Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Most of sound sources are complex vibroacoustic objects consist of numerous elements. Some coupled vibrating plates of different shapes and sizes can be easily found in urban environments. The main aim of this study is to determine the sound radiation of coupled plates system of practical importance. The investigated vibroacoustic system consist of a thin circular plate coupled with a thick flat baffle with a circular hole. The circular plate has been mounted to the baffle’s hole using screws and two steel rings. The measurement setup was located inside a semi-anechoic chamber to assure the free field conditions. It was necessary to take into account the whole system surface to obtain the radiation efficiency based on the Hashimoto’s method. Such an approach can be troublesome and time-consuming. Therefore, the criterion has been proposed which allows the vibration velocity measurements and calculations to be performed only for the thin plate’s area. An alternative approach has been proposed based on the classical Rayleigh integral formula. Its advantage is a simpler implementation in a computer code. The obtained results have been compared with the theoretical results obtained for the elastically supported circular plate. A good agreement has been obtained at low frequencies.

Go to article

Authors and Affiliations

Wojciech P. Rdzanek
Krzysztof Szmela
Wojciech Żyłka
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the problem of the effect of discretization level and certain other parameters characterizing the measurement setup on accuracy of the process of determination of the sound radiation efficiency by means of the Discrete Calculation Method (DCM) described by Hashimoto (2001). The idea behind DCM consists in virtual division of an examined sound radiating structure into rectangular elements each of which is further assumed to contribute to the total radiation effect in the same way as a rigid circular piston having the surface area equal to this of the corresponding virtual element and vibrating in an infinite rigid baffle. The advantage of the method over conventional sound radiation efficiency measurement techniques consists in the fact that instead of acoustic pressure values, source (plate) vibration velocity amplitude values are measured in a selected number of regularly distributed points. In many cases, this allows to determine the sound radiation efficiency with sufficient accuracy, especially for the low frequency regime. The key part of the paper is an analysis of the effect of discretization level (i.e. the choice of the number of points at which vibration amplitude measurements are to be taken with the use of accelerometers) on results obtained with the use of the method and their accuracy. The problem of determining an optimum level of discretization for given excitation frequency range is a very important issue as the labor intensity (time-consuming aspect) of the method is one of its main flaws. As far as the technical aspect of the method is concerned, two different geometrical configurations of the measurement setup were tested.
Go to article

Authors and Affiliations

Karolina Kolber
Anna Snakowska
Michał Kozupa
Download PDF Download RIS Download Bibtex

Abstract

Cylindrical shells made of composite material form one of the major structural parts in aerospace structures. Many of them are acoustically thick, in which the ring frequencies are much higher than their critical frequencies. In this work, sound radiation behaviour of acoustically thick composite cylinders is presented. Based on the structural and acoustic wave number diagrams, the modal average radiation resistances in the frequency band of interest are theoretically determined. The structural wavenumbers are determined considering transverse shear deformation. The results show lesser sound radiation between the critical and ring frequencies, and significant sound radiation near the ring frequency and beyond. In the absence of the present results the radiation efficiency is considered to be unity at all frequencies beyond the critical frequency, including near the ring frequency. The radiation resistances of the same cylinder are determined experimentally and they are in very good agreement with the theoretical estimates. As part of this investigation, an expression for determining the ring frequency of composite cylinder is also presented.
Go to article

