assokeng, T., Noumi, G. B., Adjia, H.Z. & Sieliechi, J. M. (2021). Assessment of the Risk of Contaminating Soil Cultivation Fruits and Vegetables by Linuron Residues in the Market Gardening Zone in Marza in Ngaoundere – Cameroon. Resources and Envi-ronment 11(1): pp. 1-8 DOI:10.5923/j.re.20211101.01
  4. Balawejder, M., Antos, P., Czyjit Kuryło, S., Józefczyk, R. & Pieniążek, M. (2014). A novel metod for remediation of DDT contaminated soil. Ozone Science&Engineering, 36, pp.166-173. DOI:10.1080/01919512.2013.861324
  5. Balawejder, M., Antos, P., Józefczyk, R. & Pieniążek, M. (2016a). A method for remediation of soil contaminated with simazine. Archives of Environmental Protection, 42(3), pp. 41–46. DOI:10.1515/aep-2016-0024
  6. Balawejder, M., Józefczyk, R., Antos, P. & Pieniążek, M. (2016b). Pilot-scale Installation for Remediation of DDT-contaminated soil. Ozone: Science & Engineering, 38, pp. 272-278. DOI:10.1080/01919512.2015.1136556
  7. Barchańska, H., Czaplicka, M. & Kyzioł-Komosińska, J. (2020). Interaction of selected pesticides with mineral and organic soil components. Archives of Environmental Protection, 46 (3), pp. 80–91. DOI:10.24425/aep.2020.134538
  8. Boughattas, I., Hattab, S., Boussetta, H., Sappin-Didier, V., Viarengo, A., Banni, M. & Sforzini, S. (2016). Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environmental Pollution, 218 pp. 530-541. DOI:10.1016/j.envpol.2016.07.033
  9. Buleandra, M., Popa, D.E., David, I.G., Bacalum, E., David, V. & Ciucu, A.A. (2019). Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron. Microchemical Journal, 147, pp. 1109–1116. DOI:10.1016/j.microc.2019.04.042
  10. Fenoll, J., Martínez-Menchón, M., Navarro, G., Vela, N. & Navarro, S. (2013). Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor suspensions exposed to solar energy. Chemosphere, 91, pp. 571–578. DOI:10.1016/j.chemosphere.2012.11.067
  11. Hankard, P.K., Svendsen, C., Wright, J., Weinberg, C., Fishwick, S.K., Spurgeon, D.J. & Weeks, J.M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci. Total Environ., 330, pp. 9-20. DOI:10.1016/j.scitotenv.2003.08.023
  12. Katsumata, H., Kobayashi, T., Kaneco, S., Suzuki, T. & Ohta, K. (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 166, pp. 468–473. DOI:10.1016/j.cej.2010.10.073
  13. Kuo, S. L. & Wu, E.M.-Y. (2021). Remediation Efficiency of the In Situ Vitrification Method at an Unidentified-Waste and Groundwater Treatment Site. Water, 13, 3594. DOI:10.3390/w13243594
  14. Liu, T., Liu, Y., Fang, K., Zhang, X. & Wang, X. (2020). Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid. Environmental Pollution, 265, Part B, 115100. DOI:10.1016/j.envpol.2020.115100
  15. Lowe, C. N. & Butt, K. R. (2007). Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. European Journal of Soil Biology, 43, pp. 281-288. DOI:10.1016/j.ejsobi.2007.08.028
  16. Lowe, C.N. & Butt, K.R. (2005). Culture techniques for soil dwelling earthworms: a review. Pedobiologia, 49 (5), pp. 401-413. DOI:10.1016/j.pedobi.2005.04.005
  17. Moore, M.N. (1976). Cytochemical demonstration of latency of lysosomal hydrolases in the digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell. Tissue Res. 175, pp. 279-287. DOI:10.1007/BF00218706
  18. Mussatto, S.I. (2016). Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, ISBN 978-0-12-802323-5 pp. 410-411
  19. OECD Guideline For Testing Of Chemicals No. 207: Earthworm, Acute Toxicity Tests (Eisenia fetida/Eisenia Andrei), OECD 1984. DOI:10.1787/9789264070042-en
  20. OECD Guideline For Testing Of Chemicals No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia Andrei), OECD 2004 https://www.oecd.org/env/ehs/testing/Draft-Updated-Test-Guildeline-222-Earthworm-reproduction-Test.pdf
  21. Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J. & Zhao, Y. (2005). Enhancement of p,p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere, 60, pp. 266-273. DOI:10.1016/j.chemosphere.2004.11.044
  22. Rao, Y.F. & Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes—Effect of anions and reaction mechanism. Journal of Hazardous Materials, 180, pp. 514–523. DOI:10.1016/j.jhazmat.2010.04.063
  23. Rosal, R., Gonzalo, M. S., Rodríguez, A., Perdigón-Melón, J.A. & García-Calvo, E. (2010). Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chemical Engineering Journal, 165, pp. 806–812. DOI:10.1016/j.cej.2010.10.020
  24. Sforzini, S., Moore, M.N., Boeri, M., Bencivenga, M. & Viarengo, A. (2015). Effects of PAHs and dioxins on the earthworm Eisenia andrei: A multivariate approach for biomarker interpretation. Environmental Pollution, 196 pp. 60-71. DOI:10.1016/j.envpol.2014.09.015
  25. Svendsen, C., Spurgeon, D.J., Hankard, P.K. & Weeks, J.M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. Ecotoxicology and Environmental Safety, 57, pp. 20–29. DOI:10.1016/j.ecoenv.2003.08.009
  26. Svendsen, C., Meharg, A.A., Freestone, P. & Weeks, J.M. (1996). Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Soil Ecology, 3, pp. 99-107. DOI:10.1016/0929-1393(95)00085-2
  27. Spirhanzlova, P., De Groef, B., Nicholson, F.E., Grommen, S.V.H., Marras, G., Sébillot, A., Demeneix, B.A., Pallud-Mothré, S., Lemkine, G.F., Tindall, A.J. & Du Pasquier, D. (2017). Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb. Comparative Biochemistry and Physiology, Part C, 200, pp. 52–58. DOI:10.1016/j.cbpc.2017.06.006
  28. Swarcewicz, M., Gregorczyk, A. & Sobczak, J. (2013). Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environ Monit Assess, 185, pp. 8109–8114. DOI:10.1007/s10661-013-3158-7
  29. Zhao, S., Wang, Y. & Duo, L. (2021). Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. Environmental Pollution, 269, 116225. DOI:10.1016/j.envpol.2020.116225
Go to article

