Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 78
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of priority scheduling that is useful during the planning of multiple-structure construction projects. This approach is an extension of the concept of interactive scheduling. In priority scheduling, it is the planner that can determine how important each of the technological and organisational constraints are to them. A planner's preferences can be defined through developing a ranking list that defines which constraints are the most important, and those whose completion can come second. The planner will be able to model the constraints that appear at a construction site more flexibly. The article presents a general linear programming model of the planning of multiple-structure construction projects, as well as various values of each of the parameters that allow us to obtain different planning effects. The proposed model has been implemented in a computer program and its effectiveness has been presented on a calculation example.

Go to article

Authors and Affiliations

E. Radziszewska-Zielina
B. Sroka
Download PDF Download RIS Download Bibtex

Abstract

The basic element of a project organizing construction works is a schedule. The preparation of the data necessary to specify the timings of the construction completion as indicated in the schedule involves information that is uncertain and hard to quantify. The article presents the methods of building a schedule which includes a fuzzy amount of labour, time standards and number of workers. The proposed procedure allows determining the real deadline for project completion, taking into account variable factors affecting the duration of the individual works.

Go to article

Authors and Affiliations

E. Plebankiewicz
P. Karcińska
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model of scheduling of multi unit construction project based on an NP-hard permutation flow shop problem, in which the considered criterion is the sum of the costs of the works' execution of the project considering the time of the project as a constraint. It is also assumed that each job in the units constituting the project may be realized in up to three different ways with specific time and cost of execution. The optimization task relies on solving the problem with two different decision variables: the order of execution of units (permutation) and a set of ways to carry out the works in units. The task presented in the paper is performed with the use of a created algorithm which searches the space of solutions in which metaheuristic simulated annealing algorithm is used. The paper presents a calculation example showing the applicability of the model in the optimization of sub-contractors' work in the construction project.

Go to article

Authors and Affiliations

M. Podolski
Download PDF Download RIS Download Bibtex

Abstract

Construction risk assessment is the final and decisive stage of risk analysis. When highly changeable conditions of works execution are predicted, risk should be evaluated in the favorable, moderate, and difficult random conditions of construction. Given the random conditions, the schedule and cost estimate of the construction are developed. Based on these values, the risk of final deadline delay and the risk of total cost increase of construction completion are calculated. Next, the charts of the risks are elaborated. Risk changes are shown in the charts and are analyzed in the range [1, 0].

Go to article

Authors and Affiliations

T. Kasprowicz
Download PDF Download RIS Download Bibtex

Abstract

Production rates for various activities and overall construction project duration are significantly influenced by crew formation. Crews are composed of available renewable resources. Construction companies tend to reduce the number of permanent employees, which reduces fixed costs, but at the same time limits production capacity. Therefore, construction project planning must be carried out by means of scheduling methods which allow for resource constrains. Authors create a mathematical model for optimized scheduling of linear construction projects with consideration of resources and work continuity constraints. Proposed approach enables user to select optimal crew formation under limited resource supply. This minimizes project duration and improves renewable resource utilization in construction linear projects. This paper presents mixed integer linear programming to model this problem and uses a case study to illustrate it.

Go to article

Authors and Affiliations

S. Biruk
P. Jaśkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper present the concept of stability assessing the of solutions which are construction schedules. Rank have been obtained through the use of task scheduling rules and the application of the KASS software. The aim of the work is the choice of the equivalent solution in terms of the total time of the project. The selected solution optimization task should be characterized by the highest resistance to harmful environmental risk factors. To asses the stability of schedule simulation technique was used.

Go to article

Authors and Affiliations

M. Krzemiński
Download PDF Download RIS Download Bibtex

Abstract

The Job Shop scheduling problem is widely used in industry and has been the subject of study by several researchers with the aim of optimizing work sequences. This case study provides an overview of genetic algorithms, which have great potential for solving this type of combinatorial problem. The method will be applied manually during this study to understand the procedure and process of executing programs based on genetic algorithms. This problem requires strong decision analysis throughout the process due to the numerous choices and allocations of jobs to machines at specific times, in a specific order, and over a given duration. This operation is carried out at the operational level, and research must find an intelligent method to identify the best and most optimal combination. This article presents genetic algorithms in detail to explain their usage and to understand the compilation method of an intelligent program based on genetic algorithms. By the end of the article, the genetic algorithm method will have proven its performance in the search for the optimal solution to achieve the most optimal job sequence scenario.
Go to article

