Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A nanoscale beam model containing defect under the piezoelectricity considering the surface effects and flexoelectricity is established on the framework of Euler-Bernoulli theory. The governing equations of motion and related boundary conditions are derived by using Hamilton’s principle. The imperfect nanobeam is modeled by dividing the beam into two separate parts that are connected by a rotational and a longitude spring at the defect location. Analytical results on the free vibration response of the imperfect piezoelectric nanobeam exhibit that the flexoelectricity and the surface effects are sensitive to the boundary conditions, defect position, and geometry of the nanobeam. Numerical results are provided to predict the mechanical behavior of a weakened piezoelectric nanobeam considering the flexoelectric and surface effects. It is also revealed that the voltage, defect severity, and piezoelectric material have a critical role on the resonance frequency. The work is envisaged to underline the influence of surface effects and flexoelectricity on the free vibration of a cracked piezoelectric nanobeam for diverse boundary conditions. It should be mentioned, despite our R. Sourkiprevious works, an important class of piezoelectric materials used nowadays and called piezoelectric ceramics is considered in the current study.

Go to article

Bibliography

[1] S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertnees, and N.A. Sanford. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters, 91(20):203117, 2007. 10.1063/1.2815747.
[2] W.S. Su,Y.F. Chen, C.L. Hsiao, and L.W. Tu. Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters, 90(6):063110, 2007. 10.1063/1.2472539.
[3] B. Kumar and S.-W. Kim. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3):342–355, 2012. 10.1016/j.nanoen.2012.02.001.
[4] Z.L. Wang and J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771):242–246, 2006. 10.1126/science.1124005.
[5] X.Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L.Wang. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12):2768–2772, 2006. 10.1021/nl061802g.
[6] S.C. Lao, Q. Kuang, Z.L.Wang, M.C. Park, and Y. Deng. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Applied Physics Letters, 90(26): 262107, 2007. 10.1063/1.2748097.
[7] A. Chaipanich. Effect of PZT particle size on dielectric and piezoelectric properties of PZT–cement composites. Current Applied Physics, 7(5):574–577, 2007. 10.1016/j.cap.2006.11.036.
[8] H. Farokhi, A.K. Misra, and M.P. Païdoussis. A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour. Nonlinear Dynamics, 88(2):1187–1211, 2017. 10.1007/s11071-016-3304-1.
[9] Z. Zhang, Z.Yan, and L. Jiang. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics, 116(1): 014307, 2014. 10.1063/1.4886315.
[10] X. Liang, S. Hu, and S. Shen. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23(3):035020, 2014. 10.1088/0964-1726/23/3/035020.
[11] Z. Yan. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Materials and Structures, 25(3): 035017, 2016. 10.1088/0964-1726/25/3/035017.
[12] T.D. Nguyen, S. Mao, Y. Yeh , P.K. Purohit, and M.C. McAlpine. Nanoscale flexoelectricity. Advanced Materials, 25(7):946–974, 2013. 10.1002/adma.201203852.
[13] L. Qi, S. Zhou, and A. Li. Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect. Composite Structures, 135:167–175, 2016. 10.1016/j.compstruct.2015.09.020.
[14] R. Zhang, X. Liang, and S. Shen. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51(5):1181–1188, 2016. 10.1007/s11012-015-0290-1.
[15] Z. Yan and L.Y. Jiang. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. Journal of Applied Physics. 113(19):194102, 2013. 10.1063/1.4804949.
[16] Z. Zhang. Size-dependent Electroelastic Properties of Piezoelectric Nanoplates. Master Thesis, The University of Western Ontario, Canada, 2014.
[17] X. Liang, S.Hu, and S. Shen. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24(10):105012, 2015. 10.1088/0964-1726/24/10/105012.
[18] Y. Tadi Beni. Size-dependent analysis of piezoelectric nanobeams including electromechanical coupling. Mechanics Research Communications, 75: 67–80, 2016. 10.1016/j.mechrescom.2016.05.011.
[19] R. Sourki and S.A.H. Hoseini. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Applied Physics A, 122(4):413, 2016. 10.1007/s00339-016-9961-6.
[20] R. Sourki and S.A. Hosseini. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. The European Physical Journal Plus, 132(4):184, 2017. 10.1140/epjp/i2017-11458-0.
[21] S.J. Behrouz, O. Rahmani, and S.A. Hosseini. On nonlinear forced vibration of nano cantileverbased biosensor via couple stress theory. Mechanical Systems and Signal Processing, 128: 19–36, 2019. 10.1016/j.ymssp.2019.03.020.
[22] B.A. Hamidi, S.A.H. Hosseini, R. Hassannejad, and F. Khosravi. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses, 2019. 10.1080/01495739.2019.1666694.
[23] S.A Hosseini and O. Rahmani. Modeling the size effect on the mechanical behavior of functionally graded curved micro/nanobeam. Thermal Science and Engineering, 1(2):1–20, 2018. 10.24294/tse.v1i2.400.
[24] O. Rahmani, M. Shokrnia, H. Golmohammadi, and S.A.H. Hosseini. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. The European Physical Journal Plus, 133(2):42, 2018. 10.1140/epjp/i2018-11868-4.
