Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aspect of climate change in the modern world is one of the broader issues of global social and economic policy. Climate change implies a modification of the business environment, especially the energy sector. Any change in the conditions in which the company operates is the cause, the effect of which becomes its financial situation during the relevant period. Therefore, climate policy will play an increasingly important role in shaping the energy of the future. At present, energy companies are taking measures to process primary energy from fossil fuels, in particular coal, in an efficient and environmentally friendly way. The article presents the impact of international climate agreements on the energy and coal industries. The latest agreement signed in Paris defines a global plan to minimize the dangerous effects of global warming on the climate arising from carbon emissions. The most important outcome of the agreement was the unification of many countries with a common goal. The European Union played a key role in signing the first legally binding agreement in the world, which is also a forerunner in the carbon trading system: EU ETS (European Union Emission Trading Scheme) The US-based CO2 emissions trading system has become a model for the European Commission. In addition, the article highlights the correlation between the EUA ( European Union Allowances) and “ARA coal” prices as well as the role of the coal market in price formation of emission allowances.

Go to article

Authors and Affiliations

Tadeusz Olkuski
Katarzyna Piwowarczyk-Ściebura
Andrzej Brożek
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of diagnostic examinations conducted on the coils of super-heaters made of 10CrMo9‒10 steel that were operated in industrial conditions at 480°C for 130 thousand hours. The tube was exposed in a coal-fired boiler. The chemical and phase composition of the oxide/deposit layers formed on both sides of the tube walls (outside – flue-gas side and inside – steam side) and their sequence was examined using optical microscopy, scanning electron microscopy with electron backscatter diffraction and energy-dispersive X-ray spectroscopy, and X-ray diffraction. The changes in the mechanical properties caused by corrosion and aging processes were concluded from the hardness measurements. In addition, the nature of cracks in the oxide layers caused by pressing a Vickers indenter was determined. The results of these examinations have shown a high degradation of steel on the flue-gas inflow side and identified the main corrosion products and mechanisms.
Go to article