Authors and Affiliations

Habbadi SAHAR
1
Brahim HERROU
Souhail SEKKAT
2

  1. Sidi Mohamed Ben Abdellah University, Faculté des Sciences Techniques de Fès, Industrial Engineering Department, Morocco
  2. Ecole Nationale Supérieure d’Arts et Métiers ENSAM MEKNES, Industrial Engineering Department, Morocco
Download PDF Download RIS Download Bibtex

Abstract

This work is interested to optimize the job shop scheduling problem with a no wait constraint. This constraint occurs when two consecutive operations in a job must be processed without any waiting time either on or between machines. The no wait job shop scheduling problem is a combinatorial optimization problem. Therefore, the study presented here is focused on solving this problem by proposing strategy for making Jaya algorithm applicable for handling optimization of this type of problems and to find processing sequence that minimizes the makespan (Cmax). Several benchmarks are used to analyze the performance of this algorithm compared to the best-known solutions.
Go to article

Authors and Affiliations

Aimade Eddine BOUGLOULA
Download PDF Download RIS Download Bibtex

Abstract

One of the most popular heuristics used to solve the permutation flowshop scheduling problem (PFSP) is the NEH algorithm. The reasons for the NEH popularity are its simplicity, short calculation time, and good-quality approximations of the optimal solution for a wide range of PFSP instances. Since its development, many works have been published analysing various aspects of its performance and proposing its improvements. The NEH algorithm includes, however, one unspecified and unexamined feature that is related to the order of jobs with equal values of total processing time in an initial sequence. We examined this NEH aspect using all instances from Taillard’s and VRF benchmark sets. As presented in this paper, the sorting operation has a significant impact on the results obtained by the NEH algorithm. The reason for this is primarily the input sequence of jobs, but also the sorting algorithm itself. Following this observation, we have proposed two modifications of the original NEH algorithm dealing with sequencing of jobs with equal total processing time. Unfortunately, the simple procedures used did not always give better results than the classical NEH algorithm, which means that the problem of sequencing jobs with equal total processing time needs a smart approach and this is one of the promising directions for further research.
Go to article

Authors and Affiliations

Radosław Puka
1
Jan Duda
1
A. Stawowy
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Management Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The In the paper, we investigate two single processor problems, which deal with the process of negotiation between a producer and a customer about delivery time of final products. This process is modelled by a due interval, which is a generalization of well known classical due date and describes a time interval, in which a job should be finished. In this paper we consider two diffierent mathematical models of due intervals. In both considered problems we should find such a schedule of jobs and such a determination of due intervals to each job, that the generalized cost function is minimized. The cost function is the maximum of the following three weighted parts: the maximum tardiness, the maximum earliness and the maximum due interval size. For the first problem we proved several properties of its optimal solution and next we show the mirror image property for both of considered problems, which helps us to provide an optimal solution for the second problem.

Go to article

Authors and Affiliations

A. Janiak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new elastic scheduling task model which has been used in the uniprocessor node of a control measuring system. This model allows the selection of a new set of periods for the occurrence of tasks executed in the node of a system in the case when it is necessary to perform additional aperiodic tasks or there is a need to change the time parameters of existing tasks. Selection of periods is performed by heuristic algorithms. This paper presents the results of the experimental use of an elastic scheduling model with a GRASP heuristic algorithm.

Go to article

Authors and Affiliations

Wiesław Miczulski
Piotr Powroźnik
Download PDF Download RIS Download Bibtex

Abstract

Redundancy based methods are proactive scheduling methods for solving the Project

Scheduling Problem (PSP) with non-deterministic activities duration. The fundamental

strategy of these methods is to estimate the activities duration by adding extra time to the

original duration. The extra time allows to consider the risks that may affect the activities

durations and to reduce the number of adjustments to the baseline generated for the project.

In this article, four methods based on redundancies were proposed and compared from two

robustness indicators. These indicators were calculated after running a simulation process.

On the other hand, linear programming was applied as the solution technique to generate

the baselines of 480 projects analyzed. Finally, the results obtained allowed to identify the

most adequate method to solve the PSP with probabilistic activity duration and generate

robust baselines.