[25] M. Ghadiri, S. Hosseini, M. Karami, and M. Namvar. In-plane and out of plane free vibration of U-shaped AFM probes based on the nonlocal elasticity. Journal of Solid Mechanics, 10(2):285–299, 2018.
[26] S. Hosseini and O. Rahmani. Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construction Research, 2(2):1–17, 2018.
[27] M. Namvar, E. Rezaei, S.A. Hosseini, and M. Ghadiri. Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory. The European Physical Journal Plus, 132(6): 247, 2017. 10.1140/epjp/i2017-11518-5.
[28] V. Refaeinejad, O. Rahmani, and S.A.H. Hosseini. Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures. Mechanics of Advanced Materials and Structures, 24(13):1116–1123, 2017. 10.1080/15376494.2016.1227496.
[29] M. Zarepour, S.A.H. Hosseini, and A.H. Akbarzadeh. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Applied Mathematical Modelling, 69:563–582, 2019. 10.1016/j.apm.2019.01.001.
[30] C. Zhang, J. Zhu, W. Chen, and Ch. Zhang. Two-dimensional theory of piezoelectric shells considering surface effect. European Journal of Mechanics – A/Solids, 43:109–117, 2014. 10.1016/j.euromechsol.2013.09.007.
[31] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. 10.1063/1.4897367.
[32] Z. Yan and L. Jiang. Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. Journal of Physics D: Applied Physics, 45(25):255401, 2012. 10.1088/0022-3727/45/25/255401.
[33] G.Y. Huang and S.W. Yu. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi b, 243(4):R22-R24, 2006. 10.1002/pssb.200541521.
[34] Y.S. Li and E. Pan. Bending of a sinusoidal piezoelectric nanoplate with surface effect. Composite Structures, 136:45–55, 2016. 10.1016/j.compstruct.2015.09.047.
[35] M.S. Chiu. and T. Chen. Effects of high-order surface stress on static bending behavior of nanowires. Physica E: Low-dimensional Systems and Nanostructures, 44(3):714–718, 2011. 10.1016/j.physe.2011.11.016.
[36] A.H. Hosseini, O. Rahmani, M. Nikmehr, I.F. Golpayegani. Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sensor Letters, 14(10):1019–1025, 2016. 10.1166/sl.2016.3575.
[37] O. Rahmani, S.A.H. Hosseini, M.H.N. Moghaddam, and I.F. Golpayegani. Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: An analytical study. International Journal of Applied Mechanics, 07(03):1550036, 2015. 10.1142/S1758825115500362.
[38] J. Xiao, Y. Xu, and F. Zhang. A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 96(5):633–641, 2016. 10.1002/zamm.201400232.
[39] K.F. Wang, and B.L. Wang. Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. European Journal of Mechanics – A/Solids, 56:12–18, 2016. 10.1016/j.euromechsol.2015.10.002.
[40] H.S. Nan and B.L. Wang. Effect of crack face residual surface stress on nanoscale fracture of piezoelectric materials. Engineering Fracture Mechanics, 110:68–80, 2013. 10.1016/j.engfracmech.2013.08.002.
[41] S. Shen and S. Hu. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 58(5):665–677, 2010. 10.1016/j.jmps.2010.03.001.
[42] M. E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4):291–323, 1975. 10.1007/BF00261375.
[43] J. Zhang, C. Wang, and S. Adhikari. Surface effect on the buckling of piezoelectric nanofilms. Journal of Physics D: Applied Physics, 45(28):285301, 2012. 10.1088/0022-3727/45/28/285301.
[44] A. Abdollahi, C. Peco, D. Millán, M. Arroyo, and I. Arias. Computational evaluation of the flexoelectric effect in dielectric solids. Journal of Applied Physics, 116(9):093502, 2014. 10.1063/1.4893974.
[45] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. 10.1063/1.4897367.
[46] T. Chen, M.S. Chiu, and C.N. Weng. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7):074308, 2006. 10.1063/1.2356094.
[47] Z. Yan and L. Jiang. Influence of surface effects and flexoelectricity on vibration of piezoelectric nanobeams. 13th International Conference on Fracture, Beijing, China, 16–21 June, 2013.
[48] X. Liang, S. Hu, and S. Shen. A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 111:317–323, 2014. 10.1016/j.compstruct.2014.01.019.
[49] Z. Yan and L.Y. Jiang. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24):245703, 2011. 10.1088/0957-4484/22/24/245703.
[50] J. Loya, J. López-Puente, R. Zaera, and J. Fernández-Sáez. Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. Journal of Applied Physics, 10(4):044309, 2009. 10.1063/1.3068370.
[51] M. Akbarzadeh Khorshidi and M. Shariati. Investigation of flexibility constants for a multispring model: a solution for buckling of cracked micro/nanobeams. Journal of Theoretical and Applied Mechanics, 57(1):49–58, 2019.
[52] L.L. Zhang, J.X. Liu, X.Q. Fang, and G.Q. Nie. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European Journal of Mechanics – A/Solids, 46:22–29, 2014. 10.1016/j.euromechsol.2014.01.005.
[53] Y.M. Yue, K.Y. Xu, and T. Chen. A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Composite Structures, 136:278–286, 2016. 10.1016/j.compstruct.2015.09.046.
[54] J.A. Loya, J. Aranda-Ruiz, and J. Fernández-Sáez. Torsion of cracked nanorods using a nonlocal elasticity model. Journal of Physics D: Applied Physics, 47(11):115304, 2014. 10.1088/0022-3727/47/11/115304.
Go to article

