Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 µm average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225°C in air; the combination of high pressure and long bonding time at 225°C enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225°C and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250°C was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225°C during heating.

Go to article

Authors and Affiliations

Woo Lim Choi
Jong-Hyun Lee
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of an extensive investigation of asphalt concrete beams with geosynthetics interlayer. The subject of the research is an evaluation of infl uence of geosynthetics interlayer applied to bituminous samples on their fatigue life. The results of the tests evidences that when geosynthetics are used, the fatigue life depends mainly on the type of bituminous mixture, the type of geosynthetics, and the type and the amount of bitumen used for saturation and sticking. The amount of bitumen used to saturate and fix the geosynthetic signifi cantly changes the samples fatigue properties. Essential positive correlation between fatigue and parameters of interlayer bonding (shear strength, shear stiffness) occurs in both testing temperatures.

Go to article

Authors and Affiliations

P. Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an extensive investigation of asphalt concrete specimens with geosynthetic interlayer. The subject of this research is evaluation of influence of geosynthetics interlayer applied to bituminous pavements on interlayer bonding of specimens. The results of the tests proves that when geosynthetic is used, the bonding of interlayer depends mainly on the type of bituminous mixture, the type of geosynthetic, and the type and amount of bitumen used for saturation and sticking of geosynthetic. The amount of bitumen used in order to saturate and fix the geosynthetic significantly changes the interlayer bonding of specimens.

Go to article

Authors and Affiliations

P. Zieliński
Download PDF Download RIS Download Bibtex

Abstract

Due to the increasing necessity of building on soils with insufficient bearing capacity, the development of methods for soil improvement is an important geotechnical engineering issue. One of the innovative methods of soil stabilisation is the use of nano-additives. The paper presents the influence of nanosilica on the bearing capacity under the footing under undrained conditions. For this purpose, a simple and quick unconfined compression test was used to evaluate the undrained shear strength of selected silty soil. Tests were conducted for soil without additives and with nanosilica contents of 1, 3 and 5%. All samples were compacted to the maximum dry density in a Proctor apparatus, and strength tests were conducted after 7 days of curing. The results clearly show an increase in undrained shear strength with increasing nanosilica content. Based on these data, a parametric analysis of the bearing capacity under the strip footing was performed for 4 variants of nanosilica content and for 9 loading cases. Thus, the impact of stabilisation in a practical engineering issue was presented. For all load cases the optimal dimensions of the foundation were determined. In addition, for the selected case, calculations were made for a fixed foundation dimension. All computations were performed in accordance with Eurocode 7 with GEO5 software.
Go to article

Authors and Affiliations

Matylda Tankiewicz
1
ORCID: ORCID
Jakub Mońka
1
ORCID: ORCID
Zofia Zieba
1
ORCID: ORCID

  1. Wrocław University of Environmental and Life Sciences, Department of Civil Engineering, Norwida 25, 50-375 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of a series of Cone Penetration Test CPTu performed near the city of Wroclaw (Poland). The tests were carried out in 13 testing points located in close distance to each other. To verify the results of the penetration tests, fine-grained soil samples from selected depths were taken for laboratory tests. The study focuses on the evaluation of soil type, unit weight, and undrained shear strength cu, and compression index Cc. The grain size distribution of the soil and its mechanical parameters on the basis of a uniaxial compression and an oedometer tests were estimated. A comparison of laboratory and CPTu for selected values is presented. Determination of soil type was carried out on the basis of ISBT and IC values and good agreement with the granulometric composition was found. For undrained shear strength, commonly used correlations based on Nk, Nkt and Nke were adopted. However, the values obtained from the CPT are significantly lower than the results from laboratory tests. Therefore, values of cone factors suitable for investigated soil type and reference test were proposed. In the case of the compression index, the coefficient values βc and αm obtained agreed with those available in the literature. The findings presented in the paper indicate that laboratory tests remain necessary to identify soil properties from CPTu. The presented results are also a contribution to the knowledge of local soil conditions in the Lower Silesia area (Poland).
Go to article