Go to article

Authors and Affiliations

Nestor Raul Ortiz-Pimiento
Francisco Javier Diaz-Serna
Download PDF Download RIS Download Bibtex

Abstract

Small bucket models with many short fictitious micro-periods ensure high-quality schedules in multi-level systems, i.e., with multiple stages or dependent demand. In such models, setup times longer than a single period are, however, more likely. This paper presents new mixedinteger programming models for the proportional lot-sizing and scheduling problem (PLSP) with setup operations overlapping multiple periods with variable capacity.
A new model is proposed that explicitly determines periods overlapped by each setup operation and the time spent on setup execution during each period. The model assumes that most periods have the same length; however, a few of them are shorter, and the time interval determined by two consecutive shorter periods is always longer than a single setup operation. The computational experiments showthat the newmodel requires a significantly smaller computation effort than known models.
Go to article

Bibliography

[1] I. Barany, T.J. van Roy and L.A. Wolsey: Uncapacitated lot-sizing: The convex hull of solutions. Mathematical Programming Studies, 22 (1984), 32–43, DOI: 10.1007/BFb0121006.
[2] G. Belvaux and L.A. Wolsey: Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47(7), (2001), 993–1007, DOI: 10.1287/mnsc.47.7.993.9800.
[3] J.D. Blocher, S. Chand and K. Sengupta: The changeover scheduling problem with time and cost considerations: Analytical results and a forward algorithm. Operations Research, 47(7), (1999), 559-569, DOI: 10.1287/opre.47.4.559.
[4] W. Bozejko, M. Uchronski and M. Wodecki: Multi-machine scheduling problem with setup times. Archives of Control Sciences, 22(4), (2012), 441– 449, DOI: 10.2478/v10170-011-0034-y.
[5] W. Bozejko, A. Gnatowski, R. Idzikowski and M. Wodecki: Cyclic flow shop scheduling problem with two-machine cells. Archives of Control Sciences, 27(2), (2017), 151–167, DOI: 10.1515/acsc-2017-0009.
[6] D. Cattrysse, M. Salomon, R. Kuik and L. vanWassenhove: A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup times. Management Science, 39(4), (1993), 477–486, DOI: 10.1287/mnsc.39.4.477.
[7] K. Copil, M. Worbelauer, H. Meyr and H. Tempelmeier: Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectrum, 39(1), (2017), 1–64, DOI: 10.1007/s00291-015-0429-4.
[8] A. Drexl and K. Haase: Proportional lotsizing and scheduling. International Journal of Production Economics, 40(1), (1995), 73–87, DOI: 10.1016/0925-5273(95)00040-U.
[9] B. Fleischmann: The discrete lot-sizing and scheduling problem. European Journal of Operational Research, 44(3), (1990), 337-348, DOI: 10.1016/0377-2217(90)90245-7.
[10] K. Haase: Lotsizing and scheduling for production planning. Number 408 in Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1994.
[11] W. Kaczmarczyk: Inventory cost settings in small bucket lot-sizing and scheduling models. In Total Logistic Management Conference, Zakopane, Poland, November 25-28 2009.
[12] W. Kaczmarczyk: Modelling multi-period set-up times in the proportional lot-sizing problem. Decision Making in Manufacturing and Services, 3(1-2), (2009), 15–35, DOI: 10.7494/dmms.2009.3.2.15.
[13] W. Kaczmarczyk: Proportional lot-sizing and scheduling problem with identical parallel machines. International Journal of Production Research, 49(9), (2011), 2605–2623, DOI: 10.1080/00207543.2010.532929.
[14] W. Kaczmarczyk: Valid inequalities for proportional lot-sizing and scheduling problem with fictitious microperiods. International Journal of Production Economics, 219(1), (2020), 236–247, DOI: 10.1016/j.ijpe.2019.06.005.
[15] W.Kaczmarczyk: Explicit modelling of multi-period setup times in proportional lot-sizing problem with constant capacity. (2021), Preprint available at Research Square, DOI: 10.21203/rs.3.rs-1086310/v1.
[16] U.S. Karmarkar and L. Schrage: The deterministic dynamic product cycling problem. Operations Research, 33(2), (1985), 326–345, DOI: 10.1287/opre.33.2.326.
Go to article

Authors and Affiliations

Waldemar Kaczmarczyk
1

  1. Department of Strategic Management, AGH University of Science and Technology, Al.Mickiewicza 30, 30-059, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Given that a source is located underground and detected by sounds that cannot be completely known or predicted, every stage of the operation from grade changes to product sales exhibits uncertainties. Parameters and constraints used in mining optimizations (sales price, costs, efficiency, etc.) comprise uncertainties. In this research, chrome open-pit resource optimization activities were performed in the province of Adana, Turkey. Metallurgical recovery, which is considered a constant as an optimization parameter in mining software, has been optimized as a variable based on fixed and variable values related to the waste material grade of processing. Based on scenario number 7, which yields the highest net present value in both optimizations, this difference corresponds with an additional $1.4 million, i.e., 7% minimum. When the number of products sold were compared, a difference of 25,977 tons of concentrate production was noted (Optimization II produces less than Optimization I). In summary, concentrated efficiency and economic findings show that using variable metallurgical recovery parameters in NPV estimation improves optimization success by reducing the level of uncertainty.
Go to article

