Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The choice of global geopotential model used in remove-restore technique for determination of regional quasi geoid from gravity data may affect the solution, in particular when the accuracy is supposed to reach a centimetre level. Global geopotential model plays also an important role in validating height anomalies at GPS/levelling sites that are used for the estimation of the external accuracy of quasigeoid models. Six different global geopotential models are described in the paper. Three kinds of numerical tests with use of terrestrial gravity data and GPS/levelling height anomalies were conducted. The first one concerned comparison of height anomalies at GPS/levelling sites ia Poland with corresponding ones computed from various global geopotential models. In the second one the terrestrial gravity anomalies in Poland and neighbouring countries were compared with corresponding gravity anomalies computed from global geopotential models. Finally the quasigeoid models obtained from gravity data with use of different global geopotential models were verified against corresponding height anomalies at GPS/levelliag sites in Poland. Data quality was discussed and best fitting global geopotential model in Poland was specified.
Go to article

Authors and Affiliations

Jan Kryński
ORCID: ORCID
Adam Łyszkowicz
Download PDF Download RIS Download Bibtex

Abstract

An increased use of global navigation techniques for positioning, and in particular for height determination, led to a growing need for precise models of height reference surface, i.e. geoid or quasigeoid. Geoid or quasigeoid heights at a cm accuracy level, provided on growing number ofGPS/levelling sites, can not only be used for quality control of gravimetric geoid but they also can be integrated with gravity data for geoid/quasigeoid modelling. Such a model is of particular use for surveying practice. A method of quasigeoid modelling based on GPS/levelling data with support of geopotential model and gravity data was developed. The components of height anomaly are modelled with the deterministic part that consists of height anomaly based on EGM96 geopotential model and Molodensky's integral, as well as the polynomial representing trend, and from the stochastic part represented by the isotropic covariance function. Model parameters, i.e. polynomial coefficients and covariance function parameters are determined in a single process of robust estimation, resistant to the outlying measurements. The method was verified using almost a thousand height anomalies from the sites of the EUREF-POL, POLREF, EUVN'97 and WSSG (Military Satellite Geodetic Network) networks in Poland as well as geopotential model refined with gravity data in l' x l' grid. The estimated average mean square error of quasigeoid height is at the level of O.Ol m. The outlying measurements were efficiently detected.
Go to article

Authors and Affiliations

Edward Osada
Jan Kryński
ORCID: ORCID
Magdalena Owczarek
Download PDF Download RIS Download Bibtex

Abstract

In this paper, two techniques for calculating the geoid-to-quasigeoid separation are employed. One of them is GPS/Levelling customary method as a criterion where the geoid undulation and height anomaly are computed by subtracting the ellipsoid height attained via GPS from the orthometric height and normal height, respectively. Another approach is Sjöberg’s equation. We have used of the ICGEM website for definition of the variables of the Sjöberg’s equation, as the applied reference model is the EGM2008 global geopotential model and WGS84 reference ellipsoid. The investigations are performed over the stations of the GPS/Leveling network related to three selected areas in desert, mountain and flatland namely the Lout, Zagros and Khuzestan in Iran and afterward the correlation coefficient between the geoid-to-quasigeoid separation calculated using the satellite data in Sjöberg’s equation and GPS/Levelling method is estimated. The results indicate a straight correlation between the estimated separations from the two methods as its value for the Lout is 0.754, for the Zagros is 0.497 and for the Khuzestan is 0.659. consequently, using the satellite data in Sjöberg’s equation for the regions where there are not the GPS/Levelling and land gravity data, specially for the even areas, yield a satisfactory response of the geoidto-quasigeoid separation.