Bibliography

[1] F.H. Kulhawy, P.W. Mayne, Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA ); Cornell Univ., Ithaca, NY (USA ), Geotechnical Engineering Group (1990).
[2] T . Lunne, P.K. Robertson, J.J.M. Powell, Cone Penetration Testing in Geotechnical Practice. Blackie Academic/ Routledge Publishing, New York (1997).
[3] K . Karlsrud, T. Lunne, D.A. Kort, S. Strandvik, CPTU correlations for clays. In: Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering 16 (2), p. 693 (2005).
[4] P.K. Robertson, Interpretation of cone penetration tests — a unified approach. Can. Geoech. J. 46 (11), 1337-1355 (2009), DOI: https://doi.org/10.1139/T09-065
[5] P .K. Robertson, The James K. Mitchell Lecture: Interpretation of in-situ tests-some insights. In: Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization – ISC 4, 3-24 (2012).
[6] P .W. Mayne, Interpretation of geotechnical parameters from seismic piezocone tests. In: Proc. 3rd Intl. Symposium on Cone Penetration Testing, CPT’14, 47-73 (2014).
[7] A. Eslami, S. Moshfeghi, H. MolaAbasi, M.M. Eslami, Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering. Butterworth-Heinemann (2019).
[8] P.K. Robertson, Soil behaviour type from the CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[9] P.K. Robertson, Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update. Can. Geotech. J. 53 (12), 1910-1927 (2016) DOI: https://doi.org/10.1139/cgj-2016-0044
[10] P.K. Robertson, K.L. Cabal, Estimating soil unit weight from CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[11] P.W. Mayne, J. Peuchen, D. Bouwmeester, Soil unit weight estimation from CPTs. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10, (2010).
[12] L .Y. Ju, C. Miao, Z.J. Cao, P. Hubbard, K. Soga, K., D.Q. Li, Geo-Congress 2020: Modeling. Geomaterials and Site Characterization, 558-568 (2020).
[13] K . Karlsrud, K. Brattlien, T. Lunne, Improved CPTU interpretations based on block samples. NGI (1997).
[14] H.E. Low, T. Lunne, K.H. Andersen, M.A. Sjursen, X. Li, M.F. Randolph, Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays. Géotechnique 60 (11), 843-859 (2010), DOI: https://doi.org/10.1680/geot.9.P.017
[15] Z . Rémai, Correlation of undrained shear strength and CPT resistance. Per. Pol. Civil Eng. 57 (1), 39-44 (2013), DOI: https://doi.org/10.3311/PPci.2140
[16] A .K.M. Zein, International Journal of Geo-Engineering 8 (1), (2017), DOI: https://doi.org/10.1186/s40703-017- 0046-y
[17] P.W. Mayne, J. Peuchen, Evaluation of CPTU Nkt cone factor for undrained strength of clays. In: Proc. 4th Intl. Symposium on Cone Penetration Testing (CPT’18), 423-429 (2018).
[18] A. Drevininkas, G. Creer, M. Nkemitag, Comparison of consolidation characteristics from CPTu, DMT and laboratory testing at Ashbridges Bay, Toronto, Ontario. in: Proceedings of the 64th Canadian Geotechnical Conference and 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Canada (2011).
[19] K . Koster, G. Erkens, C. Zwanenburg, A new soil mechanics approach to quantify and predict land subsidence by peat compression. Geophysical Research Letters 43, 10792-10799 (2016), DOI: https://doi.org/10.1002/2016GL 071116
[20] M. Mir, A. Bouafia, K. Rahmani, N. Aouali, Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests. Geomech. Eng. 13 (1), 119-139 (2017), DOI: https://doi.org/10.12989/ gae.2017.13.1.119
[21] B. Di Buò, J. Selänpää, T. Lansivaara, M. D’Ignazio, Evaluation of existing CPTu-based correlations for the deformation properties of Finnish soft clays. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 185-191 (2018).
