Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The author develops a non‑literary, theistic Weltanschauung. It is based on the acceptance of the role of ‘did’ and ‘knows’ as non‑empirical conceptual (indefinable) ‘primes’. The basic argument of this paper is derived from a detailed linguistic observation of the idiosyncratic behaviour of the concepts ‘why’ and ‘because’ vis‑à‑vis other questioners and the functor ‘can’. The item ‘because’ presupposes a conjunction with a clause indicating an obligatorily altogether different state of affairs than one that is given in ‘a because ...’, as an expression patterned on * ‘a because a’ that constitutes a case of one of the most extreme linguistic deviances. Such a putative phrase cannot belong to any natural linguistic code, nor can it be its real product (that is no other than a quip in a purely perlocutionary utterance in J.L. Austin’s sense). Similarly, a generalized version of ‘did’ or ‘knows’ ( someone did / knows something without any specification) cannot be positioned in such a conjunction on pain of engaging in a destructive infinite regress, unless they are coupled with some further, different concept (i.e. a concept other than ‘did’ resp. ‘know’) in a concatenation with ‘because’. According to the author, this shows that precisely the two indicated concepts are conceptual ‘primes’, or the fundamental synthetic a priori’s whose denotata underlie the whole of the reality. The author tries to show that it is unacceptable to reduce Reality to a single and unique empirical universe conceived of as an effect of ‘doing’. He claims that Ockham’s idea of multiplicity of universes represents a logical necessity. But he rejects the mystical höheres in Wittgenstein’s Tractatus as including „pure logic”, ethics and aesthetics. All the three areas, he claims, belong to the created natural realm of speaking beings. Reality, grasped by logic, is broader than that realm.
Go to article

Authors and Affiliations

Andrzej Bogusławski
1
ORCID: ORCID

  1. prof. em., Uniwersytet Warszawski, Wydział Neofilologii, Katedra Lingwistyki Formalnej, ul. Dobra 55, 00-312 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to generate cryptographically strong elliptic curves over prime fields Fp, where p is a Mersenne prime, one of the special primes or a random prime. We search for elliptic curves which orders are also prime numbers. The cryptographically strong elliptic curves are those for which the discrete logarithm problem is computationally hard. The required mathematical conditions are formulated in terms of parameters characterizing the elliptic curves.We present an algorithm to generate such curves. Examples of elliptic curves of prime order are generated with Magma.
Go to article

Bibliography

[1] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic curve cryptography, 2015. http://safecurves.cr.yp.to (accessed 27 September 2015).
[2] I. Blake, G. Serroussi, N. Smart. Elliptic curves in cryptography. Cambridge University Press, 1999.
[3] H. Cohen. A course in computational number theory. Springer 1983.
[4] H. Cohen, G. Frey. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall CRC, 1994.
[5] P. Da˛browski, R. Gliwa, J. Szmidt, R. Wicik. Generation and Implementation of Cryptographically Strong Elliptic Curves. Number-Theoretical Methods in Cryptology. First International Conference, NuTMiC 2017. Warsaw, Poland, 11-13, 2017. Lecture Notes in Computer Sciences, (Eds), Jerzy Kaczorowski, Josef Piprzyk, Jacek Pomykała. Volume 10737, pages 25-36. 2017.
[6] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Trans. Information Theory, IT 22(6), pp. 644-654, 1976.
[7] Jean-Pierre Flori, Jerome Plut, Jean-Rene Reinhard. Diversity and transparency for ECC. NIST Workshop on ECC Standards, June 11-12, 2015.
[8] Gerhard Frey, private communication, 2015.
[9] G. Frey, H. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computations, 62 91994), 865-874.
[10] S. D. Galbraith, P. Gaudry. Recent progress on the elliptic curve discrete logarithm problem. Cryptology ePrint Archive, 2015/1022.
[11] Steven D. Galbraith and James McKee. The probability that the number of points on an elliptic curve over a finite field is prime. J. London Math. Soc. (2), 62(3):671–684, 2000.
[12] R. Gliwa, J. Szmidt, R. Wicik Searching for cryptographically secure elliptic curves over prime fields. Science and Military, 2016, nr 1, volume 11, pages 10-13, ISSN 1336-8885 (print), ISSN 2453-7632 (on-line).
[13] R. Granger, M. Scott. Faster ECC over F2521��1. In: Katz, J. ed., PKC 2015. LNCS, vol. 9020, pp. 539–553.[14] D. Johnson, A. Menezes. The Elliptic Curve Digital Signature Algorithm (ECDSA). Technical Report CORR 99-34, University of Waterloo, Canada. http://www.math.uwaterloo.ca
[15] Manfred Lochter and Andreas Wiemers. Twist insecurity, 2015. iacr. ePrint Archive 577 (2015).
[16] A. Menezes, T. Okamoto, S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE. Transactions on Information Theory, 39 (1993), 1639-1646.
[17] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177), pp. 203- 209, 1987.
[18] V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology - CRYPTO’85, LNCS vol 218, pp. 417-426, 1985.
[19] P. Pohlig, M. Hellman. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transaction on Information Theory, 24 (1979), 106-110.
[20] J. Pollard. Monte Carlo methods for index computations mod pn: Mathematics of Computations, 32 (1978), 918-924.
[21] R. L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21(2), pp. 120- 126, 1978.
[22] T. Satoh, K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis Sancti Pauli, 47 (1998), 81-92.
[23] I. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Mathematics of Computations, 67 (1998), 353-356.
[24] N. Smart. The discrete logarithm problem on elliptic curves uf trace one. Journal of Cryptology, 12 (1999), 193-196.
[25] J. H. Silverman. The arithmetic of elliptic curves. Springer 1986.
[26] Elliptic Curve Cryptography (ECC) Brainpool Standard. Curves and Curve Generation, v. 1.0. 2005. Request for Comments: 5639, 2010. 7027, 2013. http://www.bsi.bund.de
[27] Technical and Implementation Guidance on Generation and Application of Elliptic Curves for NATO classified, 2010.
[28] US Department of Commerce. N.I.S.T. 2000. Federal Information Processing Standards Publication 186-2. FIPS 186-2. Digital Signature Standard.
[29] Standards for Efficient Cryptography Group. Recommended elliptic curve domain parameters, 2000. www.secg.org/collateral/sec2.pdf
[30] Mersenne prime. en.wikipedia.org
[31] Magma Computational Algebra System. School of Mathematics and Statistics. University of Sydney.
Go to article

Authors and Affiliations

Marcin Barański
1
Rafał Gliwa
1
Janusz Szmidt
1

  1. Military Communication Institute, National Research Institute, Warszawska 22A, 05-130 Zegrze
Download PDF Download RIS Download Bibtex

Abstract

The reliable and rapid diagnosis of infectious animal diseases presents an exceptionally im- portant aspect when considering their control and prevention. The paper describes the compara- tive evaluation of two rapid isothermal amplification methods for diagnosis of African swine fever (ASF). The robustness of loop-mediated isothermal amplification (LAMP) and the cross-priming amplification (CPA) were compared using samples obtained from ASF confirmed animals. Both assays were evaluated in order to define their diagnostic capabilities in terms of ASF diagnosis and reproducibility of the results. Investigations showed no cross-reactivity for other pig patho- gens and no significant differences in the specificity of both assays. The sensitivity of LAMP reached 90%, while that of CPA was 70%. In conclusion, both methods are suitable for imple- mentation in preliminary ASF diagnosis but further improvements are required to enhance their diagnostic sensitivity.

Go to article

Authors and Affiliations

G. Woźniakowski
M. Frączyk
N. Mazur

This page uses 'cookies'. Learn more