Authors and Affiliations

Marzie Bastanfar
1
Seyyed Amirhosein Hosseini
2
Reza Sourki
3
Farshad Khosravi
4

  1. Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran.
  2. Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University,Buein Zahra, Qazvin, Iran.
  3. School of Engineering, The University of British Columbia, Kelowna, Canada.
  4. Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran.
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.

Go to article

Authors and Affiliations

Kaustubh Bhattacharyya
Rupanda Thangjam
Sivaranjan Goswami
Kumaresh Sarmah
Sunandan Baruah
Download PDF Download RIS Download Bibtex

Abstract

Acoustic properties of ultrasound (US) contrast agent microbubbles (MB) highly influence sonoporation efficiency and intracellular drug and gene delivery. In this study we propose an acoustic method to monitor passive and excited MBs in a real time. MB monitoring system consisted of two separate transducers. The first transducer delivered over an interval of 1 s US pulses (1 MHz, 1% duty cycle, 100 Hz repetition frequency) with stepwise increased peak negative pressure (PNP), while the second one continuously monitored acoustic response of SonoVue MBs. Pulse echo signals were processed according to the substitution method to calculate attenuation coefficient spectra and loss of amplitude. During US exposure at 50–100 kPa PNP we observed a temporal increase in loss of amplitude which coincided with the US delivery. Transient increase in loss of amplitude vanished at higher PNP values. At higher PNP values loss of amplitude decreased during the US exposure indicating MB sonodestruction. Analysis of transient attenuation spectra revealed that attenuation coefficient was maximal at 1.5 MHz frequency which is consistent with resonance frequency of SonoVue MB. The method allows evaluation of the of resonance frequency of MB, onset and kinetics of MB sonodestruction.
Go to article

Authors and Affiliations

Rytis Jurkonis
Nerijus Lamanauskas
Saulius Šatkauskas
Download PDF Download RIS Download Bibtex

Abstract

The sompoton is one of famous traditional musical instruments in Sabah. This instrument consists of several parts with the vibrator being the most important one. In this paper, the vibrator is modeled as a clamped bar with a uniformly distributed mass. By means of this model, the fundamental frequency is analyzed with the use of an equivalent single degree of freedom system (SDOF) and exact analysis. The vibrator is made of aluminum in different sizes and is excited using a constant air jet to obtain its fundamental resonance frequency. The fundamental frequency obtained from the experimental measurement is compared with the theoretical values calculated based on the equivalent SDOF and exact analysis theories. It is found that the exact analysis gives a closer value to the experimental results as compared to the SDOF system. Although both the experimental and theoretical results exhibit the same trend, they are different in magnitude. To overcome the differences in both theories, a correction factor is added to account for the production errors.
Go to article

Authors and Affiliations

Tee Hao Wong
Jedol Dayou
M.C.D. Ngu
Jackson H.W. Chang
Willey Y.H. Liew
Download PDF Download RIS Download Bibtex

Abstract

This study presents an analysis of the effect of the concentrated mass on the acoustic power and the resonant frequencies of a vibrating thin circular plate. The fluid-structure interactions and the acoustic wave radiation effect have been included. The eigenfunction expansion has been used to express the transverse displacement of the plate. The appropriate number of modes is determined approximately to achieve physically correct results. Then highly accurate results are obtained numerically. The radiated acoustic power has been used to determine the resonant frequencies. The introducing of the concentrated mass is justified by modelling the added mass of the moving component of the exciter.
Go to article

Authors and Affiliations

Wojciech P. Rdzanek
1
Krzysztof Szemela
1

  1. University of Rzeszow, College of Natural Sciences, Institute of Physics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A resonant frequency control method for dielectric rod resonators is discussed. A dielectric rod of cylindrical shape is placed inside a metal cavity. The bottom face of the dielectric rod is fixed at the metal base plate. Resonant frequency tuning is achieved by lifting the top metal plate above the dielectric rod upper face. The paper presents simulations using the mode matching technique and experimental study of this tunable resonator. Resonant frequency of the basic mode can be tuned by more than an octave with displacements of only tens of micrometres, which is in range of piezoactuators, MEMS, etc. A distinct feature of the proposed tuning technique is that the quality factor of the system does not degrade throughout the tuning range.
Go to article