[22] Z . Bednarczyk, R. Sandven, Comparison of CPTU and laboratory tests interpretation for Polish and Norwegian clays. In: International Site Characterization Conference, ISC-2. International Society of Rock Mechanics (ISRM), International Association Engineering Geology (IAEG), Geo-Institute of the American Society of Civil Engineers (ASCE), Portuguese Association of Engineers (OE) and British Council (BC). Porto, Portugal (2004).
[23] P . Zawrzykraj, P. Rydelek, A. Bąkowska, Geo-engineering properties of Eemian peats from Radzymin (central Poland) in the light of static cone penetration and dilatometer tests. Eng. Geol. 226, 290-300 (2017), DOI: https://doi.org/10.1016/j.enggeo.2017.07.001
[24] J. Konkol, K. Międlarz, L. Bałachowski, Geotechnical characterization of soft soil deposits in Northern Poland. Eng. Geol. 259, 105187 (2019), DOI: https://doi.org/10.1016/j.enggeo.2019.105187
[25] J. Nawrocki, A. Becker (red.), Atlas geologiczny Polski. Państ. Inst. Geol., Warszawa (2017).
[26] PN -EN ISO 17892, Geotechnical investigation and testing. Laboratory testing of soil.
[27] PN -EN ISO 14688, Geotechnical investigation and testing. Identification and classification of soil.
[28] S. Shimobe, G. Spagnoli, Relationships between undrained shear strength, liquidity index, and water content ratio of clays. Bull. Eng. Geol. Environ. 79, 4817-4828 (2020), DOI: https://doi.org/10.1007/s10064-020-01844-5
[29] P.K. Robertson, C.E. Wride, Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geoecht. J. 35 (3), 442-459 (1998), DOI: https://doi.org/10.1139/t98-017
[30] I. Bagińska, Estimating and verifying soil unit weight determined on the basis of SCPTu tests. Ann. Warsaw Univ. Life Sci. – SGGW. Land Reclam. 48 (3), 233-242 (2016), DOI: https://doi.org/10.1515/sggw-2016-0018
[31] P.W. Mayne, Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT. Australian Geomechanics Journal 51 (4), 27-55 (2016).
[32] A. Cheshomi, Empirical relationships of CPTu results and undrained shear strength. J. GeoEng. 13 (2), 49-57 (2018), DOI: http://dx.doi.org/10.6310/jog.201806_13(2).1
[33] C.P. Wroth, The interpretation of in situ soil tests. Geotechnique 34 (4), 449-489 (1984), DOI: https://doi.org/10.1680/geot.1984.34.4.449
[34] R. Larsson, M. Mulabdic, Piezocone tests in clay. Swedish Geotechnical Institute, Linköping, Report 42, (1991).
[35] Y .J. Shin, D. Kim, Assessment of undrained shear strength based on Cone Penetration Test (CPT) for clayey soils. J. Civ. Eng. 15 (7), 1161-6 (2011), DOI: https://doi.org/10.1007/s12205-011-0808-6
[36] A .H. El-Bosraty, A.M. Ebid, A.L. Fayed, Estimation of the undrained shear strength of east Port-Said clay using the genetic programming. Ain Shams Engineering Journal 11 (4), 961-969 (2020), DOI: https://doi.org/10.1016/j.asej.2020.02.007
[37] L . Bałachowski, K. Międlarz, J. Konkol, Strength parameters of deltaic soils determined with CPTU, DMT and FVT. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 117-121 (2018).
[38] S.J. Hong, M. Lee, J. Kim, W. Lee, Evaluation of undrained shear strength of Busan clay using CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[39] K . Koster, G. De Lange, R. Harting, E. de Heer, H. Middelkoop, Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Q. J. Eng. Geol. Hydrogeol. 51 (2), 210-218 (2018), DOI: https://doi.org/10.1144/qjegh2017-120
[40] G. Sanglerat, The Penetrometer and Soil Exploration. Dev. Geotech. Eng. (1972).
[41] P.W. Mayne, Cone penetration testing (Vol. 368). Transportation Research Board (2007).



