Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 98
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the spatial variation of daily and monthly concentration precipitation index and its aggressive-ness were used in 23 rainfall stations in the extreme north-east of Algeria over the period 1970–2010. The trend was analysed by the Mann–Kendall (MK) test. The results show that daily precipitation concentration index (CI) values are noticeably higher in places where the amount of total precipitation is low, the results of MK test show that areas of high precipitation concentration tend to increase. The seasonality and aggressiveness of precipita-tion are high in the eastern and western parts of the study region (eastern and central coastal of Constantine catchments), whereas a moderately seasonal distribution with low aggressiveness is found in the middle of the study area (plains and central Seybouse catchment). As a result, the modified Fournier index (MFI) has a signifi-cant correlation with annual precipitation, whereas the CI and monthly precipitation concentration index (PCI) show an opposite correlation in relation to annual precipitation.
Go to article

Authors and Affiliations

Hanane Bessaklia
Abderrahmane Nekkache Ghenim
Abdessalam Megnounif
Javier Martin-Vide
Download PDF Download RIS Download Bibtex

Abstract

A trial to determine the atmospheric precipitants and their role as the element of pollutants budget in transport of pollutants into water ecosystems has been presented. Total dawnfall method were used with sedimentary funnels of 0.28 m2 . The pH, conductivity, ammonia, nitrites, nitrates, organic nitrogen, phosphates, organic carbon, chlorides, sulphates, calcium, magnesium and heavy metals (iron, zinc, lead and cadmium) were determined. The analysis results are similar to the results obtained at other sample points of Upper Silesia. The range of pollutant concentration changes indicate the objective factors for the analysis results dispersion. With the method apllied, only average values of concentration can be used for the evaluation of the chemical status of downfall waters and atmospheric air. The atmospheric precipitants thought underestimated are siginificant source for pollutants (nitrogen, phosphorus and heavy metals) introduced directly to the trophogenical zone of water ecosystem. In the case of the Kłodnica hydro-junction reservoirs, the loads of nitrogen and phosphorus from atmospheric precipitations are determined as "dangerous surface loading". The presence of considerable loads of magnesium in the precipitations indicates the possibility of chemical precipitation of polyphosphates from epilimnion zone, and are consequence the quicker transportation of phosphorus to the bottom sediments. It can activate the intra-reservoir enrichment process.
Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

Among the elements that compose steel slags and blast furnace slags, metallic precipitates occur alongside the dominant glass and crystalline phases. Their main component is metallic iron, the content of which varies from about 90% to 99% in steel slags, while in blast furnace slags the presence of precipitates was identified with the proportion of metallic iron amounting to 100%. During observations using scanning electron microscopy and X-ray spectral microanalysis it has been found that the form of occurrence of metallic precipitates is varied. There were fine drops of metal among them, surrounded by glass, larger, single precipitates in a regular, spherical shape, and metallic aggregates filling the open spaces between the crystalline phases. Tests carried out for: slags resulting from the open-hearth process, slags that are a by-product of smelting in electric arc furnaces, blast furnace slags and waste resulting from the production of ductile cast iron showed that depending on the type of slag, the proportion and form of metallic precipitates is variable and the amount of Fe in the precipitates is also varied. Research shows that in terms of quality, steel and blast furnace slag can be a potential source of iron recovery. However, further quantitative analyses are required regarding the percentage of precipitates in the composition of slags in order to determine the viability of iron recovery. This paper is the first part of a series of publications aimed at understanding the functional properties of steel and blast furnace slags in the aspect of their destructive impact on the components of devices involved in the process of their processing, which is a significant operational problem.

Go to article

Authors and Affiliations

Andrzej Norbert Wieczorek
Iwona Jonczy
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Height, frequency and spatial differentiation of atmospheric precipitation of the summer season for the period 1975-1982 are presented. Results of the respective investigations are compared with atmospheric precipitation in other areas of the western coast of Spitsbergen.