Bibliography

[1] J. X. Xu, X. Y. Zhang and Q. Xue, "Dual-channel filter based on dielectric resonator for 5G massive MIMO system," 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, 2018, pp. 1-3. https://doi.org/10.1109/IEEE-IWS.2018.8400849
[2] A. Panariello, M. Yu and C. Ernst, "Ku-Band High Power Dielectric Resonator Filters," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 382-392, Jan. 2013. https://doi.org/10.1109/TMTT.2012.2229292
[3] A. Rashidian and L. Shafai, “Low-Profile Dielectric Resonator Antennas for Millimeter-Wave Applications”, in 15th Int. Symp. Antenna Technol. Appl. Electromagn., 2012. https://doi.org/10.1109/ANTEM.2012.6262406
[4] C. Orlob and C. Neumaier, "Tunable quad-mode dielectric resonator filter," 2017 47th European Microwave Conference (EuMC), Nuremberg, 2017, pp. 915-918. https://doi.org/10.23919/EuMC.2017.8230994
[5] F. Lin and M. Rais-Zadeh, “Continuously Tunable 0.55–1.9-GHz Bandpass Filter With a Constant Bandwidth Using Switchable Varactor-Tuned Resonators,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 3, pp. 792–803, March 2017. https://doi.org/10.1109/TMTT.2016.2633270
[6] J. Uher and W. J. R. Hoefer, "Tunable microwave and millimeter-wave band-pass filters," in IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 4, pp. 643-653, Apr 1991. https://doi.org/10.1109/22.76427
[7] Tao Shen, K. A. Zaki and Chi Wang, "Tunable dielectric resonators with dielectric tuning disks," in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 12, pp. 2439-2445, Dec 2000. https://doi.org/10.1109/22.898995
[8] F. Huang, S. Fouladi, and R. Mansour, “High-Q tunable dielectric resonator filters using MEMS technology”, IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3401–3409, Dec. 2011. https://doi.org/10.1109/TMTT.2011.2171984
[9] Y. Kobayashi, S. Tanaka, “Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates,” IEEE Trans. Microw. Theory Tech., vol. 28, no 10, pp.1077-1085, Oct. 1980. https://doi.org/10.1109/TMTT.1980.1130228
[10] M. Esmaeili, J. Bornemann, “Novel Tunable Bandstop Resonators in SIW Technology and Their Application to a Dual-Bandstop Filter with One Tunable Stopband,” IEEE Microw. Wirel. Compon. Lett., vol. 27, no 1, pp. 40–42, Jan. 2017. https://doi.org/10.1109/LMWC.2016.2630007
[11] B. Potelon, C. Quendo, E. Rius, J.-F. Favennec, “Tunable Bandstop Resonator based on Dual Behavior Resonator Principle,” Proceedings of 2017 IEEE Africon, Cape Town, 2017, pp. 559–562. https://doi.org/10.1109/AFRCON.2017.8095542
[12] J. Berge, A. Vorobiev, W., and S. Gevorgian, “Tunable Solidly Mounted Thin Film Bulk Acoustic Resonators Based on BaxSr1-xTiO3 Films,” IEEE Microw. Wirel. Compon. Lett., vol. 17, no 9, pp. 655–657, Sep. 2007. https://doi.org/10.1109/LMWC.2007.903445