Bibliography

  1.  S. Frangini, A. Masci, and F. Zaza, “Molten salt synthesis of perovskite conversion coatings: A novel approach for corrosion protection of stainless steels in molten carbonate fuel cells,” Corros. Sci. vol. 53, no. 8, pp. 2539–2548, 2011, doi: 10.1016/j.corsci.2011.04.011.
  2.  M. Gwoździk, “Analysis of crystallite size changes in an oxide layer formed on steel used in the power industry”, Acta Phys. Pol. A. vol. 130, no. 4, pp. 935–938, 2016, doi: 10.12693/APhysPolA.130.935.
  3.  M. Gwoździk and Z. Nitkiewicz, “Texturing of magnetite forming during long-term operation of a pipeline of 10CrMo9‒10 steel,” Solid State Phenomena, vol. 203‒204, pp. 121–124, 2013, doi: 10.4028/www.scientific.net/SSP.203-204.121.
  4.  J. Priss, H. Rojacz, I. Klevtsov, A. Dedov, H. Winkelmann, and E. Badisch, “High temperature corrosion of boiler steels in hydrochloric atmosphere under oil shale ashes,” Corros. Sci. vol. 82, pp. 36–44, 2014, doi: 10.1016/j.corsci.2013.12.016.
  5.  J. Lehmusto, P. Yrjas, and L. Hupa, “Pre-oxidation as a means to increase corrosion resistance of commercial superheater steels,” Oxid Met, vol. 91, pp. 311–326, 2019, doi: 10.1007/s11085-019-09898-x.
  6.  X. Montero and M.C. Galetz, “Effect of different vanadate salt composition on oil ash corrosion of boilers,” Oxid Met, vol. 89, pp. 395–414, 2018, doi: 10.1007/s11085-017-9795-4.
  7.  J. Lehmusto, D. Lindberg, P. Yrjas, and L. Hupa, “The effect of temperature on the formation of oxide scales regarding commercial superheater steels. Oxid Met, vol. 89, pp. 251–278, 2018, doi: 10.1007/s11085-017-9785-6.
  8.  M. Gwoździk and Z. Nitkiewicz, “Studies on the adhesion of oxide layer formed on X10CrMoVNb9‒1 steel,” Arch. Civ. Mech. Eng., vol. 14, pp. 335–341, 2014, doi: 10.1016/j.acme.2013.10.005.
  9.  P. Gawron and S. Danisz, “Dostosowanie zakresu badań diagnostycznych wybranych elementów kotłów pracujących w warunkach współspalania biomasy,” Energetyka, vol. 702, pp. 843–853, 2012 [in Polish].
  10.  F. Klepacki and D. Wywrot, “Trwałość wężownicprzegrzewaczy wtórnych w warunkach niskoemisyjnego spalania,” 12th Informative and Training Symposium: Maintenance of Thermo-Mechanical Power Equipment. Upgrading power equipment to extend its operating period beyond 300 000 hours. Wisła, Poland 2010, pp. 29–35 [in Polish].
  11.  J. Cheng, Y.P. Wu, L.Y. Chen, S. Hong, L. Qiao, and Z. Wei, “Hot corrosion behavior and mechanism of highvelocity arc-sprayed Ni-Cr alloy coatings,” J. Therm. Spray Technol., vol. 28, no. 6, pp. 1263–1274, 2019, doi: 10.1007/s11666-019-00890-0.
  12.  A.K. Pramanick, G. Das, and S.K. Das, “Ghosh Failure investigation of super heater tubes of coalfired power plant,” Case Stud. Eng. Fail. Anal., vol. 9, pp. 17–26, 2017, doi: 10.1016/j.csefa.2017.06.001.
  13.  M. Gwoździk, S. Kulesza, M. Bramowicz, “Application of the fractal geometry methods for analysis of oxide layer”. 26th International Conference on Metallurgy and Materials (METAL 2017), Brno, Czech Republic, 2017, pp. 789- 794.
  14.  P. Monivarman, V.A. Nagarajan, and F.M. Raj, “Mechanical and morphological characterization of discarded fishnet/glass fiber reinforced polyester composite,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1385–1391, 2020, doi: 10.24425/bpasts.2020.134646.
  15.  J. Iwaszko, “Laser surface remelting of powder metallurgy high-speed steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1425–1432, 2020, doi: 10.24425/bpasts.2020.135385.
  16.  C. Bhargava, J. Aggarwal, and P.K. Sharma, “Residual life estimation of fabricated humidity sensors using different artificial intelligence techniques,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 147–154, 2019, doi: 10.24425/bpas.2019.127344.
  17.  M. Gwoździk, M. Motylenko, and D. Rafaja, “Microstructure changes responsible for the degradation of the 10CrMo9‒10 and 13CrMo4‒5 steels during long-term operation,” Mater. Res. Express, vol. 7, no. 1, p. 016515, 2020, doi: 10.1088/2053-1591/ab5fc8.
  18.  C. Hao, F.M. Deng, Z.H. Guo, X. Bo, S. Wang, and X. Zhao, “Fractal dimension of decobalt surface on PDC with different acid corrosion reagents at room temperature,” Diam. Relat. Mat., vol. 105, p. 107699, 2020, doi: 10.1016/j.diamond.2020.107699.
  19.  F.M. Mwema, E.T. Akinlabi, and O.P. Oladijo, “Effect of substrate type on the fractal characteristics of AFM images of sputtered aluminium thin films,” Mater. Sci.-Medzg., vol. 26, pp. 49–57, 2020, doi: 10.5755/j01.ms.26.1.22769.
  20.  H. Aminirastabi, H. Xue, V.V. Miti´c, G. Lazovi´c, G. Ji, and D. Peng, “Novel fractal analysis of nanograin growth in BaTiO3 thin film,” Mater Chem Phys, vol. 239, p. 122261, 2020, doi: 10.1016/j.matchemphys.2019.122261.
  21.  W.P. Dong, P.J. Sullivan, and K.J. Stout, “Comprehensive study of parameters for characterizing 3-dimensional surface-topography. 4. Parameters for characterizing spatial and hybrid properties,” Wear, vol. 178, no. 1–2, pp. 45–60, 1994, doi: 10.1016/0043-1648(94)90128- 7.
  22.  T.R. Thomas, B.-G. Rosén, and N. Amini, “Fractal characterisation of the anisotropy of rough surfaces,” Wear, vol. 232, no. 1, pp. 41–50, 1999, doi: 10.1016/S0043-1648(99)00128-3.
  23.  R.X. Fischer et al., “A new mineral from the Bellerberg, Eifel, Germany, intermediate between mullite and sillimanite,” Am. Miner., vol. 100, pp. 1493–1501, 2015, doi: 10.2138/am-2015-4966.
  24.  Z. Liang, M. Yu, and Q. Zhao, “Investigation of fireside corrosion of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN in ultra-supercritical power plants,” Eng. Fail. Anal., vol. 100, pp. 180–191, 2019, doi: 10.1016/j.engfailanal.2019.02.048.
  25.  M.F. Ashby and D.R.H. Jones, Engineering Materials 1 An Introduction to Properties, Applications and Design, Elsevier, 2012.
  26.  J. Fernández, F. González, C. Pesquera, A. Neves Junior, M Mendes Viana and J. Dweck, “Qualitative and quantitative characterization of a coal power plant waste by TG/DSC/MS, XRF and XRD,” J. Therm. Anal. Calorim., vol. 125, no. 2, pp. 703–710, 2016, doi: 10.1007/ s10973-016-5270-8.
  27.  P. Viklund, A. Hjörnhede, P. Henderson, A. Stålenheim, and R. Pettersson, “Corrosion of superheater materials in a waste-to-energy plant,” Fuel Process. Technol., vol. 105, pp. 106–112, 2013, doi: 10.1016/j.fuproc.2011.06.017.
  28.  Y. Wang, J. Jin, D. Liu, H. Yang, and X. Kou, “Understanding ash deposition for Zhundong coal combustion in 330 MW utility boiler: focusing on surface temperature effects,” Fuel, vol. 216, pp. 697–706, 2018, doi: 10.1016/j.fuel.2017.08.112.
  29.  Y. Xie, W. Xie, W-P. Pan, A. Riga, and K. Anderson, “A study of ash deposits on the heat exchange tubes using SDT/MS and XRD techniques,” Thermochim. Acta, vol. 324, pp. 123–133, 1998, doi: 10.1016/S0040-6031(98)00529-2.
  30.  P.J. Ennis and W.J. Quadakkers, “Mechanisms of steam oxidation in high strength martensitic steels,” Int. J. Pressure Vessels Pip., vol. 84, pp. 75–81, 2007, doi: 10.1016/j.ijpvp.2006.09.007.
  31.  R. Abang, A. Findeisen, and H.J. Krautz, “Corrosion behaviour of selected Power plant materials under oxyfuel combustion conditions,” Górnictwo i Geoinżynieria, vol. 35, no. 3/1, pp. 23–42, 2011.
  32.  T. Aleksandrov Fabijanic’, D. Ćorić, M. Šnajdar Musa, and M. Sakoman, “Vickers Indentation Fracture Toughness of Near-Nano and Nanostructured WC-Co Cemented Carbides,” Metals, vol. 7, 143, 2017, doi: 10.3390/met7040143.
  33.  M. Gwoździk and Z. Nitkiewicz, “Scratch resistance characteristic of oxide layer formed on P91 steel,” Inżynieria Materiałowa, vol. 182, no. 4, pp. 435–438, 2011.
Go to article