Authors and Affiliations

Radosław Józefczyk
1
Piotr Antos
2
Marcin Pieniążek
1
Maciej Balawejder
1

  1. University of Rzeszów, Poland
  2. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Zanieczyszczenia przemysłowe przyczyniają się z reguły do poglębicnia degradacji rolniczej przestrzeni produkcyjnej, prowadząc między innymi do nagromadzenia metali ciężkich w glebie. Do grupy metali ciężkichzaliczany jest nikiel, który w małych ilościach jest niezbędny dla wzrostu i rozwoju organizmów żywych, natomiast występujący w nadmiarze jest toksyczny. W czteroletnim doświadczeniu wazonowym badano wpływ zanieczyszczenia gleby niklem (50, I 00 i 150 mg Ni/kg gleby zastosowanego w formie NiSO,711,O) na tic zróżnicowanego wapnowania (wg 0,5; I i 1.5 Hh gleby zastosowanego w formie CaCO) na zawartość Pb i Mn w koniczynie czerwonej. Zawartość metali oznaczono metodą ICP-J\ES po wcześniejszej mineralizacji materiału roślinnego ,,na sucho" w piecu muflowym w temperaturze 450°C i rozpuszczeniu popiołu w I 0% roztworze HCL. Wyniki badań opracowano statystycznie analizą wariancji z wykorzystaniem rozkładu F-FisheraSnedecora wg programu F.R. Anal.var 4.1., a wartość NIR.,5 wyliczono wg testu Tukeya. W celu znalezienia związków między badanymi cechami w pracy przeprowadzono również analizę korelacji liniowej. Zawartość obu metali w roślinach uprawianych na glebach zanieczyszczonych niklem była większa w odniesieniu do roślin uprawianych na glebach niezanieczyszczonych, co może świadczyć o synergizmie niklu i omawianych metali. Zastosowane wapniowanie (niezależnie od ilości CaCO, wprowadzonego do gleby) powodowało istotne zmniejszenie zawartości obu metali w roślinie testowej. Przeprowadzone badania wykazały synergistyczne zależności pomiędzy niklem a ołowiem i manganem.
Go to article