[13] R. Allanic, D. Le Berre, Y. Quéré, C. Quendo, D. Chouteau, V. Grimal, D. Valente, and J. Billoué, “Continuously Tunable Resonator Using a Novel Triangular Doped Area on a Silicon Substrate,” IEEE Microw. Wirel. Compon. Lett., vol. 28, no 12, pp. 1095–1097, Dec. 2018. https://doi.org/10.1109/LMWC.2018.2877661
[14] R.R. Benoit, N.S. Barker, “Superconducting Tunable Microstrip Gap Resonators Using Low Stress RF MEMS Fabrication Process” IEEE J. Electron Devices Soc., vol. 5, no 4, pp. 239–243, Jul. 2017. https://doi.org/10.1109/JEDS.2017.2706676
[15] Zhe Chen, Wei Hong, Jixin Chen, and Jianyi Zhou, “Design of High-Q Tunable SIW Resonator and Its Application to Low Phase Noise VCO” IEEE Microw. Wirel. Compon. Lett., vol. 23, no 1, pp. 43–45, Jan. 2013. https://doi.org/10.1109/LMWC.2012.2234088
[16] Y. Kobayashi and T. Senju, "Resonant modes in shielded uniaxial-anisotropic dielectric rod resonators," in IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 12, pp. 2198-2205, Dec 1993. https://doi.org/10.1109/22.260706
[17] K. Savin, Yu. Prokopenko and G. A. E. Vandenbosch, “Mode matching technique for tunable shielded cylindrical metal-dielectric resonator,” 33d IEEE Int. Conf. “Electronics and Nanotechnology” (ELNANO-2013), Kyiv, Ukraine, 16–19 April 2013, pp. 118–122. https://doi.org/10.1109/ELNANO.2013.6552054
[18] K. Savin, I. Golubeva, Y. Prokopenko, “Calculation of frequency and power characteristics of the composite metal-dielectric resonator using the method of partial regions,” Radioelectronics and Communications Systems, vol. 59, no.5, p. 229–236, May 2016. https://doi.org/10.3103/S0735272716050058
[19] G. N. Brooke and M. Z. Kharadly, “Field behaviour near anisotropic and multidielectric edges”, IEEE Trans. Antennas Propagat., vol. AP-25, no. 4, pp. 571–575, July 1977. https://doi.org/10.1109/TAP.1977.1141646
[20] I. N. Bondarenko, Y. S. Vasiliev, A. S. Zhizhiriy and A. L. Ishenko, "Arrangement device for monitoring of parameters of microwave resonators," 2010 20th International Crimean Conference "Microwave & Telecommunication Technology", Sevastopol, 2010, pp. 969-970. https://doi.org/10.1109/CRMICO.2010.5632420
[21] Pratsiuk Borys, Prokopenko Yuriy, Poplavko Yuriy. Tunable filters based on metal-dielectric resonators // Proc. of 18th International Conference on Microwave, Radar and Wireless Communications MIKON-2010, June 14-16. – pp. 309-311.
[22] Yu. V. Prokopenko, “Controllability range of dielectric inhomogeneity located between the metal planes,” Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, no. 6, pp. 16-20, Nov. 2012 (in Russian).
[23] K. Savin, P. Sergienko, I. Golubeva, Y. Prokopenko, “Calculation of quality factor of tunable shielded cylindrical metal-dielectric resonator using mode matching technique,” Proc. of 20th International Conference on Microwave, Radar and Wireless Communications MIKON-2014, Gdansk (Poland), June 16-18, pp. 414-416. https://doi.org/10.1109/MIKON.2014.6899952
Go to article