Go to article

Authors and Affiliations

Ata Eshaghzadeh
Roghayeh Alsadat Kalantari
Zohreh Moeini Hekmat
Download PDF Download RIS Download Bibtex

Abstract

The GRACE-based model GGM02S is a global gravity model expressed in spherical harmonics. As the model is a global solution, a certain smoothing of the available gravity field information is unavoidable. For regional geoid determination the irregularities of residual gravity field should be included. The paper presents the global GRACE gravity field solution, regionally improved by adding a residual field, which is represented by radial base functions. The GRACE observations over the territory of Poland are analysed and a regionally improved GRACE geoid from this data is derived. This improved regional geoid is compared with the Polish quasigeoid and differences between the global and regionally improved GRACE GGM02S solutions are discussed. The study shows that the error of the official GRACE GGM02s solution was reduced by 50% due 10 regional refinement.
Go to article

Authors and Affiliations

Antoni Markus
Andrzej Borkowski
Wolfgang Keller
Magdalena Owczarek
Download PDF Download RIS Download Bibtex

Abstract

The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) has significantly upgraded the knowledge on the Earth gravity field. In this contribution the accuracy of height anomalies determined from Global Geopotential Models (GGMs) based on approximately 27 months GOCE satellite gravity gradiometry (SGG) data have been assessed over Poland using three sets of precise GNSS/levelling data. The fits of height anomalies obtained from 4th release GOCE-based GGMs to GNSS/levelling data were discussed and compared with the respective ones of 3rd release GOCE-based GGMs and the EGM08. Furthermore, two highly accurate gravimetric quasigeoid models were developed over the area of Poland using high resolution Faye gravity anomalies. In the first, the GOCE-based GGM was used as a reference geopotential model, and in the second – the EGM08. They were evaluated with GNSS/levelling data and their accuracy performance was assessed. The use of GOCE-based GGMs for recovering the long-wavelength gravity signal in gravimetric quasigeoid modelling was discussed.
Go to article

Authors and Affiliations

Walyeldeen Godah
Jan Krynski
Małgorzata Szelachowska
Download PDF Download RIS Download Bibtex

Abstract

The summary of research activities concerning gravity field modelling and gravimetric works performed in Poland in the period of 2011–2014 is presented. It contains the results of research on geoid modelling in Poland and other countries, evaluation of global geopotential models, determination of temporal variations of the gravity field with the use of data from satellite gravity space missions, absolute gravity surveys for the maintenance and modernization of the gravity control in Poland and overseas, metrological aspects in gravimetry, maintenance of gravimetric calibration baselines, and investigations of the non- tidal gravity changes. The bibliography of the related works is given in references.
Go to article

Authors and Affiliations

Jan Krynski
Download PDF Download RIS Download Bibtex

Abstract

Modelling quasigeoid with centimetre accuracy requires taking into account irregularities of topography in the vicinity of a gravity station. i.e. the terrain correction w surveyed gravity. Accuracy of determination of the terrain correction affects quality of quasi geoid model determined. It depends on the resolution and accuracy of terrain data that usually is provided in the form of a digital terrain model DTM. Investigations were conducted with the use of the Digital Terrain Elevation Data - DTED2 model developed for Poland according to the NATO-STANAG 3809 standard, as well as global models SRTM3 and SRTM30 (The Shuttle Radar Topography Mission). Also height data from the gravity database was considered. The prism method of determination of terrain corrections was applied in majority of numerical tests. Practical method for determining the optimum radius of the integration cap considering roughness of topography as well as required accuracy of terrain corrections was developed. The effect of vertical and horizontal uncertainty of a DTM as well as its resolution on the quality of the terrain corrections was investigated. The terrain corrections obtained using a prism method were also compared with the respective ones calculated using the FIT approach. The usefulness of the available topography data for precise terrain correction computation in Poland was discussed. The results of the investigations were used to determining the strategy of computation of the terrain corrections to point gravity data in the gravity database for Poland. The "2005" terrain correction set calculated for I 078 046 gravity stations contributes to the increase of precision of gravimetric quasigeoid models developed for Poland.
Go to article

Authors and Affiliations

Małgorzata Grzyb
Jan Kryński
ORCID: ORCID
Magdalena Mank

This page uses 'cookies'. Learn more