Authors and Affiliations

Monika Gwoździk
1
Christiane Ullrich
2
Christian Schimpf
2
David Rafaja
2
Sławomir Kulesza
3
Mirosław Bramowicz
3

  1. Czestochowa University of Technology, ul. Dabrowskiego 69, 42-201 Czestochowa, Poland
  2. TU Bergakademie Freiberg, Akademiestraße 6, 09599 Freiberg, Germany
  3. University of Warmia and Mazury in Olsztyn, ul. Michała Oczapowskiego 2, 10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The second decade of the 21st century is a period of intense development of various types of energy storage other than pumped-storage hydroelectricity. Battery and thermal storage systems are particularly rapidly developing ones. The observed phenomenon is a result of a key megatrend, i.e. the development of intermittent renewable energy sources (IRES) (wind power, photovoltaics). The development of RES, mainly in the form of distributed generation, combined with the dynamic development of electric mobility, results in the need to stabilize the grid frequency and voltage and calls for new solutions in order to ensure the security of energy supplies. High maturity, appropriate technical parameters, and increasingly better economic parameters of lithium battery technology (including lithium-ion batteries) result in a rapid increase of the installed capacity of this type of energy storage. The abovementioned phenomena helped to raise the question about the prospects for the development of electricity storage in the world and in Poland in the 2030 horizon. The estimated worldwide battery energy storage capacity in 2030 is ca. 51.1 GW, while in the case of Poland it is approximately 410.6 MW.
Go to article

Authors and Affiliations

Krystian Krupa
Łukasz Nieradko
Adam Haraziński
Download PDF Download RIS Download Bibtex

Abstract

The article regards aspects of PV modules tested with the use of natural sunlight. The analysis of spectral structure of solar energy resources in southern Poland, carried out on the basis of meteorological data originating from SolarLab PW Wrocław and AGH Kraków, Poland [1] was used in the article. It is a continuation of the article: Analysis of solar energy resources in southern Poland for photovoltaic applications [1], describing the method to determine spectral parameters of average photon energy (APE) and useful fraction (UF) with the use of a solar radiation spectrum simulator. This article, however, includes an experimental presentation of their impact on PV conversion of modules with different absorbers. Theory and practice of the measurements were described with the use of spectral parameters such as: UF, APE. Their influence on the efficiency of modules’ photovoltaic conversion with various spectral characteristics of absorbers was presented. The most recent methods described, which characterise the structure of solar energy resources such as annual distributions of APE and UF, have not been commonly used yet in Poland and other countries, even though they most precisely define adjustment of the spectral factor to the selected PV module.

Practical application of UF, in detection of absorber type used in the tested PV module/cell is demonstrated in the final part of the article.

