Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Al2O3-Al2TiO5-TiO2 composites can be obtained by the infiltration of molecular titanium precursors into presintered α-Al2O3 (corundum) cylinders. Two titanium tetraalkoxides, and two dialkoxy titanium bis(acetylacetonates) serve as precursors for TiO2 (rutile) and Al2TiO5 (tialite). The precursors were infiltrated as ethanolic solutions. After sintering at 1550, 1600, and 1650°C, the prepared ceramics’ properties were investigated by SEM, in-situ HT-XRD, and conventional XRD. Titanium tetraisopropoxide leads to the highest content of Al2TiO5 in the composite. The more reactive the precursor, considering the Al2O3/precursor interface, the lower and more anisotropic the grain growth, the more homogeneous is the TiO2 contribution and the higher is the content of Al2TiO5. Raising the sintering temperature causes an increase of the crystalline Al2TiO5 con­tent as well as of the grain growth. Moreover, the reactivity of the precursor molecule influences the Ti/(Al + Ti) ratio in the obtained tialite phase.

Go to article

Authors and Affiliations

B. Dittert
M. Wiessner
P. Angerer
J.M. Lackner
H. Leichtfried
Download PDF Download RIS Download Bibtex

Abstract

Metallic foams are materials of which the research is still on-going, with the broad applicability in many different areas (e.g. automotive

industry, building industry, medicine, etc.). These metallic materials have specific properties, such as large rigidity at low density, high

thermal conductivity, capability to absorb energy, etc. The work is focused on the preparation of these materials using conventional casting

technology (infiltration method), which ensures rapid and economically feasible method for production of shaped components. In the

experimental part we studied conditions of casting of metallic foams with open pores and irregular cell structure made of ferrous and nonferrous

alloys by use of various types of filler material (precursors).

Go to article

Authors and Affiliations

P. Lichý
I. Kroupová
F. Radkovský
V. Bednářová
Download PDF Download RIS Download Bibtex

Abstract

This study suggests a new way to modify the size and morphology of Al-Fe phases in modified AA 7075 by using an Fe-Mn solid solution powder as the precursor. When Fe and Mn are added in the form of a solid solution, the diffusion of Fe and Mn toward the Al is delayed, thus altering the chemical composition and morphology of the precipitates. The fine, spherical precipitates are found to provide a good balance between strength and ductility compared to the case where Fe and Mn are separately added.
Go to article

Bibliography

[1] E.A. Starke Jr, J.T. Staley, Prog. Aerospace Sci. 32, 131 (1996).
[2] J.H. Cha, S.H. Kim, Y-S. Lee, H.W. Kim, Y.S. Choi, Met. Mater. Int. 22, 5 (2016)
[3] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, S.R. Nutt, Mater. Sci. Eng. A 297, 94 (2001).
[4] Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Mater. Sci. Eng. A 632, 62 (2015).
[5] S.B. Sun, L.J. Zheng, J.H. Liu, H. Zhang, J. Mater. Sci. Technol. 33, 389 (2017).
[6] S.K. Das, J.A.S. Green, J.G. Kaufman, JOM 59, 47 (2007).
[7] A. Gesing, L. Berry, R. Dalton, R. Wolanski, Proceedings of the TMS 2002 Annual Meeting: Automotive Alloys and Aluminum Sheet and Plate Rolling and Finishing Technology Symposia, Warrendale, PA, USA, 18-21 February (2002) p. 3-15.
[8] S.G. Shabestari, J.E. Gruzleski, Cast Metals 6, 4, 217 (1994)
[9] W. Wang, R.G. Guan, Y. Wang, R.DK. Misra, B.W. Yang, Y.D. Li, T.J. Chen, Mater. Sci. Eng. A 751, 23 (2019)
[10] J. Mathew, G. Remy, M.A. Williams, F. Tang, P. Srirangam, JOM, 71, 12 (2019)
[11] X. Zhu, P. Blake, S. Ji, Crys. Eng, Comm. (2018) https://doi.org/10.1039/C8CE00675J
[12] R.S. Rana, R. Purohit, S. Das, Int. J. Sci. Res. Pub. 2, 6 (2012)
[13] L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Cryst. Growth. 339, 61 (2012).
[14] T. Dorin, N. Stanford, N. Birbilis, R.K. Gupta, Corr. Sci. 100, 396 (2015).
[15] K. Stan, L. Litynska-Dobrzynska, J. L. Labar, A. Goral, J. Alloy Compd. 586 (2014)
[16] L.G. Hou, C. Cui, J.S. Zhang, Mater. Sci. Eng. A 527, 23 (2010)
[17] S.G. Shabestari, Mater. Sci. Eng. A 383, 2, 289 (2004)
[18] D.R. Gaskell, Introduction to the Thermodynamics of materials, 5th edn. (Taylor & Francis Group, New York, 2008)
[19] P.W. Beaver, B.A. Parker, Mater. Sci. Eng. A 82, 217 (1986).
Go to article