Go to article

Authors and Affiliations

Kazimierz Marciniak
Rajmund Przybylak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research results of the influence of the precipitation hardening on hardness and microstructure of selected Al-Si and Al-Cu alloys obtained as 30 mm ingots in a horizontal continuous casting process. The ingots were heat treated in process of precipitation hardening i.e. supersaturation with subsequent accelerated or natural ageing. Moreover in the range of the study it has been carried out investigations of chemical constitution, microscopic metallographic with use of scanning electron microscope with EDS analysis system, and hardness measurements using the Brinell method. On basis of obtained results it has been concluded that the chemical constitution of the investigated alloys enables to classify them into Al alloys for the plastic deformation as EN AW-AlSi2Mn (alternatively cast alloy EN AC-AlSi2MgTi) and as EN AW-AlCu4MgSi (alternatively cast alloy EN AC-AlCu4MgTi) grades. Moreover in result of applied precipitation hardening has resulted in the precipitation from a supersaturated solid solution of dispersive particles of secondary phases rich in alloying element i.e. Si and Cu respectively. In consequence it has been obtained increase in hardness in case of AlSi2Mn alloy by approximately 30% and in case of AlCu4MgSi alloy by approximately 20% in comparison to the as-cast state of continuous ingots.
Go to article

Authors and Affiliations

T. Wróbel
P.M. Nuckowski
P. Jurczyk
Download PDF Download RIS Download Bibtex

Abstract

The high mechanical properties of the Al-Li-X alloys contribute to their increasingly broad application in aeronautics, as an alternative forthe aluminium alloys, which have been used so far. The aluminium-lithium alloys have a lower specific gravity, a higher nucleation andcrack spread resistance, a higher Young’s module and they characterize in a high crack resistance at lower temperatures. The aim of theresearch planned in this work was to design an aluminium alloy with a content of lithium and other alloy elements. The research includedthe creation of a laboratorial melt, the microstructure analysis with the use of light microscopy, the application of X-ray methods to identify the phases existing in the alloy, and the microhardness test.
Go to article

Authors and Affiliations

J. Augustyn-Pieniążek
S. Rzadkosz
H. Adrian
M. Choroszyński
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of the research aiming at determining content of selected anions in the samples containing precipitated water (rainwater and snowfall water) by isotachophoretic method. This work is a continuation of the complex pollution monitoring in the areas of Siedlce and Olecko (near Suwałki). The samples were collected from November 2006 to May 2007. Days of sampling depended on atmospheric conditions. Sulfate and hydrogen carbonate turned up to be the dominant anions in samples which were collected in city centers. Higher contents were observed in Siedlce. The content of nitrites in both cities was low. The highest concentration of sulfates and chlorides in rainwater was obtained in the samples collected near the Company of Thermal Energy (CTE) in Siedlce. Similar results of sulfate concentration were observed in Olecko. In samples of snowfall water (collected near to the CTE) sulfates and sulfites were the dominating anions.
Go to article

Authors and Affiliations

Ireneusz Chrząścik
Magdalena Szymalska
Mariusz Kluska
Download PDF Download RIS Download Bibtex

Abstract

The phase transformation dynamic and electrical conductivity equations of the aged Cu-2.7Ti-2.5Ni-0.8V alloy were established in this work. The microstructure evolution and precipitated phases were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mechanical properties were tested using a hardness testing machine and universal test machine, and the electrical conductivity was measured by the eddy conductivity gauge. The results show that NiTi intermetallic compounds are formed during the solidification, and these phases such as Ni3Ti and NiV3 are precipitated after aging treatment. The fracture morphology displays that a large number of shallow and equiaxed dimples occur on the tensile fracture, indicating a typical ductile fracture. After aging treatment at 450°C for 240 min, the hardness, tensile strength, elongation and electrical conductivity of the Cu-2.7Ti-2.5Ni-0.8V alloy are 184 HV, 459 MPa, 6.3% and 28.72% IACS, respectively.
Go to article