Bibliography

1. Bordoni P.G., Gross W. (1948), Sound radiation from a finite cylinder, Journal of Mathematics and Physics, 27(1–4): 242–252, doi: 10.1002/sapm1948271241.
2. Burroughs C.B. (1984), Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports, The Journal of the Acoustical Society of the America, 75(3): 715–722, doi: 10.1121/1.390582.
3. Cao X., Hua H., Ma C. (2012), Acoustic radiation from shear deformable stiffened laminated cylindrical shells, Journal of Sound and Vibration, 331(3): 651–670, doi: 10.1016/j.jsv.2011.10.006.
4. Cox T.J., D’Antonio P. (2004), Acoustic Absorbers and Diffusers: Theory, Design and Application, New York: CRC Press.
5. Fahy F.J. (1969), Vibration of containing structure by sound in the contained fluid, Journal of Sound and Vibration, 10(3): 490–512, doi: 10.1016/0022-460x(69)90228-4.
6. Fahy F.J. (1970), Response of a cylinder to random sound in the contained fluid, Journal of Sound and Vibration, 13(2): 171–194, doi: 10.1016/s0022-460x(70)81172-5.
7. Fyfe K.R., Ismail F. (1989), An investigation of the acoustic properties of vibrating finite cylinders, Journal of Sound and Vibration, 128(3): 361–375, doi: 10.1016/0022-460x(89)90780-3.
8. Ghinet S., Atalla N., Osman H. (2006), Diffuse field transmission into infinite sandwich composite and laminate composite cylinders, Journal of Sound and Vibration, 289(4–5): 745–778, doi: 10.1016/j.jsv.2005.02.028.
9. Josephine Kelvina Florence S., Renji K., Subramanian K. (2018), Modal density of honeycomb sandwich composite cylindrical shells considering transverse shear deformation, International Journal of Acoustics and Vibration, 23(3): 83–92, doi: 10.20855/ijav.2018.23.11241 .
10. Laulagnet B., Guyader J.L. (1989), Modal analysis of a shell’s acoustic radiation in light and heavy fluids, Journal of Sound and Vibration, 131(3): 397–415, doi: 10.1016/0022-460x(89)91001-8.
11. Le Bot A., Cotoni V. (2010), Validity diagrams of statistical energy analysis, Journal of Sound and Vibration, 329(2): 221–235, doi: 10.1016/j.jsv.2009.09.008.
12. Lin T.R., Mechefske C., O’Shea P. (2011), Characteristics of modal sound radiation of finite cylindrical shells, Journal of Vibration and Acoustics, 133(5): 051011–051016, doi: 10.1115/1.4003944.
13. Lyon R.H. (1975), Statistical Energy Analysis of Dynamical Systems: Theory and Applications, Cambridge, MA: MIT Press.
14. Manning J.E., Maidanik G. (1964), Radiation properties of cylindrical shells, The Journal of the Acoustical Society of the America, 36(9): 1691–1698, doi: 10.1121/1.1919266.
15. Miller V.J., Faulkner L.L. (1983), Prediction of aircraft interior noise using the statistical energy analysis method, Journal of Vibration,Acoustics,Stress and Reliability in Design, 105(4): 512–518, doi: 10.1115/1.3269136.
16. Norton M.P. (1989), Fundamentals of Noise and Vibration Analysis for Engineers, England: Cambridge University Press.
17. Qiao Y., Chen H.B., Luo J.L. (2013), Estimation of shell radiation efficiency using a FEM-SmEdA algorithm, Journal of Vibroengineering, 15(3): 1130–1146.
18. Ramachandran P., Narayanan S. (2007), Evaluation of modal density, radiation efficiency and acoustic response of longitudinally stiffened cylindrical shell, Journal of Sound and Vibration, 304(1–2): 154–174, doi: 10.1016/j.jsv.2007.02.020.
19. Renji K., Josephine Kelvina Florence S. (2020), Critical frequencies of composite cylindrical Shells, International Journal of Acoustics and Vibration, 25(1): 79–87, doi: 10.20855/ijav.2020.25.11572.
20. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2019), Characteristics of in-plane waves in composite plates, International Journal of Acoustics and Vibration, 24(3): 458–466, doi: 10.20855/ijav.2019.24.31290.
21. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2020), An Experimental investigation of modal densities of composite honeycomb sandwich cylindrical shells, International Journal of Acoustics and Vibration, 25(1): 112–120, doi: 10.20855/ijav.2020.25.11626.
22. Renji K., Nair P.S., Narayanan S. (1998), On acoustic radiation resistance of plates, Journal of Sound and Vibration, 212(4): 583–598, doi: 10.1006/jsvi.1997.1438.
23. Reynolds D.D. (1981), Engineering Principles of Acoustics Noise and Vibration, Boston, MA: Allyn and Bacon.
24. Runkle C.J., Hart F.D. (1969), The Radiation Resistance of Cylindrical Shells, NASA CR-1437.
25. Squicciarini G., Putra A., Thompson D.J., Zhang X., Salim M.A. (2015), Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure, Applied Acoustics, 89: 107–121, doi: 10.1016/j.apacoust.2014.09.013.
26. Stephanishen P.R. (1978), Radiated power and radiation loading of cylindrical surfaces with non-uniform velocity distribution, The Journal of the Acoustical Society of the America, 63(2): 328–338, doi: 10.1121/1.381743.
27. Sun Y., Yang T., Chen Y. (2018), Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells, Journal of Sound and Vibration, 424: 64–77, doi: 10.1016/ j.jsv.2018.03.004.
28. Szechenyi E. (1971), Modal densities and radiation efficiencies of unstiffened cylinders using statistical methods, Journal of Sound and Vibration, 19(1): 65– 81, doi: 10.1016/0022-460x(71)90423-8.
29. Wang C., Lai J.C.S. (2000), The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation. I: Theoretical analysis, Journal of Sound and Vibration, 232(2): 431–447, doi: 10.1006/jsvi.1999.2749.
30. Wang C., Lai J.C.S. (2001), The sound radiation efficiency of finite length circular cylindrical shells under mechanical excitation II: Limitations of the infinite length model, Journal of Sound and Vibration, 241(5): 825–838, doi: 10.1006/jsvi.2000.3338.
31. Yin X.W., Liu L.J., Hua H.X., Shen R.Y. (2009), Acoustic radiation from an infinite laminate composite cylindrical shells with doubly periodic rings, Journal of Vibration and Acoustics, 131(1): 011005–011009, doi: 10.1115/1.2980376.
32. Zhao X., Zhang B., Li Y. (2015), Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment, Journal of Vibration and Control, 23(4): 673–692, doi: 10.1177/1077546315581943.
Go to article

Authors and Affiliations

S. Josephine Kelvina Florence
1
K. Renji
2

  1. Structures Group, U. R. Rao Satellite Centre, Bangalore, India-560017
  2. Advanced Technology Development Group, U. R. Rao Satellite Centre Bangalore, India-560017

This page uses 'cookies'. Learn more