Authors and Affiliations

Min Sang Kim
1 2
ORCID: ORCID
Dae Young Kim
3
ORCID: ORCID
Young Do Kim
1
ORCID: ORCID
Hyun Joo Choi
3
ORCID: ORCID
Se Hoon Kim
2
ORCID: ORCID

  1. Hanyang University, Department of Materials Science & Engineering, Seoul, Republic of Korea
  2. Metallic Material R&D Center, Korea Automotive Technology Institute, Cheonan-si, Republic of Korea
  3. Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The present article describes selected aspects of investment casting technology for manufacturing of open-cell aluminium. The main focus is, among others, on the precursor thickening. Two groups of total 30 samples were produced, basing on open-cell polyurethane foam used as the precursor. Each of the two sample groups was thickened with a different type of suspension consisting of carbonaceous substances and organic binders. The influence of the coating mixture type was compared, leading to conclusions regarding the desired composition and fluidity of the suspensions. Both sample groups of the obtained open-cell aluminium had stochastic cell distributions, the average pore diameter was 5.2 mm and the PPI index was 8. The apparent densities were respectively: 0.485 g/cm3 and 0.312 g/cm3, which reflected the impact of the precursor coating. Additionally, samples from both groups differed in quality.

Go to article

Authors and Affiliations

A.M. Stręk
B. Lipowska
K. Wańczyk
Download PDF Download RIS Download Bibtex

Abstract

Internal structure of metal foams is one of the most important factors that determine its mechanical properties. There exists a number of methods for studying the nature of the inner porous structure. Unfortunately most of these processes is destructive and therefore it is not possible to reuse the sample. From this point of view, as a suitable method seems to be the ability of using the so-called X-ray microtomography (also micro-CT). This is a non-destructive methodology used in a number of fields (industry, science, archaeology, medicine) for a description of the material distribution in the space (e.g. pores, fillers, defects, etc.). In principle, this technology works on different absorption of X-ray radiation by materials with changing proton number. The contribution was worked out in collaboration with experts from the Faculty of Electrical Engineering and Computer Science of the VŠB-Technical University of Ostrava and it is focused on the analysis of internal structure of the metal foam casting with irregular arrangement of internal pores by using micro-CT. The obtained data were evaluated in the commercial software VGStudio MAX 2.2 and in the FOTOMNG system. For the evaluation of these data a new specialized module was introduced in this system. Several methods of pre-processing the image was prepared for the measurement. This preliminary processing consists, for example, from a binary image thresholding for better diversity between the internal porosity and the material itself or functions for colour inversion.

Go to article

Authors and Affiliations

I. Kroupová
P. Lichý
L. Ličev
J. Hendrych
K. Souček
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the technology for the production of precursors (space holder material) used to form the complex internal structure of cast metal foam. The precursor material must exhibit sufficient refractoriness, resist contact with liquid metal and at the same time should exhibit good collapsibility after casting. With regard to the greening of foundry production, the focus of this paper was on materials that could exhibit the above properties and at the same time do not have a negative impact on the environment. In this paper, the technology for the production of spherical precursors from a self-hardening mixture with a geopolymer-based binder system is described and verified. The motivation for the choice of material and all the sub-steps of the process – molding into the core box, tumbling, including the necessary accompanying tests of the mechanical properties of the core mixture being verified – are described.
Go to article

Authors and Affiliations

I. Kroupová
1
ORCID: ORCID
M. Bašistová
1
ORCID: ORCID
P. Lichý
1
ORCID: ORCID
V. Merta
1
ORCID: ORCID
F. Radkovský
1
ORCID: ORCID
J. Jezierski
2
ORCID: ORCID

  1. VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
  2. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 2 Towarowa Str., 744-100 Gliwice, Poland

This page uses 'cookies'. Learn more