Authors and Affiliations

Jia Liu
1 2
ORCID: ORCID
Jituo Liu
3
ORCID: ORCID
Xianhui Wang
3
ORCID: ORCID

  1. Xi’an Polytechnic University, School of Materials Science and Engineering, Xi’an 710048, P.R. China
  2. Xi’an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi’an 710048, P. R. China
  3. Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI), Pb(II), Cr(III), Cu(II), Zn(II), Ni(II) and Cd(II). The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD), the nanosized crystallites in the sample were agglomerated (SEM) and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET). The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

Go to article

Authors and Affiliations

Magdalena Bobik
Irena Korus
Lidia Dudek
Download PDF Download RIS Download Bibtex

Abstract

This work presents the results of a study whose aim was to determine the influence of algal blooms on precipitation of heavy metals. The scope of the study covered culture of a mixed population made up of Scenedesmus and Pseudokirchneriella algae in experimental conditions and initiating a metal biosorption process with the use of culture biomass by administering ions of Zn(II) and Ni(II). The process was controlled by assessing the level of biosorption of metals entered at a one-off basis in the form of Zn(II) and Ni(II) salts or in the form of mixture of both ions, in comparison to the control sample, at different exposure times (2 hours and 24 hours). The presence of metals was determined both in the biomass and in the culture medium. The presented results of the study confirm the effectiveness of Chlorophyta in the process of zinc and nickel biosorption. A phenomenon of competitiveness between the metals was observed when they were administered at the same time.

Go to article

Authors and Affiliations

K. Kipigroch
M. Janosz-Rajczyk
L. Wykrota
Download PDF Download RIS Download Bibtex

Abstract

This investigation was undertaken to determine the optimum conditions for physical-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. The industry uses substances such as: inorganic acids, alkalis, acidic and alkaline metal salts, that has a high water demand in the processes of flushing and cleaning the parts to be coated. According to the preliminary characterization of samples and reported in the literature theory, physico-chemical process was implemented for the removal of contaminants that consisted in chemical oxidation of CN-ions, followed by chemical precipitation made next to a coagulation/flocculation and subsequent adsorption on activated coal. Laboratory scale tests showed the optimal conditions of treatment including chemical oxidation by the addition of 4.15 cm3 of H2O2(30%) per gram of CN, chemical precipitation with NaOH to a pH of 12, followed by coagulation/flocculation with Fe2(SO4)3 at a speed of 135 rpm for 3 min and 20 rpm for 20 min and finally the addition of 1.0 g of adsorbent previously activated at 700°C. From this study, it is clear that the adsorption on activated carbon is highly efficient in the removal ofheavy metals from industrial waste water from electroplating. However, it is also clear that the parallel application of the treatments, shown here, is more effective to completely remove contaminants such as lead, nickel, silver, and copper at la-boratory scale, so it is recommended the simultaneous use of these physico-chemical processes.

Go to article

Authors and Affiliations

Jacipt A.R. Valencia
Jordi P. González
Iris Jimenez-Pitre
Geomar Molina-Bolívar
Download PDF Download RIS Download Bibtex

Abstract

Because of excellent properties, similar to natural bone minerals, and variety of possible biomedical applications, hydroxyapatite (HAp) is a valuable compound among the calcium phosphate salts. A number of synthesis routes for producing HAp powders have been reported. Despite this fact, it is important to develop new methods providing precise control over the reaction and having potential to scale-up. The main motivation for the current paper is a view of continuous synthesis methods toward medical application of produced hydroxyapatite, especially in the form of nanoparticles.