Authors and Affiliations

Kostiantyn Savin
1
Irina Golubeva
1
Victor Kazmirenko
1
Yuriy Prokopenko
1
Guy A.E. Vandenbosch
2

  1. Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
  2. ESAT-TELEMIC Group, KU Leuven, Leuven 3000, Belgium
Download PDF Download RIS Download Bibtex

Abstract

Heavy metal ions (e.g. cadmium, chromium, copper, nickel, arsenic, lead, zinc) have significantly serious side effects on the human health. They can bind with proteins and enzymes, altering their activity, increasing neurotoxicity, generating reactive oxygen species (ROS), promote cellular stress and resulting in their damage. Furthermore, the size, shape and type of metal are important for considering nano- or microtoxicity. It then becomes clear that the levels of these metals in drinking water are an important issue. Herein, a new micro-mechanical sensor is proposed to detect and measure these hazardous metals. The sensor consists of a micro-beam inside a micro-container. The surface of the beam is coated with a specific protein that may bind heavy metals. The mass adsorbed is measured using the resonant frequency shift of the micro-beam. This frequency shift due to the admissible mass (which is considered acceptable for drinking water based on the World Health Organization (WHO) standard) of manganese (Mn), lead (Pb), copper (Cu) and cadmium (Cd) is investigated for the first, second and third mode, respectively. Additionally, the effects of micro-beam off-center positions inside the micro-container and the mass location are investigated.

Go to article

Authors and Affiliations

Z. Rahimi
J. Yazdani
H. Hatami
W. Sumelka
D. Baleanu
S. Najafi

This page uses 'cookies'. Learn more