Go to article

Authors and Affiliations

T. Rodziewicz
M. Rajfur
Download PDF Download RIS Download Bibtex

Abstract

The subject of the article is aspects of PV modules and cells measurement, with the use of natural sunlight. A light source is an important element during calibration and measurements of solar cells and modules. All designers of artificial light sources try to recreate natural light using so called measurement tables. The correctly performed measurement, i.e. meeting all the appropriate atmospheric conditions, guarantees obtaining the result with the use of a reference spectrum. The article has two main aims. The first aim of the article is to answer the question asked earlier - if the sunlight spectrum registered in appropriate conditions is so good that it serves as the reference spectrum - then, in practice, during measurements carried out with its use, certain problems occur regarding the correct measurement results or their interpretation. The second aim regards presenting detailed numeric procedures in order to enable readers to associate air mass with geographical coordinates and Local Solar Time of their study/laboratory location. Moreover, having the data from their local meteorological station, they will be able to estimate the occurrence of the measurement spectral error of the tested cell/module not only from the group referred to in the article but also for others, for which they have a dedicated characteristics of spectral response.

Go to article

Authors and Affiliations

T. Rodziewicz
M. Rajfur
Download PDF Download RIS Download Bibtex

Abstract

The new legislative provisions, regulating the solid fuel trade in Poland, and the resolutions of

provincial assemblies assume, inter alia, a ban on the household use of lignite fuels and solid fuels

produced with its use; this also applies to coal sludge, coal flotation concentrates, and mixtures

produced with their use. These changes will force the producers of these materials to find new

ways and methods of their development, including their modification (mixing with other products

or waste) in order to increase their attractiveness for the commercial power industry. The presented

paper focuses on the analysis of coal sludge, classified as waste (codes 01 04 12 and 01 04 81)

or as a by-product in the production of coals of different types. A preliminary analysis aimed at

presenting changes in quality parameters and based on the mixtures of hard coal sludge (PG SILESIA)

with coal dusts from lignite (pulverized lignite) (LEAG) has been carried out. The analysis

of quality parameters of the discussed mixtures included the determination of the calorific value,

ash content, volatile matter content, moisture content, heavy metal content (Cd, Tl, Hg, Sb, As, Pb,

Cr, Co, Cu, Mn, Ni, and W), and sulfur content. The preliminary analysis has shown that mixing

coal sludge with coal dust from lignite and their granulation allows a product with the desired quality

and physical parameters to be obtained, which is attractive to the commercial power industry.

Compared to coal sludge, granulates made of coal sludge and coal dust from lignite with or without

ground dolomite have a higher sulfur content (in the range of 1–1.4%). However, this is still an

acceptable content for solid fuels in the commercial power industry. Compared to the basic coal

sludge sample, the observed increase in the content of individual toxic components in the mixture

samples is small and it therefore can be concluded that the addition of coal dust from lignite or carbonates

has no significant effect on the total content of the individual elements. The calorific value

is a key parameter determining the usefulness in the power industry. The size of this parameter for

coal sludge in an as received basis is in the range of 9.4–10.6 MJ/kg. In the case of the examined

mixtures of coal sludge with coal dust from lignite, the calorific value significantly increases to

the range of 14.0–14.5 MJ/kg (as received). The obtained values increase the usefulness in the

commercial power industry while, at the same time, the requirements for the combustion of solid

fuels are met to a greater extent. A slight decrease in the calorific value is observed in the case of

granulation with the addition of CaO or carbonates. Taking the analyzed parameters into account,

it can be concluded that the prepared mixtures can be used in the combustion in units with flue gas

desulfurization plants and a nominal thermal power not less than 1 MW. At this stage of work no

cost analysis was carried out.

Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
Marek Wiencek
Janusz Mazurek
Download PDF Download RIS Download Bibtex

Abstract

In the paper the reasons for steam pipeline’s elbow material rupture, made of steel 13CrMo4-5 (15HM) that is being used in the energetics.

Based on the mechanical properties in the ambient temperature (Rm, Rp0,2 and elongation A5) and in the increased temperature (Rp0,2t

) it

was found, that the pipeline elbow’s material sampled from the ruptured area has lower Rp0,2 i Rp0,2t by around 2% than it is a requirement

for 13CrMo4-5 steel in it’s base state. The damage appeared as a result of complex stress state, that substantially exceeded the admissible

tensions, what was the consequence of considerable structure degradation level. As a result of the microstructure tests on HITACHI S4200

microscope, the considerable development of the creeping process associates were found. Also the advances progress of the microstructure

degradation was observed, which is substantial decomposition of bainite and multiple, with varied secretion size, and in most cases

forming the micro cracks chains. With the use of lateral micro sections the creeping voids were observed, that creates at some places the

shrinkage porosities clusters and micro pores.

Go to article

Authors and Affiliations

A. Mesjasz
J. Piątkowski

This page uses 'cookies'. Learn more