Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this present study, the effect of the shot peening process on fatigue life, surface hardness and corrosion properties of a low carbon alloy steel is examined at room temperature. The research article addresses the effect of shot peening by varying the process parameters such as peening distance and pressure with amachrome as shots. The experiment is designed by means of full factorial design. The experimental result reveals that the pressure and distance are the most significant factors in the shot peening process. The results illustrate that the average pressure of 7 bar and distance of 100 mm improves fatigue life by 1.5% of unpeened material under 20 Hz frequency while corrosion resistance improves by 4% with unpeening of the low carbon alloy steel by using amachrome as a shot.
Go to article

Bibliography

  1.  K. Miková, S. Bagherifard, O. Bokuvka, M. Guagliano, and L. Trško, “Fatigue behavior of X70 microalloyed steel after severe shot peening”, Int. J. Fatigue 55, 33‒42 (2013).
  2.  H. Kovacı, Y.B. Bozkurt, A.F. Yetim, M. Aslan, and A. Çelik, “The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel”, Surf. Coat. Technol. 360, 78‒86 (2019).
  3.  O. Unal, Effect of pre-heat treatment on fatigue behavior of severe shot peened and plasma nitrided SAE4140 steel”, J. Aeronaut. Space Technol. 11(1), 57‒63 (2018).
  4.  O. Takakuwa and H. Soyama, “Effect of residual stress on the corrosion behavior of austenitic stainless steel”, Adv. Chem. Eng. Sci. 5(1), 62 (2014).
  5.  A.A. Ahmed, M. Mhaede, M. Wollmann, and L. Wagner, “Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti–6Al–4V alloy”, Appl. Surf. Sci. 363, 50‒58 (2016).
  6.  V. Azar, B. Hashemi, and M.R. Yazdi, “The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution”, Surf. Coat. Technol. 204(21‒22), 3546‒3551 (2010).
  7.  B. Hashemi, M.R. Yazdi, and V. Azar, “The wear and corrosion resistance of shot peened– nitrided 316L austenitic stainless steel”, Mater. Des. 32(6), 3287‒3292 (2011).
  8.  S.M. Hassani-Gangaraj, A. Moridi, M. Guagliano, A. Ghidini, and M. Boniardi, “The effect of nitriding, severe shot peening and their combination on the fatigue behavior and micro- structure of a low-alloy steel”, Int. J. Fatigue 62, 67‒76 (2014).
  9.  O. Hatamleh, J. Lyons, and R. Forman, “Laser peening and shot peening effects on fatigue life and surface roughness of friction stir welded 7075‐T7351 aluminum”, Fatigue Fract. Eng. Mater. Struct. 30(2), 115‒130 (2007).
  10.  M. Hilpert and L. Wagner, “Corrosion fatigue behavior of the high-strength magnesium alloy AZ 80”, J. Mater. Eng. Perform. 9(4), 402‒407 (2000).
  11.  S. Kalainathan, S. Sathyajith, and S. Swaroop, “Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel”, Opt. Lasers Eng. 50(12), 1740‒1745 (2012).
  12.  S.A. Khan, M.S. Bhuiyan, Y. Miyashita, Y. Mutoh, and T. Koike, “Corrosion fatigue behavior of die-cast and shot-blasted AM60 magnesium alloy”, Mater. Sci. Eng. A 528(4‒5), 1961‒1966 (2011).
  13.  G.H. Majzoobi, J. Nemati, A.N. Rooz, and G.H. Farrahi, “Modification of fretting fatigue behavior of AL7075–T6 alloy by the application of titanium coating using IBED technique and shot peening”, Tribol. Int. 42(1), 121‒129 (2009).
  14.  Y. Shadangi, K. Chattopadhyay, S.B. Rai, and V. Singh, “Effect of LASER shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel”, Surf. Coat. Technol. 280, 216‒224 (2015).
  15.  Y. Tan, G. Wu, J.M. Yang, and T. Pan, “Laser shock peening on fatigue crack growth behaviour of aluminium alloy”, Fatigue Fract. Eng. Mater. Struct. 27(8), 649‒656 (2004).
  16.  C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng, “Fatigue performance improvement in SAE4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening”, Acta Mater. 59(3), 1014‒1025 (2011).
  17.  Standard practice for cleaning, descaling and passivation of stainless steels parts, equipment and systems, A380, Annual Book of ASTM Standards, American Society for Testing and Materials, 1999
  18.  C. Liu, H. Zheng, X. Gu, B. Jiang, and J. Liang, “Effect of severe shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys”, J. Alloy. Compd. 770 500‒506 (2019).
  19.  R. Ebner, P. Gruber, W. Ecker, O. Kolednik, M. Krobath, and G. Jesner, “Fatigue damage mechanisms and damage evolution near cyclically loaded edges”, Bull. Pol. Ac.: Tech. 58(2), 267‒279 (2010).
  20.  Standard test method for micro indentation hardness of materials, E384-99, Annual Book of ASTM Standards, American Society for Testing and Materials, 1999.
Go to article

Authors and Affiliations

C. Selva Senthil Prabhu
1
P. Ashoka Varthanan
2
T. Ram Kumar
1

  1. Department of Mechanical Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi – 642003, India
  2. Department of Mechanical Engineering, Sri Krishna College of Engineering and Technology, Coimbatore – 642003, India
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the present paper was to investigate the effect of shot peening on the condition of the surface layer and abrasion resistance of specimens made of Ti-6Al-4V titanium alloy produced by Direct Metal Laser Sintering (DMLS) process. The specimens have been produced by means of EOSINT M280 system dedicated for laser sintering of metal powders and their surfaces have been subjected to the shot peening process under three different working pressures (0.2, 0.3 and 0.4 MPa) and by means of three different media i.e. CrNi steel shot, crushed nut shells and ceramic balls. The specimens have been subjected to profilometric analysis, to SEM examinations, microhardness tests and to tribological tests on ball-on-disc stand in Ringer fluid environment. The general results of all tests indicate to favourable effect of shot peening process on the hardness and tribological performance of titanium alloy.

Go to article

Authors and Affiliations

R. Żebrowski
M. Walczak
Download PDF Download RIS Download Bibtex

Abstract

The present work has the objective of studying the effect of shot peening with glass microspheres on SAE 1020 steel in its resistance to fatigue. Fatigue tests were carried out by rotary bending with load control and loading on balance in specimens with and without shot peening. A rotation speed of approximately 750 rpm (12.5 Hz) was employed in the fatigue tests. Vickers microhardness tests were performed in order to verify the surface hardening produced by shot peening with glass microspheres. Analysis of the steel surface and fatigue fractures was performed using scanning electron microscopy (SEM). Fatigue tests were performed in order to obtain S-N curves (Wöhler curves). It was observed that shot peening with glass microspheres improved the fatigue strength of the steel at high cycle.

Go to article

Authors and Affiliations

J.C. de Lacerda
ORCID: ORCID
I.R. Pereira
J.M.G. Costa
J.S. Pinto
H.F.M. Souza
M.A. Fonseca

This page uses 'cookies'. Learn more