Authors and Affiliations

Furkan K. Kasa
1
ORCID: ORCID
Ahmet Dağ
1
ORCID: ORCID

  1. Çukurova University, Department of Mining Engineering, Adana, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper brings forward an idea of multi-threaded computation synchronization based on the shared semaphored cache in the multi-core CPUs. It is dedicated to the implementation of multi-core PLC control, embedded solution or parallel computation of models described using hardware description languages. The shared semaphored cache is implemented as guarded memory cells within a dedicated section of the cache memory that is shared by multiple cores. This enables the cores to speed up the data exchange and seamlessly synchronize the computation. The idea has been verified by creating a multi-core system model using Verilog HDL. The simulation of task synchronization methods allows for proving the benefits of shared semaphored memory cells over standard synchronization methods. The proposed idea enhances the computation in the algorithms that consist of relatively short tasks that can be processed in parallel and requires fast synchronization mechanisms to avoid data race conditions.
Go to article

Authors and Affiliations

Adam Milik
1
Michał Walichiewicz
1

  1. Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Digital Systems Division, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work we consider a problem from the field of power- and energy-aware scheduling, in which a set of batteries have to be charged in a minimum time. The formulated problem is to schedule independent and nonpreemptable jobs to minimize the schedule length, where each job requires some amount of power and consumes a certain amount of energy during its processing. We assume that the power demand of each job linearly decreases with time, as it is the case when Li-ion batteries are being charged. For the assumed job model we prove that each next job should be started as soon as the required amount of power is available. Basing on the proven theorem we formulate a procedure generating a minimum-length schedule for an assumed order of jobs. We also analyze the case of identical jobs, and show some interesting properties of this case.

Go to article

Authors and Affiliations

R. Różycki
G. Waligóra
J. Węglarz
Download PDF Download RIS Download Bibtex

Abstract

With its position as the capital, Hanoi is the political center as well as the second largest economic center of the country. Therefore, the city is always allocated a large budget in construction investment to create material facilities for political tasks and economic and social development. During the implementation of construction projects, a number of difficulties and limitations have appeared. In which, projects are delayed in construction and disbursement, reducing investment efficiency and not meeting the expectations of the government and people. From this fact, the authors have conducted a study to evaluate the causes affecting the time schedule of construction projects in Hanoi. The method F-APH (Fuzzy Analytic Hierarchy Process) was used to analyze data objectively and accurately about the causes affecting the time schedule. From there, these causes are classified into groups of subjective causes (from within the project) and groups of objective causes (from outside the project). The results show that subjective causes, originating from project participants, have a stronger influence than objective causes. A number of specific proposals to the actors involved in construction projects are made to eliminate or limit the impact of the causes of construction progress.
Go to article

Authors and Affiliations

Dinh Tuan Hai
1
ORCID: ORCID

  1. Hanoi Architectural University, Faculty of Civil Engineering, Km 10, Nguyen Trai Street, Thanh Xuan District, Hanoi City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Complex construction projects require appropriate planning that allows for time and cost optimization, maximization of the use of available resources and appropriate investment control. Scheduling is a complicated process, due to the uncertainties and risks associated with construction works, the paper describes the development of the scheduling method traditionally used in Poland, based on data from KNR catalogs, by using the RiskyProject Professional program. In the RiskyProject Professional program, the risk and uncertainty with reference to a specific construction project were modeled, and the calculation results were compared with the real time of the project implementation. The conclusions from the work carried out confirm that the SRA (Schedule Risk Analysis) analysis of the base schedule allows for a more faithful representation of the actual conditions of a construction project. The probability of investment realization generated on the basis of the SRA analysis may be assumed at the level of 75÷90%.
Go to article

