Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to metrological guidelines and specific legal requirements, every smart electronic electricity meter has to be constantly verified after pre-defined regular time intervals. The problem is that in most cases these pre-defined time intervals are based on some previous experience or empirical knowledge and rarely on scientifically sound data. Since the verification itself is a costly procedure it would be advantageous to put more effort into defining the required verification periods. Therefore, a fixed verification interval, recommended by various internal documents, standardised evaluation procedures and national legislation, could be technically and scientifically more justified and consequently more appropriate and trustworthy for the end user. This paper describes an experiment to determine the effect of alternating temperature and humidity and constant high current on a smart electronic electricity meter’s measurement accuracy. Based on an analysis of these effects it is proposed that the current fixed verification interval could be revised, taking into account also different climatic influence. The findings of this work could influence a new standardized procedure in respect of a meter’s verification interval.

Go to article

Authors and Affiliations

Blaž Radej
Janko Drnovšek
Gaber Begeš
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes three methods of the optimal smart meter selection for acting as a data concentrator in the automatic meter reading last mile network. The study explains the reasons why the selected smart meter should also act as a data concentrator, in addition to its basic role. To select the smart meter, either the reliability of communication or the speed of the automatic meter reading process was considered. Graph theory is employed to analyse the last mile network, described as sets of nodes and unreliable links. The frame error ratio was used to assess the unreliability whilst the number of hops was used to describe the speed of the reading process. The input data for the analysis are qualitative parameters determined based on observations in the real, operated last mile networks as well as their typical topological arrangements. The results of the research can be useful in the last mile network migration process, which uses concentrators to the networks without them, or during the process of newer last mile network implementation, where data concentrators are no longer applicable. The efficiency of the proposed methods is assessed measurably.
Go to article

Authors and Affiliations

Piotr Kiedrowski
1
ORCID: ORCID

  1. Institute of Telecommunications and Computer Science, Bydgoszcz University of Science and Technology,Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

In an era of changes in the electricity market, where the share of renewable energy sources is increasing and moving away from conventional coal-based energy, the electricity used for heating is gaining importance, for example to power heat pumps. They currently are one of the most common ways for heating buildings as an alternative to fossil fuels and biomass. In this article, the authors present an analysis aimed at answering the question whether using the concept of microgrids in Polish realities provides a feasible solution. Within the framework of this article, analyses were carried out by assuming the electrification of the heating installation of users in a local microgrid located in a selected location of the Polish low-voltage distribution network. The increase in electricity demand needed to generate the corresponding amount of heat was then estimated, and subsequently the impact of this demand on the microgrid was determined. In addition, in the article, the authors estimate the production of a prosumer PV installation at the selected location and analyze the level of autoconsumption of the generated electricity in the PV installation by the heat pump.
Go to article

Authors and Affiliations

Michał Laskowski
1
Krajewski Krzysztof
1
Patryk Chaja
1
ORCID: ORCID
Paweł Zawadzki
1
Sebastian Bykuć
1
ORCID: ORCID

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland

This page uses 'cookies'. Learn more