Authors and Affiliations

Beata Kuziemska
Stanisław Kalembasa
Download PDF Download RIS Download Bibtex

Abstract

The analysis of ecological hazards on soil pollution by oil products has been provided in the impact zone of the railway. The results of oil product migration in soils in the area of influence on section Lviv–Khodoriv are given. To study this problem, a method was used to take soil samples according to the standard DSTU ISO 10381-4: 2005. To determine the content of petroleum products used the method MVV No. 081/12-0116-03 Pochvy. Based on the results of the study it was found that contamination with petroleum products in the study area exceeds the norm in the area of influence of the railway at a distance of 5 to –50 m on average 3.5 times. It is proposed to make management decisions to prevent violations of the sanitary protection zone of the railway and the placement of agricultural plots on it. For rehabilitation of contaminated soils, it is advisable to use a natural sorbent – glauconite, which is widespread in the bowels of Ukraine. The adsorption capacity of glauconite relative to diesel fuel has been experimentally established. According to our experiments it is proved the high efficiency of the proposed sorbent, which is 90%. Therefore, in the future it is necessary to periodically monitor the condition of the soil in the area to prevent pollution. This study proves that this practice is necessary.
Go to article

Authors and Affiliations

Oksana Chayka
1
ORCID: ORCID
Igor Petrushka
1
ORCID: ORCID
Maria Ruda
1
ORCID: ORCID
Nadiya Paranyak
1
ORCID: ORCID
Olena Matskiv
1
ORCID: ORCID

  1. Lviv National Polytechnic University, Faculty of Ecological Safety and Environmental Protection, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Background concentrations of main trace elements and polycyclic aromatic hydrocarbons (PAHs) were investigated in pristine soils of the Beliy Island situated in the Kara Sea, Yamal autonomous region, North-West Siberia, Russia. Belyi Island is considered as reference landscpae for further investigation of soil polychemical contamination of the Yamal region. Three plots with different functional load (mature ecosystem, occasionally and permanently affected plots) were investigated with aim to evaluate the trend of long term polychemical effect on Stagnic Cryosols - benchmark soil type of the Yamal region. Accumulation of trace elements was not fixed in all soils investigated due to absence of direct sources of heavy metals on the territory of the Beliy Island. At the same time, there were essential alterations of PAHs fractional composition and content due to pronounced accumulation of the petroleum products combustion in the vicinity of the permanent meteorological station and former seasonal field base. The most intensive and statistically significant accumulation was noted for phenanthrene, anthracene, benzo[k]fluoranthene and benzo[a]pyrene. This indicates accumulation of the PAHs in soils, affected by the anthropogenic activity on the meteorological station. The most pronounced differences were revealed for the superficial layer of 0-5 cm. Deeper horizons of soil did not show accumulation of contaminants. Data obtained can be used for organization of further monitoring of contamination of soils and landscapes in Yamal as developing and industrial region.
Go to article

Authors and Affiliations

Evgeny Abakumov
Georgy Shamilishviliy
Andrey Yurtaev

This page uses 'cookies'. Learn more