Go to article

Authors and Affiliations

Matylda Tankiewicz
1
ORCID: ORCID
Irena Bagińska
2
ORCID: ORCID

  1. Wrocław University of Environmental and Life Sciences, 25 Norwida Str., 50-375 Wrocław, Poland
  2. Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Interface shear strength between geomembranes with various textures, which are used for carrying out the artificial sealing of waste disposal, and compacted fly ash/bottom ash mix, was determined in the paper. The tests were conducted in a classical direct shear apparatus, with the use of a modified cylindrical box. The box was equipped with an additional part, which enabled interaction testing between compacted waste and HOPE geomembrane, It was found that interface strength estimation docs not depend on sample compaction. Only geomcmbranc structure has an effect on shear strength between waste sample and geomembrane. In the case of geomembranes with diverse structure greater values of interface friction angle are obtained, and for smooth geomembranc - greater values of adhesion.
Go to article

Authors and Affiliations

Katarzyna Zabielska-Adamska
Download PDF Download RIS Download Bibtex

Abstract

There are 40 coal mines in Poland now. One of them (coal mine “Bogdanka”) is situated in Lublin Coal Basin, other are localised in Silesia and Małopolska regions. Coal mining is a source of large amounts of wastes. Mean annual production of wastes in only Lublin Coal Basin exceeds 2 million Mg, 65% of which is disposed on a heap. The rest is used to restore opencast excavations, to construct and repair local roads and to produce building materials. It seems that large amount of these wastes could be used to construct or modernize flood embankments and dykes. Using mine wastes as building materials requires the knowledge of their geotechnical parameters. A characteristic feature of mine wastes is their gradual weathering which affects geotechnical parameters largely determined by their mineral and petrographic composition.

This paper describes analyses of geotechnical parameters of mine wastes from Lublin Coal Basin (heap near coal mine “Bogdanka”) of various storage times and of samples collected after 10 years of exploitation of a dyke between ponds made of these wastes at the break of 1993 and 1994. Detailed analyses involved: grain size distribution, natural and optimum moisture content, maximum dry den-sity, shear strength and coefficient of permeability. Obtained results were compared with literature data pertaining to mine wastes from Upper Silesian Coal Basin and from other European coal basins.

Performed studies showed that coal mining wastes produced in Lublin Coal Basin significantly differed in the grain size distribution from wastes originating from Upper Silesian Coal Basin and that weathering proceeded in a different way in wastes produced in both sites.

Go to article

Authors and Affiliations

Piotr Filipowicz
Magdalena Borys
Download PDF Download RIS Download Bibtex

Abstract

A paste containing Cu(II) formate rods was prepared, and characteristics of sinter bonding at 250°C under a pressure of 10 MPa were investigated to accomplish a high-speed die attachment for wide-bandgap power chips on Cu finish in air. Synthesis of the plate-type Cu formate particles from CuO was accomplished through a wet reaction for 180 min. Cu, formed in situ in the bondline by pyrolysis of the formate during heating for the attachment, was sufficiently active to lead high-speed sintering within a carbon dioxide-hydrogen atmosphere derived from the pyrolysis, and the oxide layer on the Cu finish was reduced by the hydrogen. As a result, sinter bonding for 10 min formed a robust bonding with a shear strength approaching 27 MPa.