Authors and Affiliations

Paulina Kostrzewa-Demczuk
1
ORCID: ORCID
Magdalena Rogalska
2
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  2. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka St. 40, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to develop a prioritizing and scheduling method to be followed in small and medium-sized companies operating under conditions of non-rhythmic and nonrepeatable production. A system in which make to stock, make to order and engineer to order (MTS, MTO and ETO) tasks are carried out concurrently, referred to as a non-homogenous system, has been considered. Particular types of tasks have different priority indicators. Processes involved in the implementation of these tasks are dependent processes, which compete for access to resources. The work is based on the assumption that the developed procedure should be a universal tool that can be easily used by planners. It should also eliminate the intuitive manner of prioritizing tasks while providing a fast and easy to calculate way of obtaining an answer, i.e. a ready plan or schedule. As orders enter the system on an ongoing basis, the created plan and schedule should enable fast analysis of the result and make it possible to implement subsequent orders appearing in the system. The investigations were based on data from the non-homogenous production system functioning at the Experimental Plant of the Łukasiewicz Research Network – Institute of Ceramics and Building Materials, Refractory Materials Division – ICIMB. The developed procedure includes the following steps: 1 – Initial estimation of resource availability, 2 – MTS tasks planning, 3 – Production system capacity analysis, 4 – ETO tasks planning, 5 – MTO orders planning, 6 – Evaluation of the obtained schedule. The scheduling procedure is supported by KbRS (Knowledge-based Rescheduling System), which has been modified in functional terms for the needs of this work assumption.
Go to article

Authors and Affiliations

Bożena Skołud
1
Agnieszka Szopa
2
Krzysztof Kalinowski
1

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Poland
  2. The Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Production problems have a significant impact on the on-time delivery of orders, resulting in deviations from planned scenarios. Therefore, it is crucial to predict interruptions during scheduling and to find optimal production sequencing solutions. This paper introduces a selflearning framework that integrates association rules and optimisation techniques to develop a scheduling algorithm capable of learning from past production experiences and anticipating future problems. Association rules identify factors that hinder the production process, while optimisation techniques use mathematical models to optimise the sequence of tasks and minimise execution time. In addition, association rules establish correlations between production parameters and success rates, allowing corrective factors for production quantity to be calculated based on confidence values and success rates. The proposed solution demonstrates robustness and flexibility, providing efficient solutions for Flow-Shop and Job-Shop scheduling problems with reduced calculation times. The article includes two Flow-Shop and Job-Shop examples where the framework is applied.
Go to article

Authors and Affiliations

Mateo DEL GALLO
Filippo Emanuele CIARAPICA
Giovanni MAZZUTO
Maurizio BEVILACQUA
Download PDF Download RIS Download Bibtex

Abstract

Most scheduling methods used in the construction industry to plan repetitive projects assume that process durations are deterministic. This assumption is acceptable if actions are taken to reduce the impact of random phenomena or if the impact is low. However, construction projects at large are notorious for their susceptibility to the naturally volatile conditions of their implementation. It is unwise to ignore this fact while preparing construction schedules. Repetitive scheduling methods developed so far do respond to many constructionspecific needs, e.g. of smooth resource flow (continuity of work of construction crews) and the continuity of works. The main focus of schedule optimization is minimizing the total time to complete. This means reducing idle time, but idle time may serve as a buffer in case of disruptions. Disruptions just happen and make optimized schedules expire. As process durations are random, the project may be delayed and the crews’ workflow may be severely affected to the detriment of the project budget and profits. For this reason, the authors put forward a novel approach to scheduling repetitive processes. It aims to reduce the probability of missing the deadline and, at the same time, to reduce resource idle time. Discrete simulation is applied to evaluate feasible solutions (sequence of units) in terms of schedule robustness.

Go to article

Authors and Affiliations

Piotr Jaśkowski
ORCID: ORCID
Sławomir Biruk
ORCID: ORCID
Michał Krzemiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The construction contractor is concerned with reducing the cost of the project, including reducing unnecessary downtime. This is achieved when resources are fully utilized; this means the crews work continuously moving without interruption from one location to the other. However, any disturbance in the optimally scheduled workflow caused by random events is likely to result in delays, interruptions in the crews work, and productivity losses. There is therefore a need for scheduling methods that allow plans to be more resilient to disruptions and ensure a reduction in downtime and implementation costs. The authors put forward a proactive-reactive approach to the schedule risk management. Proposed method makes it possible to protect schedule deadlines from the impact of risk factors by allocating time buffers (proactive approach). It also takes into account the measures that managers take during execution in response to delays that occur, such as changing construction methods, employing extra resources, or working overtime (reactive approach). It combines both ideas and is based on project simulation technique. The merits of the proposed approach are illustrated by a case of a repetitive project to erect a number of buildings. The presented example proves that the proposed method enables the planner to estimate the scale of delays of processes’ start and consider the impact of measures to reduce duration of processes in particular locations taken in reaction to delays. Thus, it is possible to determine the optimal schedule, at which the costs of losses associated with delays and downtime are minimal.
Go to article

Authors and Affiliations

Piotr Jaskowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzeminski
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzyckastr. 40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more