Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Single Frequency Networks (SFN) of transmitters are currently used in television and digital broadcasting to effectively cover large areas using minimal spectral resources and using transmitters with much lower power than if the same area were covered using one transmitter. It is therefore a very ecological solution. In this way, much better reception conditions are obtained in large city areas, as the signal reaches the receiving antenna from different directions, reducing the risk of shading. However, in this type of network one should take into account the loss of signal caused by signal interference. Using the appropriate propagation model, it is possible, with appropriate assumptions, to check how the operation of the third transmitter affects the distribution and size of the deepest fades in relation to the network in which there are two transmitters.

Go to article

Authors and Affiliations

Ryszard J. Z Ziielinski
Download PDF Download RIS Download Bibtex

Abstract

The article presents the methodology for measuring verification of the phenomenon of fades in the DAB+ SFN. The verification is related to comparing the characteristics of the fades determined theoretically with the occurring fades in the real environment of a large city. The conditions favorable for the occurrence of fading are presented and by selecting the appropriate propagation analysis tool, the places where the occurrence of fading is most likely were selected. In these places an analysis of the characteristics of fades was carried out and the conditions for their verification were determined.
Go to article

Bibliography

[1] WorldDAB, „WorldDAB infographic (Q2 2019)”, https://www.worlddab.org/resources/infographic. (29 03 2020).
[2] S. Kubal, M. Kowal, P. Piotrowski, K. Staniec, “Optimal Transmission Technique for DAB+ Operating in the SFN Network”, in Springer Nature Switzerland, Theory and Applications of Dependable Computer Systems, Proceedings of the Fifteenth International Conference on Dependability of Computer Systems DepCoS-RELCOMEX, June 29 – July 3, 2020, Brunów, Poland.
[3] European Telecommunications Standards Institute, EN 300 401 V2.1.1 Draft ETSI EN 300 401 V2.1.1 Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers, 2016.
[4] European Broadcasting Union, „TR 24 SFN Frequency planning and network implementation with regard to T-DAB and DVB-T,” Genewa, 2013.
[5] R. Zieliński, “Fade analysis in DAB+ SFN network in Wroclaw”, Proc. of the 2019 International Symposium on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, September 2– 6, 2019, (978-1-7281-0594-9/19/$31.00 © 2019 IEEE).
[6] D. Plebs, J. Wout., P. Angueira, J.A. Arenas, L. Verloock, L. Martens,: “On the Methodology for Calculating SFN Gain in Digital Broadcast Systems”, IEEE Transactions on Broadcasting, Vol. 56, No. 3, September 2010, pp.331-339
[7] K. Staniec, S. Kubal, M. Kowal, P. Piotrowski,: “On the Influence of the Coding Rate and SFN Gain on DAB+ Coverage”, Advances in Intelligent Systems and Computing, 2020.
[8] P. Gilski, J. Stefanski, “Subjective and Objective Comparative Study of DAB+ Broadcast System”, Archives of Acoustics, Vol. 42, No. 1, pp. 3–11 (2017), by PAN – IPPT)
[9] S. Brachmański, M. Kin, “Assessment of speech quality in Digital Audio Broadcasting (DAB+) system”, AES 134th Convention, Rome, Italy, 2013.
[10] M. Kin, “Subjective evaluation of sound quality of musical recordings transmitted via DAB+ system", in Proc. 134th Audio Engineering Society Convention, Rome, Italy, 2013, pp. 1231{2366.
[11] P. Gilski., J. Stefanski, “Digital Audio Broadcasting or Webcasting: A Network Quality Perspective”, Journal of Telecommunications and Information Technology, 1, 9–15, 2016.
[12] P. Pocta, J.G. Beerends, “Subjective and Objective Assessment of Perceived Audio Quality of Current Digital Audio Broadcasting Systems and WebCasting Applications”, IEEE Transactions on Broadcasting, 61, 407–415, 2015.
[13] International Telecommunication Union, ITU-R BS.2214-3, “Planning parameters for terrestrial digital sound broadcasting systems in VHF bands”, 2019.
[14] European Broadcasting Union, TECH 3391, “Guidelines for DAB network planning”, Genewa, 2018.
[15] National Institut of Telecommunications, „LokalDAB,”. https://www.il-pib.pl/pl/projekty-krajowe/projekty-krajowe-ze-srodkow-na-nauke/projekt-localdab, (25 05 2020).
[16] Radio Polska, „MUX LokalDAB,”. http://radiopolska.pl/wykaz/mux/145. (2020 05 25).
[17] European Broadcasting Union, TR 016, “Benefits and Limitations of Single Frequency Networks (SFN) for DTT”, 2012.
[18] A. Tissen, A. Waal, F. Maier, “Evaluations and Measurements of a Single Frequency Network with DRM+”, European Wireless Conference, Poznan, 2012.
[19] R. Zieliński, “Conditions for obtaining correct DAB+ signal reception on a single frequency network” (in polish), Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 6, 2017, str. 509-512.
[20] R. Zieliński, “Analysis of depth of fades in a single frequency DAB+ network on the example of the network in Wroclaw” (in polish), Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 6, 2018, str. 320-325
[21] R. Zieliński, “Distribution of fade area in a SFN network on the example of the DAB+ network” (in polish), Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 8-9, 2018, str. 581-584.
[22] R. Zieliński, “Analysis of the phenomenon of fades in the SFN DAB+ network with three transmitters on the example of the network in Wroclaw” (in polish),. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr. 6, 2019, str. 386-391.
[23] R. Zieliński, “Analysis and Comparision of the Fade Phenomenon in the SFN DAB+ Network With Two and Three Transmitters”, Intl Journal of Electronics and Telecommunications, 2020, Vol. 66, No. 1, str.. 85-92.
[24] International Telecommunication Union, Recommendation ITU-R P.1546-5 : “Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz”, 2013.
[25] I. Michalski, thesis, "Analysis of the distribution of e-m field strength and fades from the SFN DAB+ network in Wroclaw”, Wroclaw University of Science and Technology, 2020.
Go to article

Authors and Affiliations

Igor Michalski
1
ORCID: ORCID
Ryszard J. Zielinski
2
ORCID: ORCID

  1. National Institute of Telecommunications, Poland
  2. Wroclaw University ofScience and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of quality assessment of speech and music signals transmitted via DAB+ system with the use of Single Frequency Network (SFN). The musical signals were evaluated in overall quality domain. The subjective research was provided with the use of Absolute Category Rating procedure according to the ITU recommendation and the results have been presented as the MOS values for various bit rates. The speech signals were additionally examined with PESQ method. The results have shown that the assumed quality of 4 MOS, for this kind of broadcasting could be achieved at 48 kb/s for speech and 64 kb/s for music. This fact was confirmed by both: subjective and objective research. The comparison between the results obtained for SFN broadcasting with three emitters with singleemitter broadcast was presented.

Go to article

Authors and Affiliations

Maurycy Kin
Stefan Brachmański
ORCID: ORCID

This page uses 'cookies'. Learn more