Go to article

Authors and Affiliations

Kyeong Hwan Jo
Jong-Hyun Lee
Download PDF Download RIS Download Bibtex

Abstract

In this study, direct shear tests were carried out on cement mortar specimens with singleladder, single-rectangular, and double-rectangular step joints. Consequently, the shear strength, and crack shape of specimens with these through-step joints were analyzed, for understanding the influence of the through-step joint’s shape on the direct shear mechanical properties. The results of the investigation are as follows: (1) Under the same normal stress, any increases in the height ℎ of the step joint causes an initial-increase-decrease in the shear strengths of specimens with single-ladder and double-rectangular step joints, causing a type-Wvariation pattern for the specimens with single-rectangular step joint. More essentially, when normal stress and ℎ are constant, the shear strength of specimens with a single-ladder step joint is the greatest, followed by specimens with a double-rectangular step joint, and then specimens with a single-rectangular step joint is the least. (2) Furthermore, given a smallℎ and low normal stress, specimen with a single-ladder step joint mainly experiences shear failure, whereas specimens with single-rectangular and double-rectangular step joints mainly generate extrusion milling in the step joints.
Go to article

Authors and Affiliations

Liangxiao Xiong
1
ORCID: ORCID
Haijun Chen
2
ORCID: ORCID
Haogang Guo
3
ORCID: ORCID
Songhua Mei
1
ORCID: ORCID
Zhongyuan Xu
4
ORCID: ORCID
Bin Liu
5
ORCID: ORCID

  1. Hunan Provincial Key Laboratory of Hydropower Development Key Technology, Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
  2. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
  3. Civil and Environmental Engineering Department, Carnegie Mellon University, Pittsburgh 15289, United States
  4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
  5. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
Download PDF Download RIS Download Bibtex

Abstract

The application of used glazed waste in concrete production can improve the performance of the structure of the building. Flexural and shear behavior and action of reinforced HollowGlass Concrete Beams (HGCB) and Solid Glass Concrete Beams (SGCB) made with glass waste under a two-point load are studied in this paper. In this work, 6 reinforced concrete solid and hollow beams were tested under a four-point bending test to evaluate and calculate the flexural behavior of SGCB and HGCB. For that purpose, Beams were prepared with 1000 mm length, 230 mm height, and 120 mm. All beams were divided into groups and named according to the space stirrups steel bar. The experimental work investigates five main variables which are: first: the comparison between SGCB and HGCB with the concrete beams made with glass waste (Glass Concrete Beam GCB), second: comparison between Solid Concrete Beams for Normal Concrete Beams (NCB), and GCB, three: comparison between Hollow Concrete Beams for NCB and GCB, four: the comparison between HGCB and HCB, last: the comparison between SGCB and SCB. The test results indicated that GCB was offered higher strength than NCB, but the load–slip behavior of all specimens is similar for both types of concretes, and the bond strength is not influenced by steel specimens. Furthermore, the results of this study indicated that the contribution of GCB to the load is indicated to be considerable. The results indicate that the hollow opening affected the ultimate load capacity and deflection of HGCB.
Go to article

Authors and Affiliations

Salam Salman Chiad Alharishawi
1
ORCID: ORCID
Nagham Rajaa
2
ORCID: ORCID
Aqeel Raheem Jabur
3
ORCID: ORCID

  1. Mustansiriyah University, College of Engineering, Environmental Engineering Department, Baghdad
  2. Mustansiriyah University, College of Engineering, Highway and Transportation Engineering Department, Baghdad, Iraq
  3. Mustansiriyah University, College of Engineering, Civil Engineering Department, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Petroleum products influence the engineering behaviour of the soil. Neogene clays and glacial tills from Central Poland were tested under laboratory conditions to evaluate the changes of selected physical and mechanical parameters: particle size distribution, particle density, swelling, shear strength and permeability. Four petroleum products were used in the experiments: diesel fuel, kerosene, jet fuel and mineral engine oil. The study revealed that even for the lowest degree of contamination the values of physical and mechanical properties of the soils changed significantly. Greater variation can be expected in soils contaminated with high-viscosity compounds. Also, higher relative changes were found for glacial tills than for Neogene clays. Consolidation tests revealed changes in soil permeability depending on the soil composition and the physical properties of the contaminant – considerable reduction of permeability was observed for glacial tills contaminated with light Jet fuel, while the reduction was lower for Neogene clays. The obtained results indicate the role of mesopores and the dimensionless pore pressure coefficient in changes of soil permeability. The methodological issues regarding testing and analysing the hydrocarbon-contaminated soils were also presented and discussed, which might be useful for researchers studying contaminated soils.
Go to article