Go to article

Authors and Affiliations

Joanna Latocha
Michał Wojasiński
Paweł Sobieszuk
Tomasz Ciach
Download PDF Download RIS Download Bibtex

Abstract

One type of spheroidal cast iron, with additions of 0.51% Cu and 0.72% Ni, was subjected to precipitation hardening. Assuming that the

greatest increase in hardness after the shortest time of ageing is facilitated by chemical homogenisation and fragmentation of cast iron

grain matrix, precipitation hardening after pre-normalisation was executed. Hardness (HB), microhardness (HV), qualitative and

quantitative metalographic (LM, SEM) and X-ray structural (XRD) tests were performed. The acquired result of 13.2% increase in

hardness after ca. 5-hour ageing of pre-normalised cast iron confirmed the assumption.

Go to article

Authors and Affiliations

T. Szykowny
M. Trepczyńska-Łent
T. Giętka
Ł. Romanowski
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation, the morphology of Ti inclusions in high strength tire cord steel was investigated and their precipitation behavior was discussed using a precipitation and growth model. The results show that Ti inclusions mainly exist in the form of TiN. The two-dimensional characterization of Ti inclusions is square-like with sharp edges and corners, while its three-dimensional shape exhibits a cubic or rectangular-prism morphology. The Ti inclusions do not precipitate when the solid fraction of tire cord during solidification is less than 0.987, and their final radius is closely related to the cooling rate and initial concentration product. The higher the cooling speed, the smaller the final radius, when the cooling speed is constant, the final radius of Ti inclusions is mainly determined by the initial concentration product, w[N]0×w[Ti]0. In order to retard the precipitation and growth of Ti inclusions in tire cord steel, the cooling rate and initial concentration product can be taken into consideration.

Go to article

Authors and Affiliations

Jialiu Lei
Dongnan Zhao
Yongjun Fu
Xianfeng Xu
Download PDF Download RIS Download Bibtex

Abstract

The results of studies of W-Ni-Co-Fe experimental alloy, with chemical composition assuring a possibility of producing Ni-based supersaturated solid solution are presented. The alloy was prepared from tungsten, nickel, cobalt and iron powders which were first mixed then melted in a ceramic crucible where they slowly solidified in hydrogen atmosphere. Next specimens were cut from the casting and heated at a temperature 950o C. After solution treatment the specimens were water quenched and then aged for 20 h at a temperature 300o C. The specimens were subjected to microhardness measurements and structure investigations. The latter included both conventional metallography and SEM observations. Moreover, for some specimens X-ray diffractometry studies and TEM investigations were conducted. It was concluded that quenching lead to an increase of tungsten concentration in nickel matrix which was confirmed by Ni lattice parameter increase. Aging of supersaturated solid solution caused strengthening of the Ni-based matrix, which was proved by hardness measurements. The TEM observation did not yield explicit proofs that the precipitation process could be responsible for strengthening of the alloy.
Go to article

Authors and Affiliations

M. Kaczorowski
P. Skoczylas
A. Krzyńska
J. Kaniewski
Download PDF Download RIS Download Bibtex

Abstract

The scope of this work is to investigate the precipitation of two Al-Mg-Si alloys with and without Cu and excess Si by using the differential scanning calorimetry (DSC), transmission electron microscopic (TEM), Vickers hardness measurement and X-ray diffraction. The analysis of the DSC curves found that the excess Si accelerate the precipitation and the alloy contain the excess Si and small addition of copper has higher aging-hardness than that of free alloy (without excess Si and Cu) at the same heat treatment condition. The sufficient holding time for the precipitation of the β'' phase was estimated to be 6 hours for the alloy aged at 100°C and 10 hours for the alloy aged at 180°C. The low Copper containing Al-Mg-Si alloy gives rise to the forming a finer distribution of β (Mg2Si) precipitates which increases the hardness of the alloy. In order to know more about the precipitation reactions, concern the peaks on the DSC curve transmission electron microscopy observation were made on samples annealed at temperatures (250°C, 290°C and 400°C) just above the corresponding peaks of the three phases β'', β' and β respectively.

Go to article

Authors and Affiliations

Hanna Belghit
Hichem Farh
Toufik Ziar
Mosbah Zidani
Meryem Guemini

This page uses 'cookies'. Learn more