Authors and Affiliations

Paweł Dobak
1
Dorota Izdebska-Mucha
1
Piotr Stajszczak
1
Emilia Wójcik
1
Kamil Kiełbasiński
1
Ireneusz Gawriuczenkow
1
Tomasz Szczepański
1
Piotr Zbigniew Zawrzykraj
ORCID: ORCID
Anna Bąkowska
1
ORCID: ORCID

  1. University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the methods of determining the characteristic value on the basis of the standards: PN-B-03020:1981, PN-EN 1997-1:2008, prEN 1997-1:2022-09 and Schneider formula. Determination of the characteristic value of the undrained shear strength τfu was carried out using statistical method on the basis of the prEN 1997-1:2022-09 standard and Schneider formula. The statistical calculations were based on the results of field vane tests carried out in organic subsoil of test embankment in Antoniny test site before loading and after the 2nd embankment stage. In order to determine the undrained shear strength τfu of organic soils from field vane tests, the measured values of shear strength τf v were corrected using the average values of correction factors μ = μ(lab) determined on the basis of triaxial compression, simple shear and triaxial extension tests. The analysis of the calculation results shows that with relatively numerous data sets, large values of the coefficient of variation Vx result in significantly lower characteristic values of τfu obtained according to prEN 1997-1:2022-09, compared to the values obtained according to the Schneider formula. In the case of few data sets, for which high values of the coefficient kn are obtained, with high values of the coefficient of variation Vx , the comparison of the values according to prEN 1997-1:2022-09 with the values obtained according to the Schneider formula shows the greatest differences.
Go to article

Authors and Affiliations

Maria Jolanta Sulewska
1
ORCID: ORCID
Zbigniew Lechowicz
2
ORCID: ORCID

  1. Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E St., 15-351 Bialystok, Poland
  2. Department of Geotechnical Engineering, Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the phenomenon of principal stress rotation in cohesive subsoil resulting from its loading or unloading and the impact of this phenomenon on the values of soil shear strength parameters: undrained shear strength τfu, effective cohesion c’, effective angle of internal friction φ’. For this purpose, tests in a triaxial apparatus and torsional shear hollow cylinder apparatus on selected undisturbed cohesive soils: sasiCl, saclSi, clSi, Cl, characterized by different index properties were carried out. Soil shear strength parameters were determined at angle of principal stress rotation α equal to 0° and 90° in tests in triaxial apparatus and α equal to 0°, 15°, 30°, 45°, 60°, 75°, 90° in tests in torsional shear hollow cylinder apparatus. The results of laboratory tests allow to assess the influence of the principal stress rotation on the shear strength parameters that should be used to determine the bearing capacity of the subsoil.
Go to article

Authors and Affiliations

Grzegorz Wrzesiński
1
ORCID: ORCID

  1. Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a new approach to testing the strength of asphalt interlayer bonding. Two loading methods were used: static load and cyclic load. Before carrying out static shear strength tests, the interlayer bonding was subjected to cyclic loads with a constant number of cycles but with different frequencies. A number of layered samples with and without geosynthetic interlayers were tested at the set temperature. The comparative analyses allowed to determine the functions approximating the impact of the cyclic load frequency on the static strength of bonding at selected interlayer contact conditions. It was also possible to indicate the frequency of cyclic load at which this parameter has the largest and smallest impact on the static strength of the asphalt interlayer bonding.

Go to article

Authors and Affiliations

Jarosław Górszczyk
Konrad Malicki

This page uses 'cookies'. Learn more